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a b s t r a c t

Urban traffic network model is illustrated by state-charts and object-diagram. However, they have

limitations to show the behavioral perspective of the Traffic Information flow. Consequently, a state space

model is used to calculate the half-value waiting time of vehicles. In this study, a combination of the

general type-2 fuzzy logic sets and the Modified Backtracking Search Algorithm (MBSA) techniques are

used in order to control the traffic signal scheduling and phase succession so as to guarantee a smooth

flow of traffic with the least wait times and average queue length. The parameters of input and output

membership functions are optimized simultaneously by the novel heuristic algorithm MBSA. A com-

parison is made between the achieved results with those of optimal and conventional type-1 fuzzy logic

controllers.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

One of the main difficulties in big modern cities is the over-

populations of automobiles. Traffic signal control has a crucial role

in the transport safety and the smoothness of traffic flow. Parti-

cularly, in order to prevent automobiles overcrowding in urban

streets, not only off-line timing, but also real-time control of traffic

signals has been proposed recently [1–4].

A crossroad is the main node of the municipal transport net-

work. Collection of the traffic data and control of the traffic flow

surrounding it is a challenging research subject. There are two

major techniques in signal control: off-line signal control and real-

time signal control. Because of the stochastic nature of traffic flow,

the off-line traffic control technique can be only used for less

crowded crossroads. The real-time technique optimizes the signal

control based on the information collected by sensors. There are

several control techniques in literatures. For example in [3,4], a

novel technique based on video reorganization is presented.

In some research activities, optimization algorithms are used.

The major optimization algorithms include fuzzy logic system

(FLS), neural network-fuzzy (NNF), multi-objective genetic algo-

rithms (MOGA), and Markov Process [5–9].

Lately, Diakaki et al. [2] have suggested a model for traffic

monitoring, and have used optimal linear quadratic regulator for

controlling the model. While this study looks encouraging for

smart control of traffic, the model and the control procedure have

several limitations. In order to overcome these defects, a more

comprehensive model and a robust control method have been

suggested in [10,11]. The modeling procedures in [10,11] and also

in [2] are based on the so-called store-and-forward modeling

method which requires some statistical data related to traffic, for

instance saturation flows and turning motion rates to create the

model. So, this modeling procedure has flaws that it is fairly so-

phisticated to create a model from statistical data and that it might

be too perfect to consider for an actual traffic problem.

The fuzzy logic controller (FLC) is credited with being an ap-

propriate method for designing robust controllers that are capable

of delivering a satisfactory efficiency against uncertainty; therefore

the FLC has become a common solution to reactive traffic signal

control in recent years [12]. The type-1 FLCs have the popular

problem that they cannot be completely used for the linguistic and

numerical uncertainties related to variable environmental condi-

tions as they apply accurate type-1 fuzzy sets. Type-1 fuzzy sets

employ the uncertainties related to the FLC inputs and outputs by

applying accurate and crisp membership functions that the gainer

believes that uncertainty is inhibited [13]. When the type-1

membership functions have been selected, all the uncertainty is

eliminated, since type-1 membership functions are completely

accurate [13,14]. The linguistic and numerical uncertainties related

to variable environmental conditions create problems in specifying

the accurate consequents membership functions over the design

process.
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Lately, many researchers [15–18] pay attention to general type-

2 fuzzy sets and systems because of their ability to deal with un-

certainties and disturbances. Zadeh [17] in 1975 presented Type-2

fuzzy sets as an extension of type-1 fuzzy sets and have been used

in engineering areas successfully. For instance, [19] demonstrates

the efficient performance of IT2FLSs in comparison to type-1 fuzzy

logic systems (T1FLS) when faced with various uncertainties such

as dynamic uncertainties, rule uncertainties, external disturbances

and noises. Available information for making the rules in a fuzzy

logic system can be uncertain. Unlike interval type-2 fuzzy sets

(IT2FS) and type-1 fuzzy sets (T1FS), general type-2 fuzzy sets can

deal with the rule uncertainties. In literatures, only IT2FLSs have

been mainly applied until now because general type-2 fuzzy sets

and systems are computationally complex. Liu [19] proposed a

useful fast process for computing centroid and type reduction of

GT2FLS by using a recent plane representation theorem. In [20–23]

, an in-depth description of the zSlices-based representation,

which enables the representation of and computation with general

type-2 fuzzy sets and their associated third dimensions at a level

of precision and associated computational overhead, which can be

chosen as required by the respective application has given. Bilgin

et al. [24] addressed the need to enhance transparency in Ambient

Intelligent Environments by developing more natural ways of in-

teraction, which allow the users to communicate easily with the

hidden networked devices rather than embedding obtrusive ta-

blets and computing equipment throughout their surroundings. A

novel zSlices based general Type-2 Fuzzy PI (zT2-FPI) controller

where the SMFs are adjusted in an on-line manner through a

single tuning parameter is presented in [25].

Motivated by the aforementioned researches, the purpose of

this paper is to present an Optimal General Type-2 Fuzzy Con-

troller (OGT2FC) for controlling the traffic signal scheduling and

phase succession to guarantee a smooth flow of traffic with the

least wait times and average queue length. The parameters of in-

put and output membership functions are optimized simulta-

neously by a novel heuristic algorithm called Modified Back-

tracking Search Algorithm (MBSA). Simulation results indicate the

superiority of the proposed controller over the non-optimal type-1

fuzzy controller and optimal type-1 fuzzy controller.

2. General type-2 fuzzy sets and systems

A GT2FS in a universal set X can be defined as

∫ μ̃ =
( )

∈ ( )

̃A
x x

x X

/

1

A
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( ( ))
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∈[ ]
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where in this formula μ ( )̃ xA
is called a secondary membership

function (MF) and ( )z ux is called secondary grade; J
x
is the domain

of the secondary MF which is called primary membership and u is

a fuzzy set in [0, 1]. Fig. 1 illustrates a GT2FS where the upper and

lower MFs are triangular and its secondary MF is also triangular.

When ( )=z u 1x IT2FS is obtained that demonstrate a uniform un-

certainty in the primary membership function and is simply de-

scribed by its lower μ̲ ( )˜ x
A

and upper μ̄ ( )˜ x
A

MFs. Because of cal-

culation simplicity, especially in the type reduction, many re-

searchers use interval type-2 fuzzy sets instead of general type-2

fuzzy sets [16,18,20].

Lately, Liu [19] presented a new method for GT2FSs which is

theoretically and computationally effective. Because this method

resembles the α-cut for type-1 fuzzy sets, it is named a α-plane for

type-2 fuzzy sets. α̃A is the denotation of An α-plane representa-

tion for a GT2FS Ã. It is the union of all primary MFs whose sec-

ondary grades are greater than or equal to the special value α:
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Then a GT2FS Ã based on α-plane representation theorem can

be demonstrated in the following form:

α̃ = ⋃ ̃
( )α

α
∈[ ]

A A/
51,0

It is a beneficial representation because α α̃A/ can be seen as an
IT2FS with the secondary grade of level α. As a result, several

IT2FSs may be made from the decomposition of a general type-2

fuzzy set with a corresponding level of α for each, where

α = { … ( − ) }K K K0,1/ , , 1 / , 1 . In simpler terms, a general type-2

fuzzy logic system can be seen as a huge collection of IT2FLSs with

one IT2FLS for each value of α. However, Liu [24] showed that

using only 5 to 10 α-plane can get the required accuracy for cen-

troid calculation. Fig. 2 illustrates the new design for a general

type-2 fuzzy system based on α-plane representation.

In general, a GT2FLS is made of a fuzzifier; fuzzy rule-based;

fuzzy inference engine; type reducer and defuzzifier. Fuzzifier

maps real values into fuzzy sets. Singleton fuzzifier whose output

is a single point of a unity membership grade is used in this paper

Fig. 1. A general type-2 fuzzy set with triangular upper and lower MFs where the secondary MF is triangular.
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because it is simple. Fuzzy rule base includes fuzzy IF-THEN rules.

In the following The jth rule in the GT2FLS is shown:

~
…

~ ~
= … ( )R x F x F y G j M: If is and is then is 1, 2, , 6

j j

n n

j j

1 1

where xi for = …i n1, , and y are the input and output of the

GT2FLS, ̃Fi
j
and G̃

j
are general type-2 antecedent and the con-

sequent sets. A mapping from input GT2FSs to output GT2FSs is

given by the inference engine that merges rules. Because α-plane
representation for fuzzy set is used, the firing set for each related

IT2FS is shown as following:

⎡
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Here ( )̲
α
f Xj and ( )¯

α
f X
j

are the lower and upper MFs of the jth

rule with level of α, and * indicates product t-norm. a type reducer

changes the output of the inference engine which is a type-2 fuzzy

set into a type-1 fuzzy set before defuzzification. Five kinds of

reducers which are based on calculating the centroid of an IT2FS

are demonstrated in [25]. The output of the type reduction in

IT2FLS is defined with its left-end point y
l
and right-end point y

r

due to uniformly secondary grade of IT2FLS.

KM iterative algorithms, introduced two algorithms for calcu-

lating these two end points in [25–27], as presented by Mendel

and Karnik. In comparison to the other type reduction methods,

center of sets (COS) is used a lot because of its computation sim-

plicity [15]. If a singleton fuzzifier is used, product inference en-

gine and COS type reducer, left and right end points for each part

of GT2FLS based on α- representation theorem can be shown as

follows:
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where in this formula θ
αl
j is the left-end point of jth consequent set

with level of ⎡
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where θ
αr
j is the right end point of jth consequent set with level of

⎡
⎣

⎤
⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α θ θ θ ξ ξ= … = = ∑ ¯ + ∑ ̲α α α α

α

α

α

α
α α α α

̲ ¯

= = +D f f, , , , , , andr r r
M

T

r
j f j

Dr

f
j

Dr
r j

R j

j R
M j

r
1

1 1

⎡
⎣

⎤
⎦ξ ξ= …

α α
, ,r r

M
T

1 Meanwhile, performing KM iterative algorithm can

specify R and L for each individual IT2FLS of level α. From the

combination of all of these obtained intervals into a type-1 fuzzy

set like Fig. 3, a crisp output can be obtained using centroid de-

fuzzification as:
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where +K 1 shows the number of the α-planes or in other words

it determines the number of individual IT2FLSs.

3. Optimization technique

Based on the updating process of genetic algorithm (GA) and

differential evolution (DE), a new backtracking search algorithm

(BSA) is developed as an evolutionary optimization (EO) technique

in [28]. Similar to other EOs, the application of basic principles of

Fig. 2. Architecture for a general type-2 fuzzy Logic system.

Fig. 3. Output of each individual IT2FLSs.
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BSA to mathematical optimization begins with the random gen-

eration of an initial population [34]. An objective function is used

to evaluate each individual of the initial set. It profits from a

random mutation techniques which employs only the one direc-

tion individual instead of multiple ones comparing to the DE al-

gorithm. Moreover, a non-uniform crossover procedure is im-

plemented along with the BSAwhich is more complicated than the

GA's crossover. In the crossover step, the variables of two selected

individuals are combined to each other and in the mutation step

the new solutions are randomly generated in order to diversify the

solution search space and allow the BSA to eventually escape from

locally optimal solutions. Furthermore, two new selection strate-

gies are defined and used by the BSA. According to this informa-

tion, the BSA can be divided into the following three steps. It

should be noted that the proposed modification strategies are

explained during the process of the BSA for the sake of

explicitness.

3.1. Initialization

Initially the N number of individual is randomly generated and

positioned at random locations on the search space. Here, the N

represents the D parameters involved in the fuzzy controller. The

individual position is characterized as an initial vector of length N

and D as the problem dimension. The initial position vector can be

represented as:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

… …

⋮ ⋮ ⋮ ⋮ ⋮
… …

⋮ ⋮ ⋮ ⋮ ⋮
… … ( )

X

X X X

X X X

X X X 13

j D

i i j i D

N N j N D

1,1 1, 1,

,1 , ,

,1 , ,

Each array Xi j, is generated randomly using the uniform dis-

tribution U as it can be expressed:

= + (∙)( − ) ( )X X U X X 14i j min j i j max j min j, , , , ,

Where, Xmin j, and Xmax j, are the lower and upper bounds of the jth

member of the problem dimension. The (∙)Ui j, is the random

function generator in the range of [ ]0,1 from the uniform prob-

ability distribution function for the jth member of the ith agent.

� First modification

Chaotic opposition-based learning is suggested in this study to

enhance the quality of the final solution and speed up the con-

vergence rate of the algorithm. If the random initialization is not

far away from the optimal solution, then the convergence is ex-

pected to be faster. In this learning scheme, the chaotic systems

and the opposition-based learning technique are combined to

generate the initial population. The population is divided into two

groups. The first group is initialized based on the chaotic theory

and the second one is generated according to the opposition-based

learning. Here, a sinusoidal based chaotic operator is used to

generate a chaotic number as follows:

( )π= = …

= ( ∙) ( )

+C C k k

C U

sin , 1, ,

15

i j k i j k max

i j i j

, , 1 , ,

, ,1 ,

where k is the iteration counter of sinusoidal iterator and

kmax is the maximum iteration number for chaotic mechanism.

Accordingly, the first group ( =N N/21 ) is generated as follows:

( )= + ( ∙) − = … ( )X X C X X i N, 1, , 16i j
C

min j i j k max j min j, , , , , , 1max

Where Xi j
C
, is the jth variable of the ith individual which is initially

generated by the chaotic system. The rest of the population is

initialized as follows [29]:

= + − ( )X X X X 17i j
o

min j max j i j, , , ,

Where Xi j
o
, is the jth variable of the ith individual which is

initially generated by the opposition-based learning scheme.

3.2. Selection-I

The BSA uses the X
old vector to update the historical population

at the beginning of each iteration. This vector is initialized like the

X and updated through the following ‘If-Then’ rule [28]:

( ∙) < ( ∙) ⋈ ( )XU UIf Then :X 18
old

1 2

where ⋈: is an operation which is used for updating process of

X
old. It means that the BSA has a memory and remembers the

unchanging population from the previous generation until it is

changed. After determining the current X
old, the following process

is implemented to modify the order of the individuals in the X
old

in the current iteration as follows:

( )( )= ( )X X randperm N 19
old old

where ( )randperm N is a random shuffling function and randomly

selects the index from N .

3.3. Mutation, crossover and selection II

Following the embodiment of the selection-I process, a muta-

tion is a next implementation step in the BSA. Based on this, the

trial solutions are generated as follows [28]:

( )= + ( − ) ( )X X M X XF . . 20
trial old

where F is a parameter that controls the amplitude of the search di-

rection vector −X X
old and considered to be × rndn3 in which

~ ( )rndn N 0,1 (N is the standard normal probability distribution func-

tion). Moreover, M is the binary integer-valued vector of size ×N D

which is used for the crossover purpose. It is generated as follows:

( ∙) < ( ∙)

=
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U U
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M

M

If

For 1

For 1
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1

Else
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End

End

End

End

For 1

For 1
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1

Else

0

End

End

End

21

i j
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i j

i j

1 2

1

,

,

2

,

,

where

( )( )
( )

= ( ∙)

= ( )

Q u ceil U D

u randperm D

1 : .

22

1

( )= ( )Q randi D 232

with ( )ceil S as a function which rounds S toward the upper integer.
Also, the randi produces random integers from a uniform discrete

distribution.
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It is notable that the trial solutions with better fitness values

are replaced with the same position of population X for the next

iteration of the BSA.

� Second modification

Following the embodiment of chaotic opposition-based learn-

ing process, a new self-adaptive learning strategy is presented and

applied to the original BSA in order to diversify the problem search

space. Based on the learning experience, a self-adaptive learning

guides the decision making for the modification rules. Three

modification rules are adopted to extend the exploration and ex-

ploitation area in the method, which are expressed as follows:

– Modification rule 1:

⎪

⎪

⎧
⎨
⎩ ( )

( )υ υ

υ
=

+ − >

+ − ( )
X

X Best Worst

X Worst X

if 0

otherwise 24
i mod

i new

i new i new

, 1

,

, ,

where Xi mod, 1 is the generated trial solution for the ith individual

through the modification rule 1. The Best and Worst are the

current best and worst solutions, respectively. The υ is for-

mulated as follows:

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
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υ
ϕ

=
( )

ϕ−

e
d

1

2
cos

5

25
d2

2

2

where ϕ is a random number in the range of [ − ]d d2.5 , 2.5 . The
amount of d is set to change with the iteration number and

expressed as follows:

⎛

⎝

⎜
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⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
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⎞

⎠

⎟
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( )
= ( )

− −

−

d e 26
iter iter

iter
ln 1 1max

max

0.5

where itermax is the maximum number of iterations for the

MBSA.

– Modification rule 2:

( )= + ( ∙) − ( )X X X XU 27i mod i new i m new i new, 2 , , ,

where Xi mod, 2 is the generated trial solution for the ith individual

through the modification rule 2. The m is randomly chosen in-

dividual index from the population.

– Modification rule 3:

( )= + ( ∙) − ( )X X Best MeanU 28i mod i new i, 3 ,

where Xi mod, 3 is the generated trial solution for the ith individual

through the modification rule 3. The Mean is the mean value of

the current population which is provided as follows:

=[ … … ] ( )Mean me me me 29j D1

∑=
( )=

X
me

N 30
j

i

N
i j new

1

, ,

While modification rule 1 improves both the global and local

search capacity, modification rules 2 and 3 enhance the local and

global search capacities, respectively. The selection of modification

rules depends on the following normalized probability model:

=
+ + ( )

Prob
Prob

Prob Prob Prob 31
r

r

1 2 3

= +
( )

Prob Prob
ac

0. 85 0. 15
10 32r r

r

= + = …
( )

ac ac
w

N
ii N1, ,

33
r r

ii

r
r

( )
( ) ( )

=
− +

+…+
= …

( )
w

N i

N
i N

log 1

log 1 log
1, ,

34
i

where Nr is the number of population which selects the mod-
ification rule r .

Finally, the roulette wheel mechanism on the basis of nor-

malized probability (31) is employed in order to choose the rth

modification rule for each individual.

4. An intelligent approach for the single crossroad

4.1. State-space equations

The two-phased signalized crossroad is shown in Fig. 4 [30]. In

this figure, the Leg 1 and Leg 3 are phase 1, and the Leg 2 and Leg

4 are phase 2.

The average queue length is a significant parameter that char-

acterizes the traffic state of a crossroad. The queue is defined as

follows

( + )= ( )+ ( )− ( ) ( ) ( )Q n Q n q n d n S n1 35i i i i i

where =i M1,2, . . . , is the index of the traffic flows;

= –n N0,1, . . . , 1 is the index of the discretized time intervals;

( )Q ni , based on number of automobiles, is the queue length of the

ith flow at the beginning of the nth time interval; ( )q n
i

is the

number of automobiles that join the ith queue in the nth time

interval; ( )d ni is the number automobiles that leave the ith queue
in the nth time interval; and ( )S ni , which is equal to 0 (for stop-

ping) or 1 (for going), is the signal state of the ith flow in the nth

time interval. q
i
and di are typically considered random signals.

In fixed time monitoring and fuzzy smart control, the control

variables are studied as follows [30]. For phase 1 crossroad,

( ) = ( )S S S S, , , 0,1,0,11 2 3 4 , which means traffic signal is green in lanes
2 and 4 and red in lanes 1 and 3. So, the automobiles can move in

Fig. 4. Two phase signalized crossroad. (For interpretation of the references to

color in this figure,the reader is referred to the web version of this article.)
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lanes 2 and 4 and they should stay in lanes 1 and 3. On the other

side, for phase 2 crossroad, ( ) = ( )S S S S, , , 1,0,1,01 2 3 4 , which means
traffic signal is green in lanes 1 and 3 and red in lanes 2 and 4. So,

the automobiles can move in lanes 2 and 4 and they should stay in

lanes 2 and 4.

Integrating the average queue length due to the time, results

the average waiting time of automobiles in the queue. Let T is

short sufficiently, the automobiles arrivals can be assumed as

being identical in each time interval. Therefore, integrating (24)

yields

( )+ = ( )+ ( )+ ( )− ( ) ( )
( )

W n W n TQ n Tq n Td n S n1
1

2

1

2 36i i i i i i

where ( )W ni is the average waiting time of the ith queue since the
start of the time interval to the beginning of the nth time interval.

Eqs. (35) and (36) are the state-space equations characterizing

the dynamic development of the traffic state at a separate cross-

road. The length of queue and the average waiting time are two

common efficiency indices for signal controls. The average waiting

time is utilized here as the efficiency index. So, the cost function is

[31–33]:

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

( ) ∑= ( )
( )=

min W N W N
37i

M

i

1

To expedite the formulation, the state-space equations and the

cost function can be overridden in matrix form as:

( + ) = ( )+ ( ) ( )+ ( ) ( )X n AX n B n S n C n1 38

( )= ( ) ( )y n CX n 39

where

⎡⎣ ⎤⎦( )= ( ) ( ) ( ) ( ) ( ) ( )X n Q n Q n Q n W n W n W n.. . .. .M M

T

1 2 1 2 are the state

variables and ⎡⎣ ⎤⎦( )= ( ) ( ) ( )S n S n S n S n.. . M

T

1 2 are the control variables.

The different coefficient matrices and vectors are [32]

⎡

⎣
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⎤

⎦
⎥
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⎛

⎝

⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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⎡
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=

( ) = −

( ) …

( ) …
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⋮ …

( ) … ( )

( ) …

⋮ … ⋱

… ( )

=
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A
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d n
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C
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M M
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1 1

4.2. Optimal Type-2 fuzzy controller for a single crossroad

Designing an optimal Type-2 fuzzy controller for a single sig-

nalized crossroad comprises three steps. In the following, we will

present these steps in detail.

The first step in designing of a fuzzy controller is determination

of input and output variables. Since the goal is to minimize the

cost function (37), ( )W ni are chosen as the input variables. Fur-

thermore, the states ( )Q ni are directly related to the number

joining and leaving automobiles (i.e. ( )q n
i

and ( )d ni ). Therefore, we

select ( )Q ni as the other input variables. Consequently, the input
variables of the fuzzy controller are state variables of the state-

space system given in (38) and (39). Also, the control variables

( )S ni are the output of the fuzzy controller.
The second step in designing of a fuzzy controller is fuzzification.

The fuzzification is the process of making a crisp quantity fuzzy. The

input variables ( )W ni and ( )Q ni for =i 1, . . , 4 are divided into three
fuzzy membership functions: “Low(L),” “Medium(M),” and “High(H)”

and the output variables ( )S ni are divided into two set: “Going(G)” and
“Stopping(S)”. Going is the continuation of green phase and Stopping

is the red phase. Best locations of the left and right "feet" or base

points of the triangle and also best location of the triangle peak are

set by MBSA. In other words, the MBSA optimization is performed to

compute the lower and upper MFs of the type-2 MF. To do this, the

MBSA is carried out based on the fitness function (37), the initial

population given in section III, and random values for ( )q n
i

[35].

The next step in designing of a fuzzy controller is determina-

tion of fuzzy rules. A more precise analyze of the single intersec-

tion traffic problem in Fig. 4, reveals that the traffic lights of the

legs 1 and 3 (traffic light pair S1- S3) and the legs 2 and 4 (traffic

light pair S2-S4) should change simultaneously and conversely. In

other word, when the pair (S1-S3) changes to green, the other pair

(S2-S4) turns to red. Furthermore, the two pairs (S1-S3) and (S2-S4)
are dependent to each straight road overall queue length and

waiting time (i.e. ( )+ ( )Q n Q n1 3 , ( )+ ( )Q n Q n2 4 , ( )+ ( )W n W n1 3 , and

( )+ ( )W n W n2 4 ). Consequently, one fuzzy controller is needed for

these two pairs. The the jth fuzzy rule the controller is as follows:

{ }

{ } { }
{ } { }

+ +

+ +

R If Q Q is F Q Q is F

is and is

Then S and S are G and S and S are not G

: , ,

W W F W W F

j j j

j j

1 3 1 2 4 2

1 3 3
j

2 4 4
j

1 3 2 4

The parameters + +W Wi i 2 and + +Q Qi i 2 for =i 1,2 are specified

by fuzzy membership functions as demonstrated in Figs. 5–7.

Consequently, the number of fuzzy rules for the controller is

computed as × × × =3 3 3 3 81. Some examples of fuzzy rules of

the controller are provided in Table 1. Another part of the fuzzy

controller is inference engine. An inference engine is a computer

program that attempts to obtain answers from a Rule-base. It is

the “brain” that expert systems use to reason about the data in the

Rule-base for the ultimate purpose of formulating new results.

The last part of designing a fuzzy controller is defuzzification.

The defuzzification is the conversion of a fuzzy quantity to a

precise quantity, just as fuzzification is the conversion of a precise

quantity to a fuzzy quantity. But before applying the defuzzifica-

tion, in type-2 fuzzy sets and systems we have another part,

namely type-reducer. A type-reducer is required to convert them

Fig. 5. Fuzzy membership functions for +W W1 3, +W W2 4.
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into a T1 FS before defuzzification can be performed. The precise

numerical amount of the automobiles that join the ith queue in

the nth time interval for the specified inputs is computed using Eq.

(37). General scheme of the proposed controller is shown in Fig. 8.

5. Discussion of results

The proposed controller can appropriately control traffic

stream under both regular and abnormal traffic circumstances. In

simulation, the sampling time is considered 5 s (T ¼ 5), while a

full cycle time of traffic light is considered 100 s. Simulation has

been done with the following assumptions:

a) The crossroad is composed of four ways, and each way consists

of three lanes.

b) The entrance of automobiles into crossroad is independent on

each lane.

c) Pedestrian crossing at the crossroad is embedded.

d) Sensors are located at specified distance from the crossroad,

the highest number of automobiles in the queue that can be

identified by sensors, is 30 automobiles.

e) Maximum and minimum time to cross the crossroad is re-

spectively 40 and 5 s.

The number of automobiles that leave the ith queue in the nth

time interval is obtained by the following equation

( )( )= ( ) + ( ) ( ) ( )d n Q n q n d nmin , 41i i i si

So that saturation stream rate is

β( ) = ( )+ ( ) ( )d n d n q n 42si cons i.

for =i 1,2,3,4. The dcons. parameter is greater equal fifty, ( ≥d 50cons. ).

The β parameter is in the interval [0 1], so that it’s changes are

listed in Table 2. In fact, the β parameter indicates the level of

uncertainty, where β = 0 corresponds to the highest possible un-

certainty, while β = 1 corresponds to the situation in which the

exact travel time through the network is known with complete

certainty. The traffic data was saved every 5 s and was utilized in

the simulations. The qi and di variables are random signals with

normal distribution.

5.1. Results of fixed-time monitoring

The traffic signals of Leg 1 and Leg 3 in Fig. 4 were supposed

green in 140 s and red in after 60 s. On the other side, the traffic

signals of Leg 2 and Leg 4 in Fig. 4 were supposed red in 140 s and

green in after 60 s. The purposes of optimization are length re-

duction of queues and reducing the average waiting time of au-

tomobiles in the queues. The total numbers of automobiles in

queues on crossroad were shown in every 5 s in Fig. 9. The si-

mulation time is 1000 s.

Fig. 6. Fuzzy membership functions for +Q Q1 3, +Q Q2 4 .

Fig. 7. Fuzzy membership functions for S1, S2, S3, and S4.

Table 1

Example of fuzzy rules of the proposed controller.

Rule j F j
1 F j

2 F j
3 F j

4 G j

1 Low Low Low Low Going

2 Low Low Low Medium Stopping

3 Low Low Low High Stopping

4 Low Low Medium Low Going

5 Low Low Medium Medium Going

19 Low Medium Medium Low Stopping

51 Medium High High Low Stopping

79 High High High Low Going

80 High High High Medium Going

81 High High High High Going
… … … … … …

Fig. 8. General scheme of the proposed controller.

Table 2

Level of uncertainty presented by β parameter.

The Position of Traffic β

Non Saturation β ≥ 0.7

Saturation 0.4 β≤ ≤ 0.6

Super Saturation 0.1 β≤ ≤ 0.3

Instable β=0
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5.1.1. Results of fuzzy intelligent control

The output of controller is the set of control variables (Si). These

control variables for the Leg 1 and Leg 3 of crossroad were shown

in Fig. 10. Also, the total numbers of automobiles in queues on

crossroad, when the fuzzy controller has been used, were shown

in every 5s in Fig. 11. The simulation time is 1000 s.

In order to show the superiority of proposed method, the

Table 3 is presented, where it can be observed that in most tests

the proposed model has a better performance compared with

other methods. The results in this section show that the

non-optimal and optimal type-1 fuzzy controllers and the interval

Type-2 fuzzy controller can still work but there exists room for

improvement. On the other hand, the Optimal General Type-2

Fuzzy Controller resulted on length reduction of queues and re-

duction of the average waiting time of automobiles in the queues.

The proposed strategy can achieve control goals with faster re-

sponse and smoother manner. The proposed method can increase

capacity of the road network in acceptable time and decrease

congestion. Moreover, the computing time of proposed control

strategy is less than 5sec.

6. Conclusion

In this paper an Optimal General Type-2 Fuzzy Controller

(OGT2FC) was proposed for a single crossroad. The parameters of

input and output membership functions were optimized si-

multaneously by a novel heuristic algorithm namely Modified

Backtracking Search Algorithm (MBSA). The overall purpose of the

optimization was length reduction of queues and reduction of the

average waiting time of automobiles in the queues. Simulation

results show the superiority of the proposed controller to the non-

optimal and optimal type-1 fuzzy and the interval type-2 con-

trollers (Table 3).
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