
Received 22 December 2023, accepted 29 January 2024, date of publication 2 February 2024, date of current version 8 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3361752

Securing Smart Grid Data With Blockchain
and Wireless Sensor Networks:
A Collaborative Approach

SALEH ALMASABI 1, (Member, IEEE), AHMAD SHAF 2, TARIQ ALI2, MARYAM ZAFAR2,

MUHAMMAD IRFAN 1, AND TURKI ALSUWIAN 1
1Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia
2Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan

Corresponding author: Saleh Almasabi (ssalmasabi@nu.edu.sa)

This work was supported by the Deanship of Scientific Research, Najran University, Saudi Arabia, under the Distinguished Funding

Program under Grant NU/DRP/SERC/12/8.

ABSTRACT The rapid advancement of grid modernization and the proliferation of smart grids have

engendered a critical need for cyber-physical security. Recent cyber-attacks targeting grid infrastructure,

notably leading to substantial blackouts in Ukraine, underscore the vulnerabilities and potentially

catastrophic consequences of such incursions. These attacks, whether stemming from cyber threats such as

Denial of Service (DOS), False Data Injection Attacks (FDIA), or complex cyber-physical manipulations,

emphasize the imperative of robust cybersecurity protocols in smart grid operations. This research

investigates a pivotal approach to fortify and safeguard smart grid systems by integrating blockchain

technology with wireless sensor nodes. By leveraging a Proof of Authority (PoA) Ethereum Blockchain

framework, the study delves into the transformative capabilities of Blockchain within Supervisory Control

and Data Acquisition (SCADA) networks. Specifically, it examines configurations across IEEE 14-bus,

30-bus, and 118-bus topologies. In addition to elucidating the inherent vulnerabilities in traditional

SCADA systems, this study meticulously evaluates an array of performance matrices. Statistical analyses

encompassing mean, standard deviation, skewness, kurtosis, and confidence levels provide nuanced insights

into the efficacy of blockchain mechanisms in enhancing SCADA resilience against contemporary cyber

threats. This research endeavors to bridge the gap in modern cybersecurity paradigms by fusing blockchain

technology with wireless sensor nodes. By fortifying data integrity, elevating the reliability of data

transmission, and augmenting trustworthiness within SCADA infrastructures, this study aims to present

robust solutions to the escalating cybersecurity challenges faced by smart grid systems.

INDEX TERMS Blockchain technology, cyber-physical security, cyber threats, data integrity, data

transmission reliability, FDIA, proof of authority (PoA), SCADA systems, smart grids security,

trustworthiness, wireless sensor networks.

I. INTRODUCTION

The power grid is becoming a data-driven complex cyber-

physical system, with the advancement of various tech-

nologies such as Phasor measurement units (PMUs) and

the need for a robust operation to handle the intermittency

of renewable energy resources (RERs). The operation of

The associate editor coordinating the review of this manuscript and

approving it for publication was Usama Mir .

the power grid nowadays relies on the processing of

measurements such as voltage magnitudes, power flows, and

demand forecasts. This massive amount of data is collected

throughout the network and processed using the Supervisory

Control and Data Acquisition (SCADA) system.

The pivotal role of SCADA systems for smart grids stems

from the importance of the safe and secure operation of

the grid. As real-time data (measurements) are gathered

throughout the grid from an array of sensors and Intelligent
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Electronic Devices (IEDs), SCADA systems facilitate the

seamless transmission of this data to a centralized control

center [1]. Comprising three fundamental elements [2],

SCADA systems encompass:
1) Remote Terminal Units (RTUs): Positioned strate-

gically within the substation, RTUs serve as data

collection hubs, interfacing with sensors and IEDs,

and formatting the acquired data for transmission to

the control center. Phasor measurement Units (PMUs)

which are replacing RTUs are also part of the SCADA

system.

2) Communication Network: This network interconnects

the RTUs with the central control center, utilizing

diverse technologies like fiber optic cables, wireless

radio, or satellite communication to ensure efficient

data transmission.

3) Main Station: Serving as the nerve center of the

SCADA system, the main station receives incoming

data from RTUs, processes it, and presents a com-

prehensive view to operators. Furthermore, it dis-

patches vital control commands-such as circuit breaker

operations-back to the RTUs, enabling active grid

management.
Despite their crucial role in managing power grids,

SCADA systems within smart grid stations present vulner-

abilities due to their distributed nature, comprising various

wired and wireless nodes. This structure elevates the risk of

cyber threats, allowing intruders to exploit weaknesses and

potentially disrupt SCADA operations [3], [4].

When considering attacks on cyber-physical systems, two

main categories emerge [3], [5]: physical and cyber-attacks.

Physical attacks require physical access, potentially involving

actions like cable disconnection, component destruction,

or unauthorized machinery access. Implementing preventive

measures like surveillance, locks, and intrusion detection can

mitigate these intrusions. On the other hand, cyber-attacks

utilize networked electronic devices to exploit hardware

or software vulnerabilities. Deception attacks manipulate

sensor data or control messages, aiming to mislead CPS

control systems [6]. Techniques such as False Data Injection,

Topology Attacks, Load Redistribution, and Stealthy Attacks

are examples of these strategies [7]. Network-based attacks

[8] focus on vulnerabilities within network protocols, posing

a threat to critical Industrial Control Systems (ICS) function-

ality. These attacks, including Man-in-the-Middle, Spoofing,

Denial of Service, and Replay Attacks, exploit the stringent

real-time requirements of ICSs, potentially causing data loss

or communication delays.

Ukraine faced devastating cyberattacks causingwidespread

blackouts [9]. The 2015 assault, using BlackEnergy malware

via spear-phishing, affected 225,000 people, manipulating

grid equipment and taking hours to rectify. A more sophis-

ticated 2016 attack, exploiting firmware vulnerabilities, hit

1.5 million, installing BlackEnergy to disable power distri-

bution for days. The 2017WannaCry ransomware attack [10]

affected millions of computers globally, impacting critical

infrastructure systems and demanding ransom payments,

showcasing the widespread disruption. The 2021 Colonial

Pipeline attack [11], executed using ransomware, disrupted

fuel supplies along the US East Coast. Exploiting a VPN

server vulnerability, attackers encrypted critical systems,

demanding a hefty ransom for decryption. Moreover, in

2020-2021, attempted cyber infiltrations on many US

economy sectors by hackers highlighted the persistent threat

to critical infrastructure [12]. These incidents underscore

the urgent need for robust cybersecurity measures within

SCADA systems, emphasizing the imperative of preemptive

measures to safeguard critical infrastructure against evolving

cyber threats.

Machine Learning Techniques (MLTs) [13], [14], [15],

[16], [17], [18], [19], [20] extensively deployed for SCADA

network monitoring, intrusion prediction, detection, and

classification comprise various categories. Supervised learn-

ing algorithms, including Support Vector Machines (SVM),

K-Nearest Neighbor (KNN), Logistic Regression (LR),

Neural Networks (such as CNN and RNN), Bayes, Decision

Trees, Artificial Neural Networks, Rule Induction, and

Discriminant Analysis, are commonly utilized. Unsupervised

learning algorithms like Isolation Forest, One-Class Support

Vector Machine (OCSVM), and Autoencoders (such as

Sparse Autoencoders, Undercomplete Autoencoders, Vari-

ational Autoencoders, and Fair Clustering) are employed

when labeled data is insufficient. Deep Learning algorithms

such as Deep Neural Networks (DNN), Convolutional

Neural Network (CNN), Deep Belief Network (DBN), Long

Short-Term Memory (LSTM), Recurrent Neural Network

(RNN, including Simple Recurrent Unit and Bi-directional

Recurrent Unit), Stacked Autoencoder (StAE), and Gated

Recurrent Units (GRU) offer enhanced representations and

performance. Additionally, Ensemble Learning approaches

like Random Forest (RF), Bagging, Boosting (Adaptive

Boosting, Gradient Boosting), ensemble deep learning, and

ensemble neural network models have been employed to

improve accuracy and resilience in the face of sophisticated

attacks. Datasets like CICIDS2017, CICIDS2019, IEC,

ADFA-LD, KDD99, NSL-KDD, and KDD are commonly

used for training and testing these models.

However, despite the efficacy of MLTs in fortifying

SCADA systems, these algorithms exhibit certain limitations.

1) Supervised learning algorithms heavily relied on

labeled data for training, a resource often scarce in the

cybersecurity domain. The constantly evolving attack

patterns and the emergence of novel threats not present

in the training data posed challenges for supervised

models to generalize and adapt effectively to new attack

scenarios.

2) Unsupervised algorithms excelled in identifying

anomalies, yet they faced the issue of generating

false positives, causing unnecessary alarms and

resource inefficiencies. Additionally, distinguishing

between benign anomalies and actual attacks proved

challenging for unsupervised methods.
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3) Deep learning models, known for their prowess in

representation learning, demanded significant com-

putational resources and large datasets, rendering

them impractical for resource-constrained SCADA

environments. The process of training and deploying

deep learning models consumed considerable time

and resources, limiting their real-time applicability in

SCADA security protocols.

4) Ensemble methods, while capable of enhancing accu-

racy, introduced complexities in deployment and main-

tenance. The intricate process of selecting, training,

and coordinating multiple models posed challenges,

particularly in dynamic SCADA environments.
These limitations pave the way for exploring innovative solu-

tions like a Blockchain-enabled secure system architecture,

which aims to augment existing defenses and address the

shortcomings of conventional MLTs within SCADA systems.

Blockchain technology stands out as a pioneering solution

for security and data storage in modern contexts. Functioning

as a distributed database, it meticulously tracks every transac-

tion occurring across network-connected devices. Operating

as an electronic ledger, it meticulously records interactions

and transactions in distinct blocks.What sets blockchain apart

is its decentralized nature, where all users in the network

maintain and authenticate messages. Only after successfully

passing the authentication process are communications added

to the blockchain. Multiple messages are amalgamated

to form blocks and a transaction garners success only

upon unanimous agreement from all participating network

nodes. Notably, blockchain technology boasts an immutable

characteristic, ensuring the steadfastness and security of

transaction data [21].

Meanwhile, leveraging blockchain technology, other

scholarly articles propose a data storage architecture tailored

for wireless sensor networks. This architecture serves a

dual purpose: managing data access and effectively storing

information generated by the nodes [22]. Furthermore, the

authors present a proficient routing technique that enhances

routing performance in a separate study. This demonstrates

the depth of blockchain’s potential in augmenting network

operations through its integration with Markov decision

processes [23].

As technology progresses, WSNs are becoming increas-

ingly used for controlling and monitoring various appli-

cations. These networks are known for their resilience,

compact size, cost-effectiveness, and energy efficiency.

WSNs deployed at various electrical line loading points

record discrete electrical quantities (current, voltage, power).

Real-time data is transmitted to the SCADA center via a

wireless link using IEEE 802.15.4 security protocol [24].

Kantarci et al. [25] assessed the cost-effective approach

to residential load management in smart grid systems

using WSNs. The evaluation considered factors such as

energy cost, reliance on consumers’ maximum demand,

energy conservation, and CO2 emission reduction. The

study compared the in-home energy management technique

with the optimization-based residential energy management

technique. iHOM’s performance was analyzed in terms of

local resource capacity development, load prioritization, and

online pricing of supplied energy. When discussing smart

grids, it’s important to recognize that potential attacks can

originate from different elements of a power system. These

may include SCADA, electric transportation infrastructure,

PMUs, advanced metering infrastructure (AMI), energy

storage subsystems, and other crucial components of the

smart grid. To address challenges in distributed networks,

it is crucial to log information for effective analyses of

cybercrimes and prediction of system failures in Smart Grid

management.

Cohen [26] recently explored a method for cyber investiga-

tors to de-anonymize a significant portion of Bitcoin clients,

presenting new possibilities for blockchain forensics. Erol-

Kantarci and Mouftah [27] emphasized the importance of

smart grid science as a robust security element in power

systems. They outlined applications, obstacles, and open

issues in this field. Building on their research, the study has

summarized challenges in Smart Grid related to Blockchain.

Smart Grid faces another obstacle concerning data volume.

Various power devices generate extensive data, transmitting

them through the communication infrastructure. The data

streams are considered infinite sequences of timestamped

records. Each record comprises key-value pairs, with the

keys representing reading attributes and the values containing

the corresponding data [28]. Managing and processing

this immense volume of data poses significant challenges,

compounded by privacy concerns.

Batista et al. [29] conducted an analysis of the moni-

toring performance of Photovoltaic (PV) and wind energy

systems in smart grids, employing ZigBee technology.

Various tests were conducted to explore energy management

solutions through ZigBee, and the utilization of a smart

metering system for efficient bi-directional energy control

and monitoring was examined, supported by experimental

results. Tushar et al. [30] introduced an energy management

solution for integrating distributed sources into smart grids,

utilizing an algorithm based on Stackelberg equilibrium

(SE). The conclusion drawn was that energy production

becomes more cost-effective as SE approaches the energy

demand of residential units (RUs) and the energy trend

of the shared facility controller (SFC) for energy storage

devices. Zhao et al. [31] conducted a study on energy

management, addressing both the load and supply aspects

through an optimization algorithm grounded in the con-

vexity of power balance between supply and demand.

Their research aimed to minimize transmission losses by

transforming equality constraints into inequality constraints

within an evolved objective function. To facilitate direct

communication between distributed resources and loads, they

employed a consensus-based distributed energy management

approach known as CEMA (Consensus-Based Distributed

Energy Management). This technique operated with the goal

of maximizing social welfare, achieved by reducing tariffs
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and ensuring a maintained power balance. The integration

of blockchain technology could further enhance the security,

transparency, and efficiency of such a decentralized energy

management system.

FIGURE 1. Architectural system of SCADA network in smart grid.

However, traditional security approaches often overlook

the dynamic landscape of cyber threats and the intricate,

distributed nature of smart grid infrastructures. This study

aims to bridge these gaps by proposing a pioneering

blockchain-based security framework tailored explicitly for

wireless sensor networks within SCADA environments

Fig. 1. Our model represents a holistic solution, strategically

designed to not only address existing limitations but also

proactively anticipate emerging cyber threats. The key

components of this framework include:

• Crafting a Cutting-Edge System Design for Enhan-

ced Security:

– We’ve developed a sophisticated system design

that blends blockchain tech, smart contracts,

and encryption protocols. This setup ensures

top-tier security for wireless sensor networks within

SCADA systems, making sure our data stays

integral and secure.

• A Full-Spectrum Defense Against Cyber Threats:

– Our approach covers all bases when it comes to

security. By understanding and countering evolving

cyber threats, we’re proactively defending against

potential risks. We’re not just closing existing

loopholes but also preparing for future threats,

making our smart grid systems more resilient.

• Revolutionizing Smart Grid Integrity with Scalable

Security:

– We’ve seamlessly woven blockchain into our wire-

less sensor networks. This maintains data integrity

and keeps it confidential and accessible as our

systems grow. Our goal is to manage energy

securely while being flexible enough to adapt to

changing needs.

• Creating an Innovative Architecture for Secure and

Scalable Energy Management:

– Our architecture isn’t just about security; it’s

also designed to scale. We’ve built a framework

for monitoring and controlling energy that’s both

secure and adaptable. This ensures data safety at

every level and can grow to meet future demands

and technological advancements.

In the subsequent sections, this paper delves into a detailed

exploration of our methodology (Section II), outlining

the material and methods employed in constructing our

innovative security framework. Section III comprehensively

presents our findings, analyzing the results derived from our

proposed system. Finally, the Conclusion encapsulates the

essence of our discoveries, drawing insightful conclusions

from the synthesized findings.

II. MATERIALS AND METHODS

A. STRUCTURE OF BLOCKCHAIN NETWORK

Blockchain refers to a technology that involves a continu-

ally expanding series of data structures known as blocks.

Cryptography is used to link and secure these blocks. These

blocks are linked and safeguarded through cryptography. The

technology enables secure data transmission, relying on a

highly intricate encryption system. It functions similarly to

a business ledger, documenting every transaction cautiously

and detailed documentation of every peer-to-peer record.

Every block contains details about its creation time and is

linked to the previous block, complete with a timestamp and

transaction data. The data is unchangeable once the network

accepts it [32]. Blockchain is designed to combat fraud and

alteration of data. Each transaction is stored in a block, which

is then effectively connected to create a chain. Significant

information is contained in each block, which includes the

value of the current block, the transaction execution time, the

address of the previous block, a random number (nonce), and

the current block header as shown in Fig. 2. The quantity

and particulars of the acquired data are primarily stored in

the block structure. Additionally, information stored on the

Blockchain is permanent and always accessible. The obtained

data is kept private and non-duplicable by using digital
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signatures in the form of a Merkle tree. The Mekle-root value

is unique in blocks because the Merkle-tree hash function

processes the received data. Here is the visual structure of

Blockchain:

B. CATEGORIES OF BLOCKCHAIN

Blockchain systems can be divided into three primary

categories based on ownership and the audience that may

participate in the block addition and verification process.

Public Blockchain: Anyone can participate in the agreement

process on a public blockchain, where all records are

accessible to the general public. Public blockchains, which

include many participants, have the highest immutability.

They are often less efficient than consortium and private

blockchains, however. Private Blockchain: On the other

hand, only nodes belonging to a particular organization can

connect to the network and participate in the consensus

process in a private blockchain. This suggests a consensus

process based on permissions and is frequently regarded as a

centralized network managed by a single entity [33]. Private

blockchains are more efficient than public blockchains, but

since they have fewer users, they are more vulnerable to

manipulation. Consortium Blockchain: A permission-based

consensus method is also used by consortium blockchains;

however, participation is restricted to many organizations. As

a result, the system becomes more decentralized. Consensus

blockchains, like private ones, are very efficient but may be

more prone to manipulation than public ones because of their

small member base.

C. DATA IN EACH BLOCK

Each block has different information depending on the type of

Blockchain. For example, transaction details, such as sender

and recipient details and the number of bitcoins traded,

may be found on the Blockchain of Bitcoin. In contrast,

a blockchain for health insurance would store data about the

covered person, including their medical history. Each block

has its hash code, a distinguishing fingerprint to identify

the block and its contents. If there is any modification

to block material, this hash code is updated. Additionally,

the hash of the preceding block, serving as its identifier,

contributes to forming the entire chain. Any modification to

a single block disrupts the consistency of subsequent blocks,

illustrating the interconnected and tamper-resistant nature of

the Blockchain [34].

D. HOW BLOCKCHAIN WORKS?

Consider Blockchain as a unique form of ledger technology.

It functions similarly to a digital notepad that records

transactional data. This notebook is set up as a chain of

blocks, and when additional entries are made, it becomes

longer. A fresh block is generated each time new data is

added. Special codes link each newly inserted block to the

one that came before it. In the Blockchain, this produces

a safe and immutable record. Consider the initial block as

the beginning of a chain, and the other blocks that contain

information are like the links in the chain. Any attempts to

alter the data in the second block will disrupt connections

with the third and subsequent blocks. This occurs due to

the hash, a unique code that links each block. A block’s

hash changes when its contents are modified, rendering

it incompatible with subsequent blocks. Therefore, once

data is written, the Blockchain’s architecture helps ensure

that nobody can readily change it. Blockchain technology

makes use of an algorithm known as a consensus algorithm.

Proof of Work (PoW) and Proof of Stake (PoS) are popular.

Proof of Work is similar to a security measure; it causes

the addition of additional blocks to be slowed down. For

instance, adding a new block in Bitcoin takes around ten

minutes. This makes tampering extremely difficult since it

requires much time to perform the work for every following

block if someone tries to modify the data in one block.

Another technique to ensure that transactions are legitimate

is Proof of Stake (PoS), which operates differently than

Proof of Work (PoW). In Proof of Stake (PoS), individuals

are randomly selected depending on their stake amount to

confirm new blocks. The selected individual will declare

whether or not a new block is acceptable. A stake is a

sum of money a candidate must deposit to be selected; if

they approve an illegal transaction, they risk losing their

investment. Additionally, the amount of money they can

attempt to manipulate the system with is limited. If they

successfully declare a block to be good, they will be rewarded

with a portion of the transaction fees from that block. If this

person does not want to continue as a validator, after a certain

period to authenticate this person does not make any fake

claims, their shares and earnings will be refunded. Therefore,

attempting to scam the system by verifying phony blocks

costs a lot of time and money.

E. THE CRYPTOGRAPHY HASH FUNCTION SHA-256

A common cryptographic technique called SHA-256 (Secure

Hash technique 256) generates a fixed-length, 256-bit

(32-byte) hash result. The SHA-256 algorithm aims to

produce a distinct digital fingerprint of a piece of data,

such as a file or message. Creating a SHA-256 hash entails

passing the input data through an advanced mathematical

formula that yields a distinct output value [35]. This output

value is the hash, a digital fingerprint of the input data.

Applications for the SHA-256 algorithm include blockchain

technology, digital signatures, and password authentication.

Secure Hashing Technique A cryptographic hash algorithm

called SHA-256, or 256-bit, may transform any text into an

almost unique 256-bit alphanumeric string. The output is

referred to as a hash or hash value. Collision resistance, or the

infeasibility of finding two distinct inputs that result in the

same hash output, is a key feature of hash functions. SHA-256

is designed to be collision-resistant.
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FIGURE 2. General Structure of Blockchain.

III. PROPOSED SYSTEM ARCHITECTURE

This paper suggests authentication procedures and security

measures for the network. The sensor network structure

includes sensor nodes (SNs), cluster heads (CHs), base

stations (BSs), and end-users. The authentication process

helps in verifying the identity of the user and ensures the

legitimacy of the user and devices. Sensor nodes are equipped

with sensors such as PMUs at the substations in order to

gather information (measurement data). In a sensor network,

cluster heads are nodes that serve as intermediaries between

sensor nodes and base stations (Control Center). They help in

organizing and managing data transmission within a cluster

of sensor nodes. Base stations are central nodes in the network

that collect and aggregate data from sensor nodes or cluster

heads. They often act as the gateway for transmitting data

to external systems or end-users. Fig. 3. Shows a visual

representation of this framework and Fig. 4 represents the

flow diagram of the proposed system:

Sensor nodes share common traits such as computing

power and storage space. These nodes transmit data to

designated cluster heads, typically those with superior com-

puting power and storage capacity. The private blockchain

is integrated into these cluster heads, while the public

blockchain is implemented on base stations. The base station

also manages the initialization process which provides an

essential basis for the network’s operation. In the duration

of registration, nodes go through a careful setup process in

order to determine their presence and function inside the

network. The procedure then moves on to authentication,

which makes sure that only nodes with permission may

take part in network activities. The generation of public

and private keys by the base station is a pivotal aspect

of the security infrastructure. All nodes may access public

keys, which enable secure communication, while only their

respective entities can access private keys, which verify the

integrity and provenance of the data being communicated.

This cryptographic architecture provides an additional degree

of security to the data-sharing process while also protecting

against unauthorized access. Smart contracts play a pivotal

role in the operational framework as they are deployed on

public blockchains. In the context of the registration process,

cluster heads utilize these smart contracts to verify the

existence of clusters and execute the registration steps. These

smart contracts effectively verify the accuracy and legitimacy

of the MAC addresses linked to the cluster heads. The

identification (ID) of the cluster heads is privately registered

in the public blockchain on successful authentication. An

error notice is sent out right away in the case of unsuccessful

verification. Simultaneously, sensor node registration takes

place on the private blockchain. Once the sensor nodes

successfully complete the registration process, they gain

authorization to actively participate in the network. The

registration procedures for both sensor nodes and cluster

heads follow a consistent methodology. In addition, when

19186 VOLUME 12, 2024



S. Almasabi et al.: Securing Smart Grid Data With Blockchain and Wireless Sensor Networks

FIGURE 3. The proposed system model diagram.

FIGURE 4. The proposed system flow diagram.

sensor nodes are deployed, they must be connected to their

corresponding cluster heads. The network’s collaborative

structure is enhanced by this link, which enables smooth

data interchange and communication between sensor nodes

and their assigned cluster leaders. The interaction of public

and private blockchains, smart contracts, and registration

procedures creates a strong basis for the secure and efficient

functioning of the network ecosystem. Wireless sensor

networks face two prevalent types of attacks: external attacks

and internal attacks. The registration and authentication

processes of nodes significantly mitigate external attacks

by preventing unauthorized entry, thus thwarting potential

hackers from gaining access to the network.

IV. SYSTEM SETUP

Fig. 5 depicts the development process of the proposed

system.

A. CREATING NODES

Nodes are the building blocks of the system, storing and

managing data. To create a node, we have taken these

steps:
1) Select a node type (e.g., miner, non-miner)

2) Configure the hardware (e.g., CPU, RAM, storage)

3) Install the necessary software (e.g., Geth, Metamask)

4) Ensure communication capabilities (e.g., network

connectivity)
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FIGURE 5. The proposed system development Diagram.

B. NODE CONFIGURATION

Once nodes are created, they must be configured to work

together. This includes:

1) Defining node accounts

2) Setting roles and permissions for each account

3) Configuring network settings (e.g., IP address, port

number)

C. GETH ACCOUNTS

Geth accounts to manage the system’s cryptocurrency and

access. Each node requires a Geth account, which would be

securely stored.

D. GENESIS FILE CREATION

The Genesis file contains the initial configuration of the

system, such as:

1) Network ID

2) Initial accounts and balances

3) Consensus mechanism

4) Block size

5) Difficulty

This file is created using a text editor and specific

information is included.

E. CONFIGURING GENESIS FILE

After creating the Genesis file, we configured it to match the

specific requirements of the system.

F. ADDING NODES TO GENESIS FILE

Nodes are added to the Genesis file to enable communication

and data sharing. This includes adding the IP address and port

number for each node.

G. CREATING THE BOOT NODE

The Boot Node is a special node that initiates the system and

creates the initial blockchain. It requires a securely stored key.

H. GENERATING BOOT KEY

The Boot Key is a cryptographic key that is used to secure the

Boot Node. It should be generated and stored securely.

I. BOOT NODE INITIALIZATION

The Boot Node needs to be initialized using the Geth

command-line tool. The Boot Key is required for this process.

V. SYSTEM DEPLOYMENT

A. STARTING NODES

Nodes can be started as miners or non-miners using the Geth

command-line tool.

B. METAMASK INTEGRATION

Metamask is a wallet that is integrated into the system. This

allows users to manage their accounts and interact with the

system.

C. DEPLOYING CONTRACTS

Smart contracts can be deployed to the system using

the Remix IDE. This allows for the creation of custom

applications and functionalities.

D. ACCOUNT AUTHORIZATION

The contract owner can authorize accounts for system usage

and authenticate accounts for data access and modification.

E. TRANSACTION HANDLING

Once authorized and authenticated, accounts can send

transactions to store data permanently on the blockchain. The

contract owner manages access and can retrieve stored data.

VI. RESULTS

This simulation environment evaluates the feasibility and

performance of a novel blockchain-based system for col-

lecting and managing sensor data within a private network.
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The system seeks to offer a secure, efficient, and transparent

approach to data storage, retrieval, and analysis by leveraging

a combination of public and private blockchain contracts,

cluster heads, and sensor nodes. Table 1 Employed various

libraries to simulate a robust blockchain system for managing

sensor data effectively.

The simulation setup will be built upon the following key

components:

1. Public Blockchain Contracts:

• Purpose: Defines the logic and rules for storing and

managing data on the Blockchain.

• Key functions:

– storeData: Allows authorized nodes to submit

sensor readings.

– getData: Retrieves specific data entries based on

index or public access methods.

– Authenticate/deauthenticate: Manages

node access permissions.

– getDataCountPublic: Publicly accessible

function to get total data entries.

• Additional features include access control mechanisms,

event logging for data storage, and potential tokenization

for data ownership.

2. Private Blockchain Contracts (Clique Consensus):

• Purpose: Enables efficient and secure data sharing

within a limited group of authorized nodes (cluster heads

and sensor nodes).

• Key features:

– Clique consensus: Block validation based on a

pre-defined validator set (cluster heads) for faster

transaction processing.

– Configurable parameters: Block time, epoch dura-

tion, gas limit, and initial allocations.

– Extra data: Includes addresses of participants for

transparency and potential manipulation detection.

3. Cluster Head Code:

• Purpose: Manages sensor nodes, validates and aggre-

gates their data before relaying to the public Blockchain.

• Key functionalities:

– Communicates with sensor nodes and collects data.

– Verifies sensor node authorization and data

integrity.

– Aggregates received data into meaningful formats

for public chain submission.

– It might implement additional logic like data

filtering, anomaly detection, or pre-processing.

4. Sensor Node Code:

• Purpose: Generates and submits sensor readings to the

cluster head.

• Key functionalities:

– Connects to the Ethereum node and the specific

cluster head contract.

– Generates sensor data (replace with actual readings

in your simulation).

– Builds and signs transactions to call the store-

Data function on the cluster head contract.

– Handles transaction confirmation and potential

errors.

– It might include data encryption, logging, and

scheduling data transmissions.

5. Genesis File Code:

• Purpose: Defines the initial state of the blockchain

network.

• Key elements:

– Chain ID and network parameters for specific block

configurations (homesteadBlock, eip150Block,

etc.).

– Clique consensus settings: block time, epoch dura-

tion, and validator set.

– Block parameters: difficulty, gas limit, and extra

data.

– Initial token allocations for participating addresses.

A. PERFORMANCE METRICS AND SIGNIFICANCE

In evaluating the efficacy and functionality of blockchain

networks, various performance metrics serve as crucial

benchmarks, offering insights into the network’s security,

efficiency, scalability, and reliability. Each metric plays

a distinct role in assessing different facets of blockchain

operation, providing invaluable information for analysis

and improvement. Equations 1-6 are used to monitor the

performance of the proposed system.

Security Metrics:

• Hash Power: Reflects the computational power ded-

icated to securing the network, impacting its attack

resistance.

• 51% Attack Resistance: Measures the network’s ability

to withstand a malicious majority control, ensuring

stability.

• Double-Spend Resistance: Indicates the network’s capa-

bility to prevent unauthorized spending of digital assets.

Consensus Mechanism Metrics:

• Consensus Algorithm: Defines the protocol govern-

ing how transactions are validated and added to the

Blockchain, impacting security and decentralization.

• Throughput: This represents the rate of successful

transaction processing within the network, influencing

its speed and capacity.

Decentralization Metrics:

• Node Distribution: Determines the spread of network

nodes, influencing resilience against central points of

failure.

• Node Count: Reflects the number and role of nodes

within the network, contributing to its decentralization.

Performance Metrics:

• Latency: Measures the delay in transaction confirma-

tion, affecting the network’s responsiveness.

• Scalability: Assesses the network’s ability to han-

dle increased transaction loads without compromising

performance.
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TABLE 1. Utilized Libraries in Simulating a Blockchain System for Sensor Data.

[]

Consistency and Finality Metrics:

• Finality Time: Indicates the time required for transac-

tions to be considered immutable, impacting transaction

reliability.

• Fork Rate: The frequency of divergent chains within the

network influences data consistency.

Immutability Metrics:

• Immutability: Reflects the robustness of the Block-

chain’s permanence and resistance to unauthorized

modifications.

Economic Metrics:

• Token Value: Represents the stability and utility of the

native token within the network.

• Incentive Structure: Reflects the mechanisms encourag-

ing network participants to maintain its integrity.

Interoperability Metrics:

• Cross-Chain Compatibility: Evaluates the network’s

ability to interact and share data with other blockchain

networks.

Hash Power =

∑n
i=1Hi

∑m
j=1 Tj

(1)

Hi: Individual hash rates of n miners and Tj: Individual

mining times of m blocks.

51% Attack Resistance =

∑n
i=1HNi

∑n
j=1 TNj

× 100 (2)

HNi: Number of honest nodes in each subset i and TNj: Total

number of nodes in each subset j.

Throughput =

∑n
i=1 TTi

∑m
j=1 TiTj

(3)

TTi: Total transactions processed in a time segment i and

TiTj: Time taken to process transactions in segment j.

Node Distribution =

∑n
i=1 NC i

∑m
j=1 TN j

× 100 (4)

NCi: Number of nodes clustered in region i and TNj: Total

number of nodes in segment j.

Latency =

∑n
i=1 TDi

∑m
j=1 TSj

(5)

Di: Time delay in transaction confirmation in subset i and Si:

Total transactions sent in subset j.

Finality Time =

Blocks

Consensus
× Block Time (6)

Blocks: Number of confirmed blocks. Consensus: Number of

nodes agreeing on consensus. Block Time: Average time to

generate a block.

B. NETWORK ARCHITECTURE

The network architecture was tested across various test

systems to evaluate its performance in diverse scenarios. Test

cases were conducted on the IEEE 14-bus, IEEE 30-bus,

and IEEE 118-bus networks, each representing different

complexities and node-cluster configurations:

1. IEEE 14-bus:

• Test Case 1: Utilizing four nodes (PMUs/RTUs) and

1 cluster.

• Test Case 2: Employing four nodes (PMUs/RTUs) with

2 clusters (two nodes per cluster).

2. IEEE 30-bus:

• Test Case: Hybrid configuration engaging four nodes

(PMUs/RTUs) within 1 cluster and operating five nodes

in a second cluster configuration.

3. IEEE 118-bus: Hybrid Combination by deploying a total

of 4 clusters and 30 nodes as follows:

• Cluster I: Deploying eleven nodes (PMUs/RTUs) within

1 cluster.

• Cluster II: Utilizing nine nodes (PMUs/RTUs) with

1 cluster.

• Cluster III: Implementing eight nodes (PMUs/RTUs)

within 1 cluster.

• Cluster IV: Employing two nodes (PMUs/RTUs) in

1 cluster configuration.

The number of nodes is chosen such that the network is

guaranteed to have full observability. These diverse test cases

aimed to assess the scalability, performance, and efficiency

of the network architecture across different bus networks and

node-cluster arrangements. In the proposed system, there are

four networks with nine cluster heads organized as follows:

N1CH (Network 1 Cluster Head 1), N2CH1 (Network 2

Cluster Head 1), N2CH2 (Network 2Cluster Head 2), N3CH1
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FIGURE 6. IEEE 14-bus test system with two possible configurations.

(Network 3 Cluster Head 1), N3CH2 (Network 3 Cluster

Head 2), N4CH1 (Network 4 Cluster Head 1), N4CH2

(Network 4 Cluster Head 2), N4CH3 (Network 4 Cluster

Head 3), and N4CH4 (Network 4 Cluster Head 4).

Each sensor node transmits 50 transactions to the cluster

head, and the individual transaction details, including time,

are illustrated in the respective figures. Similarly, the cluster

head forwards the received information to the base station,

and the time taken for their transmission is also evaluated. In

each graph, the x-axis represents the number of transactions,

while the y-axis denotes the time required for the completion

and storage of transactions on the blockchain network.

Fig. 6 shows the two test cases for the IEEE 14-bus test

system. In the first case, the whole network is combined into

one cluster with four nodes. The other case shows the network

with two clusters and two nodes per cluster. The graphical

representation showing data sharing of both cluster-to-base

data and node-to-cluster for the first test case is depicted in

Fig. 7, and its performance evaluation is presented in Table 4.

Similarly, the graphical representation for data sharing of the

IEEE 14-bus network with two clusters and four nodes is

shown in Fig. 8.

FIGURE 7. Graphical representation of IEEE 14-bus with 1 cluster and
four nodes.

Network 1 in Fig. 7, consisting of four sensor nodes, the

average time for each sensor node to transmit 50 transactions

to the cluster head was approximately 9.95 units. Addition-

ally, the average time for Cluster 1 to relay these transactions

to the base station was about 14.77 units.

On the other hand, in network 2 in Fig. 8 the IEEE 14-bus

system was divided into two clusters, each comprising two

sensor nodes. The average time for the sensor nodes in the

first subnetwork was approximately 9.92 units, while for the

second subnetwork, it was approximately 9.95 units. When

these clusters forwarded 50 transactions per node to the base

station, Cluster 1 took about 14.88 units on average, whereas

Cluster 2 took notably longer at around 17.08 units. However,

the collective average time for both clusters in Network 2 to

transmit data to the base station was around 15.98 units.

Comparatively, Network 1 demonstrated slightly lower

individual node transmission times than Network 2’s sub-

networks. However, when considering the transmission from

clusters to the base station, Network 2 showcased varying

times between its clusters, with Cluster 1 closely aligning

with the performance of Cluster 1 in Network 1, while

Cluster 2 lagged notably behind in transmission efficiency.

The performance of both configurations for the IEEE 14-bus

is similar security-wise with a higher number of transactions

for the two clusters configuration.

For the IEEE-30-bus system, Fig. 9 illustrates the graphical

representation of the network with two clusters and nine

nodes, with performance evaluation presented in Table 5.
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FIGURE 8. Graphical representation of IEEE 14-bus with 2 clusters and
four nodes.

The IEEE 118-bus test system, the grid is divided into

4 clusters where each cluster has different number of nodes.

The grid needs a minimum of 30 nodes for complete

observability. These 30 nodes are organized into 4 clusters,

where the number of nodes per cluster is different to mimic a

realistic scenario. The nodes per cluster can differ depending

on several factors such as the distance between substations

and the cost. Fig. 10 showcases the graphical representation

of the network performance for the IEEE 118-bus system,

while Table 6 presents the parametric performance of the

system. As can be seen, changing the network configuration

by increasing/decreasing the cluster-to-node ratio has little

effect on the overall security of the network. Therefore, the

utility has the flexibility to choose the better configuration

for its specific grid due to other factors such as distance and

overall cost.

Figure 11 compiled the performance metrics of every

cluster head into a singular visual representation, offering

a comprehensive overview of their individual performances

within a unified image. The mean represents the arithmetic

average of all values in a dataset, serving as a central

measure indicative of the dataset’s general value. Standard

error estimates the variability between sample means and

population means, offering insight into how much the sample

mean might deviate from the true population mean. The

FIGURE 9. Graphical representation of IEEE 30-bus with 2 clusters and
nine nodes.

median is the middle value within a dataset, effectively

dividing the data into two halves, illustrating the central

tendency without being influenced by extreme values.

Standard deviation measures the dispersion of values

around the mean, conveying how much individual data

points deviate from the average. Sample variance assesses

the spread of data points from the mean, providing a

quantifiable measure of data distribution width. Kurtosis

gauges the ‘‘tailedness’’ of a dataset’s distribution, indicating

whether the data has heavy or light tails compared to a

normal distribution. Skewness measures the asymmetry of

the data distribution, revealing whether the data is skewed
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FIGURE 10. Graphical representation of IEEE 118-bus with 4 clusters and thirty nodes.

to the left or right. The range signifies the span between

the smallest and largest values within the dataset, offering

an overview of the data’s scope. Minimum represents the

smallest observed value within the dataset, while maximum

denotes the largest value. Sum reflects the total sum of all

values within the dataset, providing the combined value of

all observations. Count specifies the number of observations

in the dataset, showing the sample size. Largest(1) and

Smallest(1) refer to the single largest and smallest values

observed in the dataset, respectively, mirroring the maximum

andminimum values. Based on statistical calculations and the

provided sample statistics, the confidence level signifies the

range within which the true population parameter will likely

fall.

Table 2 presents an array of statistical metrics encompass-

ing various networks N1C1, N2C1, N2C2, N3C1, N3C2,

N4C1, N4C2, N4C3, and N4C4. Each matrix is analyzed

across measures such as mean, standard error, median,

standard deviation, sample variance, kurtosis, skewness,

range, minimum, maximum, sum, count, largest, smallest,

and confidence level. Across these matrices, key findings

emerge: The mean values range approximately from 14.76 to

18.48, demonstrating variations across different network

configurations. The standard error varies between 0.98 and

1.37 within distinct networks. Median values fluctuate from

12.22 to 16.8, indicating central tendencies. The standard

deviation ranges from approximately 6.94 to 9.74, depicting

data dispersion. Sample variance values span from 48.18 to

VOLUME 12, 2024 19193



S. Almasabi et al.: Securing Smart Grid Data With Blockchain and Wireless Sensor Networks

FIGURE 11. All cluster heads performance in proposed system.

TABLE 2. Performance matrices of each cluster in different networks.

[]

TABLE 3. Cluster Nodes Transactions Average Time.

94.81, indicating data variability. Kurtosis values vary

between -0.096 and 11.17, indicating differing degrees of

tailedness in the distributions. Skewness ranges from 0.92 to

2.90, demonstrating the asymmetry of the data. The range

spans approximately 31.69 to 46.05, showing the spread

between minimum and maximum values. Minimum values

oscillate between 5.87 and 8.97, while maximum values

range from 37.51 to 51.94 across the datasets. Sum totals

of values across different matrices range from approximately

738.28 to 924.24, signifying overall aggregated values. The

confidence level (95.0%) fluctuates between approximately

1.97 and 2.77, indicating the range within which the true

population parameter might fall based on sample statistics.

As shown in Table 3, the processing time for clusters 2, 4,

6, 7, 8, and 9 have relatively similar average times. Cluster

5 stands out with a slightly higher time of 10.0122. As for

node ratio, clusters 6 and 7 have higher node counts but
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TABLE 4. Simulation environment in IEEE 14-bus with 1 cluster and four nodes.

[]

TABLE 5. Simulation environment in IEEE 30-bus with 2 clusters and nine nodes.

relatively lower average times compared to their transaction

volumes, indicating potential efficiency in processing. Based

on this data, clusters 6 and 7 seem promising for a balance

between security, time, and processing, considering their

lower average times despite having a higher number of nodes

and transactions. Therefore, the grid can be divided into

sub-regions and managed by clusters, and increasing the

number of clusters will have a minor effect on the processing

time while maintaining the advantages of enhanced security.

C. ROCK-SOLID SECURITY ARCHITECTURE

1) BLOCKCHAIN-BASED IMMUTABILITY

The system leverages blockchain technology, ensuring

data remains permanently recorded and tamper-proof. This

immutable ledger guarantees data integrity and prevents

unauthorized modifications, creating a robust foundation for

secure data storage.

2) MULTI-LAYERED ENCRYPTION

Data is encrypted with private keys, accessible only by

authorized entities. This safeguards sensitive information and

ensures secure communication within the network.

3) SMART CONTRACT-ENABLED SECURITY

Smart contracts automate data validation and access control,

further enhancing security and eliminating manual interven-

tion vulnerabilities.

4) IMPENETRABLE GATEKEEPING

Only validated nodes can gain network access, significantly

reducing the risk of unauthorized infiltration and malicious
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TABLE 6. Simulation environment in IEEE 118-bus with 4 clusters and 30 nodes.

activity. This stringent approach bolsters the network’s

resilience against potential threats.

5) ENHANCED NETWORK RESILIENCE

The system incorporates data redundancy mechanisms to

ensure data availability even if individual nodes fail. Addi-

tionally, error correction algorithms identify and rectify

corrupted data, further safeguarding data integrity.

6) ROBUST COMMUNICATION PROTOCOLS

Reliable communication protocols minimize data loss due

to network disruptions, ensuring smooth and secure data

transmission.

7) PROACTIVE THREAT MITIGATION

These systems actively monitor the network for suspicious

activity, identifying and preventing potential attacks before

they can inflict damage.

8) DATA INTEGRITY CHECKS

Cryptographic hashing and digital signatures verify data

authenticity and ensure it remains untampered with, uphold-

ing data integrity and preventing malicious manipulation.

9) CONTINUOUS MONITORING AND IMPROVEMENT

The system is constantly monitored for vulnerabilities

and potential issues, enabling prompt identification and

resolution.

10) DATA LOGGING AND ANALYSIS

Data logging facilitates forensic analysis in case of security

incidents, allowing for thorough investigations and improve-

ments to the system’s security posture.

By combining blockchain technology, robust encryption

methods, and meticulous access control procedures, the

system’s multi-layered security architecture prioritizes data

security and ensures a highly resilient and trustworthy

network. This comprehensive approach effectively mitigates

the risks of data failure, duplication, or compromise, creating

a secure environment for data storage and transmission.

VII. CONCLUSION

In conclusion, this research investigated the pivotal role

of blockchain-integrated wireless sensor nodes in fortifying

cyber-physical security within smart grid infrastructures. The

escalating cyber threats targeting modern grid systems under-

score the imperative of robust cybersecurity frameworks. The

integration of blockchain technology, specifically leveraging

a Proof of Authority (PoA) Ethereum Blockchain network,

exhibited promising capabilities in bolstering data integrity,

fortifying data transmission reliability, and amplifying trust

within Supervisory Control and Data Acquisition (SCADA)

networks. The empirical evaluation across IEEE 14-bus,

30-bus, and 118-bus topologies unveiled the transforma-

tive potential of Blockchain in mitigating vulnerabilities

inherent in traditional SCADA systems. Statistical analyses,

encompassing mean, standard deviation, skewness, kurtosis,

and confidence levels, provided nuanced insights into the

efficacy and resilience of blockchain-based solutions against

contemporary cyber threats. The findings underscore the

significance of blockchain technology as a viable mechanism

to enhance cyber-physical security in smart grid operations.

By addressing the complexities of cyber threats, such as

DOS attacks, FDIA vulnerabilities, and potential cyber-

physical manipulations, this study lays the groundwork for

robust and resilient smart grid ecosystems. The outcomes

of this research pave the way for future endeavors in
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advancing cyber-physical security paradigms within smart

grid infrastructures. As the landscape of cyber threats

continues to evolve, further research and implementations

are essential to fortify and safeguard critical infrastructure

against emerging challenges.

APPENDIX

SIMULATION ENVIRONMENT

The section presents the simulation environments for the two

test cases of the IEEE 14-bus, the test case for the IEEE

30-bus, and the hybrid case for the IEEE 118-bus test system.
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