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a b s t r a c t 

Mammogram inspection in search of breast tumors is a tough assignment that radiologists must carry out 

frequently. Therefore, image analysis methods are needed for the detection and delineation of breast tu- 

mors, which portray crucial morphological information that will support reliable diagnosis. In this paper, 

we proposed a conditional Generative Adversarial Network (cGAN) devised to segment a breast tumor 

within a region of interest (ROI) in a mammogram. The generative network learns to recognize the tu- 

mor area and to create the binary mask that outlines it. In turn, the adversarial network learns to distin- 

guish between real (ground truth) and synthetic segmentations, thus enforcing the generative network to 

create binary masks as realistic as possible. The cGAN works well even when the number of training sam- 

ples are limited. As a consequence, the proposed method outperforms several state-of-the-art approaches. 

Our working hypothesis is corroborated by diverse segmentation experiments performed on INbreast and 

a private in-house dataset. The proposed segmentation model, working on an image crop containing the 

tumor as well as a significant surrounding area of healthy tissue (loose frame ROI), provides a high Dice 

coefficient and Intersection over Union (IoU) of 94% and 87%, respectively. In addition, a shape descriptor 

based on a Convolutional Neural Network (CNN) is proposed to classify the generated masks into four 

tumor shapes: irregular, lobular, oval and round. The proposed shape descriptor was trained on DDSM, 

since it provides shape ground truth (while the other two datasets does not), yielding an overall accuracy 

of 80%, which outperforms the current state-of-the-art. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Breast cancer is the most common diagnosed cause of death 

from cancer in women in the world ( Siegel, Miller, & Jemal, 2017 ). 

Mammography is a world recognized tool that has been proven ef- 
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fective to reduce the mortality rate, since it allows early detection 

of breast diseases ( Lauby-Secretan et al., 2015 ). 

Breast masses are the most important findings among diverse 

types of breast abnormalities, such as micro-calcification and archi- 

tectural distortion. All these findings may point out the presence of 

carcinomas ( Rangayyan, Banik, & Desautels, 2010 ). Moreover, mor- 

phological information of tumor shape (irregular, lobular, oval and 

round) and margin type (circumscribed, ill defined, spiculated and 

obscured) also play crucial roles in the diagnosis of tumor malig- 

nancy ( Tang, Rangayyan, Xu, El Naqa, & Yang, 2009 ). 

Computer aided diagnosis (CAD) systems are highly recom- 

mended to assist radiologists in detecting breast tumors and out- 

lining their borders. However, breast tumor segmentation and clas- 

sification are still challenges due to low signal-to-noise ratio and 

variability of tumors in shape, size, appearance, texture and loca- 

tion. Recently, many studies based on deep representation of breast 

https://doi.org/10.1016/j.eswa.2019.112855 
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Fig. 1. Automatic workflow for our breast tumor segmentation and shape classification system. 

images and combining features have been proposed to improve 

performance on breast mass classification ( Jiao, Gao, Wang, & Li, 

2018 ). 

In addition, based on mammographic images, it is very compli- 

cated for an expert radiologist to discern the molecular subtypes, 

i.e., Luminal-A, Luminal-B, HER-2 (Human Epidermal growth factor 

receptor 2) and Basal-like (triple negative), which are key for pre- 

scribing the best oncological treatment ( Cho, 2016; Liu, Wu et al., 

2016; Tamaki et al., 2011 ). However, recent studies point out some 

loose correlations between visual tumor features (e.g., texture and 

shape) and molecular subtypes. Recently, a Convolutional Neural 

Network (CNN) was used to classify molecular subtypes using tex- 

ture patches extracted from mammography ( Singh et al., 2017 ), 

which yielded an overall accuracy of 67%. However, depending only 

on texture feature is not sufficient to classify the breast cancer 

molecular subtypes from mammograms ( Tamaki et al., 2011 ). Thus, 

some studies attempt to use morphological information of tumor 

shape in classifying breast cancer molecular subtypes. 

In this paper, we propose a method based on two main stages, 

one for breast tumor segmentation and another for tumor shape 

classification, as shown in Fig. 1 . Before applying our segmenta- 

tion approach, the Single Shot Detector (SSD) ( Liu, Anguelov et al., 

2016 ) is used to locate the tumor and then our method computes 

the proper coordinates to crop the ROI. Afterwards, the first stage 

segments the breast tumor, contained in the ROI, as a binary mask. 

In the second stage, the binary mask is classified to a shape type 

(irregular, lobular, oval and round). Unlike traditional object clas- 

sifiers ( Kim, Lee, Kim, & Ro, 2018; Kisilev et al., 2015 ) that use 

texture, intensity or edge information, our method is forced to 

learn only morphological features from the binary masks. The cur- 

rent proposal is a thorough improvement of our previous work 

( Singh, Romani et al., 2018 ). The major contributions of this paper 

are as follows: 

1. We believe this is the first adaptation of cGAN in the area of 

breast tumor segmentation in mammograms. The adversarial 

network yields more reliable learning than other state-of-the- 

art algorithms since training data is scarce ( i.e., mammograms 

with labeled breast tumor boundaries), while it does not in- 

crease the computational complexity at prediction time. 

2. The application of a multi-class CNN architecture to predict the 

four breast tumor shapes ( i.e., irregular, lobular, oval and round) 

using the binary mask segmented in the previous stage (cGAN 

output). 

3. An in-depth evaluation of our system’s performance using two 

public (1,274 images) and one private (300 images) databases. 

The obtained results outperform current state-of-the-art in both 

tumor segmentation and shape classification. 

4. A study of the correlation between the tumor shape predicted 

by our automatic method with respect to the ground-truth 

molecular subtypes of breast cancer, which reasonably matches 

with other clinical studies like Boisserie-Lacroix et al. (2013) . 

This paper is organized as follows. Section 2 provides the re- 

lated work of both tumor segmentation and shape classification. 

The proposed architectures for tumor segmentation (using cGAN) 

and shape classification (using CNN) are described in Section 3 . In 

Section 4 , extensive experiments are performed on the two stages 

of the proposed method and the obtained results are compared 

with the state-of-the-art results. In addition, the limitations of the 

proposed models are explained in Section 4 . Finally, Section 5 con- 

cludes our work and suggests some future lines of research. 

2. Related work 

In the following paragraphs we point out some works mainly 

focused on breast tumor segmentation and shape classification in 

mammography, as well as generic image analysis methods highly 

related with our field of interest. 

2.1. Tumor segmentation background 

Convolutional Neural Networks (CNNs) can automatically learn 

features from the given images to represent objects at different 

scales and orientations. By increasing the number of layers (depth 

of CNN model) more detailed features can be obtained, which play 

crucial part in solving different com puter vision problems, such as 

object detection, classification and segmentation. Thus, numerous 

methods has been proposed to solve the image segmentation prob- 

lem based on deep learning approaches ( Schmidhuber, 2015 ). 

One of the well-known architectures for semantic segmenta- 

tion is the Fully Convolutional Network (FCN) ( Long, Shelhamer, 

& Darrell, 2015 ), which is based on encoding (convolutional) and 

decoding (deconvolutional) layers. This approach gets rid of the 

fully connected layers of CNNs to convert the image classification 

networks into image filtering networks. An improvement of this 

scheme was proposed by the U-Net architecture ( Ronneberger, Fis- 

cher, & Brox, 2015 ), where skip connections between encoding and 

decoding layers are added to retain significant information from 

the input features. Later on, a new variation of FCN was proposed 

( Badrinarayanan, Kendall, & Cipolla, 2017 ) named SegNet, which 

consists of hierarchy of decoders, each one corresponding to each 

encoder. The decoder network uses the max-pooling indices re- 

ceived from the corresponding encoder to perform non-linear up- 

sampling of their input feature maps. 

Since semantic segmentation has achieved great progress with 

deep learning, there is recent popularity in applying such models 

to medical imaging, such as for skin lesions segmentation ( Litjens 

et al., 2017; Sarker et al., 2018 ), and for fundus photography of the 

rear of an eye ( Fu et al., 2018; Singh, Rashwan et al., 2018 ). 

For breast tumor detection, segmentation and classification, 

many medical image analysis methods have been proposed so 

far, such as Yassin, Omran, El Houby, and Allam (2018) and 

Hamidinekoo, Denton, Rampun, Honnor, and Zwiggelaar (2018) . 

A tumor classification and segmentation method was proposed 

Rouhi, Jafari, Kasaei, and Keshavarzian (2015) using an automated 

region growing algorithm whose threshold was obtained by a 

trained Artificial Neural Network (ANN) and Cellular Neural Net- 

work (CeNN). In turn, to reduce the computational complexity 
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and increase the robustness, a quantized and non-linear CeNN 

for breast tumor segmentation was proposed in Liu, Zhuo, and 

Xu (2018) . After segmenting the breast tumor region, a Multilayer 

Perceptron Classifier was used for tumor classification as benign or 

malignant. 

Furthermore, Dhungel, Carneiro, and Bradley (2015b) seg- 

mented breast tumors using Structured Support Vector Machines 

(SSVM) and Conditional Random Fields (CRF). Both graphical mod- 

els minimize a loss function build on pixel probabilities pro- 

vided by a CNN and Deep Belief Network, a Gaussian Mixture 

Model (GMM) and shape prior. The SSVM is based on graph cuts 

and the CRF relies on tree re-weighted belief propagation with 

truncated fitting training ( Dhungel, Carneiro, & Bradley, 2015a ). 

Cardoso, Domingues, and Oliveira (2015) and Cardoso, Marques, 

Dhungel, Carneiro, and Bradley (2017) tackled the same problem by 

employing a closed contour fitting in the mammogram and mini- 

mizing a cost function depending on the radial derivative of the tu- 

mor contour. A measure of regularity of the gray pixel values inside 

and outside the tumor was also included in Cardoso et al. (2017) . 

In turn, Zhu, Xiang, Tran, Hager, and Xie (2018) proposed an 

FCN concatenated to a CRF layer to impose the compactness of 

the segmentation output taking into account pixel position. This 

approach was trained end-to-end, since the CRF and FCN can ex- 

change data in the forward-backward propagation. An adversar- 

ial term was introduced to prevent the samples with the worst 

perturbation in the loss function, which reduced the overfitting 

and provided a robust learning with few training samples. In ad- 

dition, Al-antari, Al-masni, Choi, Han, and Kim (2018) proposed a 

CAD system consisting of three deep learning stages for detecting, 

segmenting and classifying the tumors in mammographic images. 

To locate tumors in a full mammogram, the YOLO network pro- 

posed in Redmon, Divvala, Girshick, and Farhadi (2016) was used. 

A Full resolution Convolutional Network (FrCN) was then used for 

segmenting the located tumor region. Finally, a CNN network was 

used for classifying segmented ROI as either benign or malignant. 

We believe that Yang et al. (2017) is the first work that ex- 

ploits GAN ( Goodfellow et al., 2014 ) for medical image segmen- 

tation. In particular, they performed three-dimensional (3D) liver 

segmentations using abdominal Computerized Tomography (CT) 

scans. In Singh, Romani et al. (2018) , we adapted a cGAN image- 

to-image translation algorithm ( Isola, Zhu, Zhou, & Efros, 2017 ) to 

address the tumor segmentation in two-dimensional (2D) mam- 

mograms. With that method, we achieved state-of-the-art perfor- 

mance on both public and private databases. 

2.2. Shape classification background 

In the literature, many approaches used traditional computer 

vision techniques to extract hand-craft features and subsequently 

classify them. For instance, Matos et al. (2018) applied the Bag of 

Features (BoF) paradigm on local feature descriptors, such as Scale- 

Invariant Feature Transform (SIFT), Speed Up Robust Feature (SURF) 

or Local Binary Patterns (LBP), achieving very high accuracy of 99% 

in classifying tumors as malignant or benign. 

Recently, deep learning architectures have been designed for 

2D and 3D shape classification ( Kurnianggoro, Jo et al., 2018 ). For 

example, topological data analysis (TDA) using deep learning was 

proposed in Hofer, Kwitt, Niethammer, and Uhl (2017) to extract 

relevant 2D/3D topological and geometrical information. In turn, a 

CNN model was formulated, which used spectral graph wavelets in 

conjunction with the BoF paradigm to target the shape classifica- 

tion problem ( Masoumi & Hamza, 2017 ). 

In addition, the authors in Fang et al. (2015) proposed a CNN 

based shape descriptor for retrieving the 3D shapes. A deep neu- 

ral network named PointNet was proposed ( Qi, Su, Mo, & Guibas, 

2017 ), which directly consumes point cloud for object classifica- 

tion, localized and global semantic segmentation. Moreover, a deep 

learning framework for efficient 3D shape classification ( Luciano & 

Hamza, 2018 ) used geodesic moments by inheriting various prop- 

erties from the geodesic distance, such as the intrinsic geometric 

structure of 3D shapes and the invariance to isometric deforma- 

tions. 

To date, numerous shape classification methods are applied for 

medical image analysis ( Kim et al., 2018; Singh, Romani et al., 

2018 ). An automated method for textual description of anatom- 

ical breast tumor lesions was proposed by Kisilev et al. (2015) , 

which performs joint semantic estimation from image measure- 

ments to classify the tumor shape. In addition, Kisilev, Sason, 

Barkan, and Hashoul (2016) also presented a multi-task fast region- 

based CNN ( Ren, He, Girshick, & Sun, 2015 ) to classify three tu- 

mor shapes: irregular, oval and round. Furthermore, the work in 

Kim et al. (2018) utilized a GAN to diagnose and classify tu- 

mors in mammograms into four shapes: irregular, lobular, oval and 

round. Previously, Singh, Romani et al. (2018) proposed a multi- 

class CNN to categorize the tumor shapes into four classes as in 

Kim et al. (2018) from the public dataset DDSM. 1 

3. Proposed methodology 

The proposed CAD system shown in Fig. 1 is divided into two 

stages: breast tumor segmentation and shape classification. 

3.1. Obtaining and processing ROIs 

Before feeding an image to the first stage, our optimal work- 

flow applies the Single Shot Detector (SSD) ( Liu, Anguelov et al., 

2016 ) to locate the tumor position and fit a bounding box around 

it. Based on these bounding coordinates, our method computes 

new coordinates containing the tumor ( vide infra ), and then uses 

these new coordinates to crop the mammogram, thus obtaining 

the Region of Interest (ROI). We evaluated different detectors based 

on deep learning models, such as SSD ( Liu, Anguelov et al., 2016 ), 

YOLO ( Redmon et al., 2016 ) and Faster R-CNN ( Ren et al., 2015 ). 

Empirically, the SSD detector yields the best results since it is able 

to detect small tumor regions and provides an overall accuracy of 

97%. We are not targeting object sizes less than 7 × 7 pixels be- 

cause those objects are really hard to be identified as tumors. In- 

deed, they may correspond to other types of findings, such as cal- 

cifications. We are considering only mammograms with tumors, 

since our main goal is tumor shape classification following tu- 

mor segmentation. Therefore, we have not applied SSD on normal 

mammograms (no tumor), although the SSD method is capable of 

dealing with this case as well. 

To obtain the proper cropping area, our best framing method, 

so-called “loose frame”, expands the original bounding box coordi- 

nates by adding extra space around, so that the cropped ROI al- 

ways encompasses the tumor as well as some surrounding area 

containing healthy tissue (30% and 70% for tumor and healthy tis- 

sues, respectively). The computed coordinates are shifted to make 

the ROI frame fit inside the mammogram image. Besides, both 

sides of the frame are set equal in order to preserve the original 

aspect ratio of tumors. Last adjustments required to make the im- 

age square sometimes cause the tumor be out of the ROI center. 

However, this does not preclude the segmentation and classifica- 

tion due to the position-independent nature of convolutional fil- 

ters. 

Moreover, ROI images are scaled to 256 × 256 pixels, which 

is the optimal cGAN input size found experimentally. After 

scaling, they are pre-processed for noise removal as proposed 

1 https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM 
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Fig. 2. Two examples that show the need of morphological post processing after the segmentation. 

in Kshema, George, and Dhas (2017) (Gaussian filter with σ = 

0.5 yields the best segmentation results) and then contrast is en- 

hanced using histogram equalization, similarly to Cheng, Cai, Chen, 

Hu, and Lou (2003) . Then, we apply a normalization for rescaling 

the pixel values between [0..1].). 

The prepared data is then fed to the cGAN to obtain a binary 

mask of the breast tumor, which is post-processed using morpho- 

logical operations (we used filter sizes of 3 × 3 for closing, 2 × 2 

for erosion, and 3 × 3 for dilation) to remove small speckles, as 

proposed in Hazarika and Mahanta (2018) . Fig. 2 shows a couple 

of examples of these small speckles, enclosed in red boxes, which 

are filtered out after post-processing. 

In the second stage, the output binary mask is downsampled 

into 64 × 64 pixels, which is then fed to a multi-class CNN shape 

descriptor to categorize it into four classes: irregular, lobular, oval 

and round. The reason of this downsampling is that our shape clas- 

sification CNN does not need a high resolution image to extract the 

core morphological features for each class, since the tumors are 

represented with flat white areas in front of a black background. 

Hence, the changes in the image present very low frequencies. 

3.2. Tumor segmentation model (cGAN) 

Our previous work ( Singh, Romani et al., 2018 ) demonstrated 

the feasibility of applying the cGAN image-to-image translation ap- 

proach ( Isola et al., 2017 ) to breast tumor segmentation, since it 

can be adapted to our problem in the following senses: 

1. The Generator G network of the cGAN is an FCN composed of 

encoding and decoding layers, which learn the intrinsic features 

(gray-level, texture, gradients, edges, shape, etc.) of healthy and 

unhealthy (tumor) breast tissue, and generate a binary mask ac- 

cording to these features. 

2. The Discriminative D network of the cGAN assesses if a given 

binary mask is likely to be a realistic segmentation or not. 

Therefore, including the adversarial score in the computation of 

the generator loss strengthens its capability to provide a correct 

segmentation. 

The combination of G and D networks allows robust learning 

with few training samples. Since the ROI image is a conditioning 

input for both G and D , the segmentation result is better fitted 

to the tumor appearance. Otherwise, regular (unconditional) GAN 

( Goodfellow et al., 2014 ) will infer the segmentation just from ran- 

dom noise, which will require more training iterations compared 

to the cGAN to obtain an acceptable segmentation result. 

Fig. 3 represents the suggested architectures for G and D . The 

former consists of several encoding and decoding layers (see Fig. 3 - 

top). Encoding layers are composed of a set of convolutional filters 

followed by batch normalization and the leaky ReLU (slope 0.2) ac- 

tivation function. Similarly, decoding layers are composed of a set 

of deconvolutional filters followed by batch normalization, dropout 

and ReLU. 

Convolutional and deconvolutional filters are defined with a 

kernel of 4 × 4 and stride of 2 × 2, which respectively downsam- 

ple and upsample the activation maps by a factor of 2. Batch nor- 

malization is not applied after the first and the last convolutional 

filters ( Cn 1 and Cn 8 ). After Cn 8 , the ReLU activation function is ap- 

plied instead of leaky ReLU. Dropout is applied only at the first 

three decoding layers ( Dn 1 , Dn 2 and Dn 3 ). There is no skip con- 

nection in the last decoding layer ( Dn 8 ), after which the tanh acti- 

vation function is applied to generate a binary mask of the breast 

tumor. 

The architecture of D shown in Fig. 3 -down consists of five 

encoding layers with convolutional filters with a kernel of 4 × 4, 

stride 2 × 2 at the first three layers and stride 1 × 1 at 4 th and 

5 th layers. Batch normalization is applied after Cn 2 , Cn 3 and Cn 4 
and a leaky ReLU (slope 0.2) is applied after each layer except for 

the last one. The sigmoid activation function is used after the last 

convolutional filter ( Cn 5 ). The network input is the concatenation 

of the ROI and the binary mask to be evaluated (ground truth or 

predicted). The output segmentation is an array of 30 × 30 values, 

each one from 0.0 (completely fake) to 1.0 (perfectly plausible or 

real). Each output value is the degree of proper segmentation like- 

lihood of a crop of the binary mask and the input image, which 

corresponds to a 70 × 70 receptive field for each value. 

Let x be a tumor ROI, y the ground truth mask, z a random 

variable, λ an empirical weighting factor, G ( x, z ) and D ( x, G ( x, z )) 

the outputs of G and D , respectively. Then, the loss function of G is 

defined as: 

� Gen (G, D ) = E x,y,z (− log (D (x, G (x, z)))) + λE x,y,z (� Dice (y, G (x, z))) , 
(1) 

where z is introduced as dropout in the decoding layers Dn 1 , 

Dn 2 and Dn 3 at both training and testing phases, which provides 

stochasticity to generalize the learning processes and avoid over- 

fitting. 

The optimization process of G will try to minimize both ex- 

pected values, i.e. , the D values should approach to 1.0 (correct 

tumor segmentations), and the dice loss � Dice should approach to 

0.0 (generated masks are equal to ground truth). Both terms of 

generator loss enforce the proper optimization of G : the dice loss 
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Fig. 3. Proposed cGAN architecture: generator G (top), and discriminator D (down). 

term fosters a rough prediction of the mask shape (central tumor 

area) while the adversarial term fosters an accurate prediction of 

the mask outline (tumor borders). Neglecting one of the two terms 

may lead to either very poor segmentation results or slow learning 

speed. 

In addition, � Dice ( y, G ( x, z )) is the dice loss of the predicted mask 

with respect to ground truth, which is defined as: 

� Dice (y, z) = 1 − 2 | y ◦ G (x, z) | 
| y | + | G (x, z) | , (2) 

where ◦ is the pixel wise multiplication of the two images and |.| 

is the total sum of pixel values of a given image. If inputs are bi- 

nary images, then each pixel can be considered as a boolean value 

(white is 1 / black is 0). The formulation in (2) is equivalent to 

the dice coefficient i.e., 2 × T P 
T P+ F N+ T P+ F P , but it must be subtracted 

from 1.0 because the loss function will be minimized. Let A be the 

ground truth of the ROI and B the segmented region. Then the true 

positive degree (TP) is defined as T P = A ∩ B, which is the area of 

the segmented region common in both A and B . The false positive 

degree (FP) is defined as A ∩ B, which is the segmented area not 

belonging to A . Similarly, the false negative degree (FN) is defined 

as A ∩ B , which is the true area missed by the proposed segmenta- 

tion method. 

In our previous work ( Singh, Romani et al., 2018 ), the genera- 

tor network loss was formulated by combining the logistic Binary 

Cross Entropy (BCE) loss and the L 1-norm. In this work, we re- 

place the L 1-norm loss with the dice loss as shown in Fig. 4 . L 1- 

norm loss minimizes the sum of absolute differences between the 

ground truth label y and estimated binary mask G ( x, z ) obtained 

from the generator network, which takes all pixels into account. 

In turn, dice loss is highly dependent on TP predictions, which is 

the most influential term in foreground segmentation. Fig. 5 shows 

that the dice loss achieves lower values (more optimal) than the 

L 1-norm loss. 

Fig. 4. Proposed cGAN framework based on dice and BCE losses. 

Moreover, the loss function of D is defined in (3) : 

� Dis (G, D ) = E x,y,z (− log (D (x, y ))) + E x,y,z (− log (1 − D (x, G (x, z)))) 
(3) 

The optimizer will fit D to maximize the loss values for ground 

truth masks (by minimizing − log (D (x, y )) ) and minimize the loss 

values for generated masks (by minimizing − log (1 − D (x, G (x, z)) ). 

These two terms compute BCE loss using both masks, assuming 

that the expected class for ground truth and generated masks is 1 

and 0, respectively. 

The optimization of G and D is done concurrently, i.e. , one opti- 

mization step for both networks at each iteration, where G learns 

how to compute a valid tumor segmentations and D learns how to 

differentiate between synthetic and real segmentations. 
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Fig. 5. Dice and L 1-norm loss comparison over iterations. 

Fig. 6. CNN architecture for tumor shape classification. 

In this work, we experimented on different hyper-parameters to 

improve the segmentation accuracy of our previous contribution in 

Singh, Romani et al. (2018) . Besides introducing the dice loss, we 

have reduced the number of filters of each network from 64 to 32. 

We also explored different learning rates and loss optimizers (SGD, 

AdaGrad, Adadelta, RMSProp and Adam), finding Adam with β1 = 

0.5, β2 = 0.999 and initial learning rate = 0.0 0 02 with batch size 

8 the best combination. In (1) , the dice loss weighting factor λ = 

150 was found to be the best choice. Finally, the best results were 

achieved by training both G and D from scratch for 150 epochs. 

3.3. Shape classification model (CNN) 

In the literature, various approaches for tumor shape classifica- 

tion have found that texture and intensity features are relevant for 

their proposals. However, in this proposal we attempt to use only 

shape context to classify the tumor shapes. Specifically, we propose 

a multi-class CNN architecture for breast tumor shape classification 

( i.e. , irregular, lobular, oval and round) using the binary masks ob- 

tained from the cGAN. In the literature, most methods attempted 

to directly categorize the shape using breast tumor intensity, tex- 

ture, boundary, etc. ( Kim et al., 2018; Kisilev et al., 2016; Kisilev 

et al., 2015; Ren et al., 2015 ), which increase computational com- 

plexity. We simplify the problem by extracting morphological fea- 

tures from binary masks. 

As shown in Fig. 6 , our model consists of three convolutional 

layers with kernel sizes 9 × 9, 5 × 5 and 4 × 4, respectively, and 

two fully connected (FC) layers. The first two convolutional layers 

are followed by 4 × 4 max-pooling with stride 4 × 4. The output 

of the last convolutional layer is flattened and then fed into the 

first FC layer with 128 neurons. These four layers use ReLU as ac- 

tivation function. A dropout of 0.5 is used to reduce overfitting in 

the first FC layer. Finally, the last FC layer with 4 neurons applies 

the softmax function to generate the final membership degree of 

the input binary mask to each class. A weighted categorical cross- 

entropy loss is used to avoid the problem of unbalanced dataset. 

The class weight is one minus the ratio of samples per class to the 

total number of samples. 

The RMSProp is employed for optimizing the model with learn- 

ing rate = 0.001, momentum = 0.9 and batch size = 16. The net- 

work is trained from scratch and the weights of five layers are 

randomly initialized. During training, we experimentally found the 

best architecture, number of layers, filters per layer, and number of 

neurons in FC layers. 

4. Experiments and discussion 

We have evaluated the performance of proposed models on two 

public mammography datasets and one private dataset: 
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Table 1 

Mass detection accuracy of proposed method compared with the ex- 

isting state-of-the-art methods. 

Dataset Method TPR (%) FPR (%) 

INbreast Dhungel et al. (2017) 96.00 1.20 

Kozegar et al. (2013) 87.00 3.67 

Faster R-CNN ( Ren et al., 2015 ) 96.00 2.94 

YOLO ( Redmon et al., 2016 ) 96.35 2.40 

SSD ( Liu, Anguelov et al., 2016 ) 97.00 1.10 

INbreast dataset 2 It is a publicly available database containing 

a total of 115 cases (410 mammograms), which include: masses, 

calcifications, asymmetries and distortions. However, only 106 out 

of 410 mammograms have their corresponding ground truth of bi- 

nary masks. Thus, we only used this 106 mammograms to test our 

detection and segmentation model. 

DDSM dataset 

It is a publicly available digital database for screening mam- 

mography containing 2,620 mammography studies. In this work, 

1,168 cases of breast tumors with their corresponding ground 

truths are used for shape classification, where 504, 473, 115 and 

76 tumors are labeled as irregular, lobular, oval and round, respec- 

tively. The remaining images are excluded since they do not pro- 

vide shape labels. We have used 75% of the images for training and 

rest for testing the tumor shape classification model. 

Hospital Sant Joan de Reus dataset 

It is our private dataset that contains 300 malignant tumors 

(123 Luminal-A, 107 Luminal-B, 33 Her-2 and 37 Basal-like) with 

their respective ground truth binary masks obtained by radiolo- 

gists. The SSD detector and proposed cGAN segmentation model is 

trained and tested using 220 and 80 images, respectively. The duty 

of confidentiality and security measures were fully complied, in ac- 

cordance with the current legislation on the Protection of Personal 

Data (article 7.1 of the Organic Law 15/1999, 13th of December). 

The proposed method was implemented using python with 

Pytorch 3 running on a 64-bit Ubuntu operating system using a 

3.4 GHz Intel Core-i7 with 16 GB of RAM and Nvidia GTX 1070 GPU 

with 8 GB of video RAM. 

4.1. Tumor detection experiments 

In order to localize the tumor in the input mammographies, 

we compared different common deep learning detectors, such as 

Dhungel, Carneiro, and Bradley (2017) and Kozegar, Soryani, Mi- 

naei, Domingues et al. (2013) , Faster R-CNN ( Ren et al., 2015 ), YOLO 

( Redmon et al., 2016 ), and SSD ( Liu, Anguelov et al., 2016 ). The 

tested detectors were trained with the Hospital Sant Joan de Reus 

dataset and tested with the INbreast dataset. Table 1 presents a 

quantitative comparison in terms of True Positive Rate (TPR) and 

False Positive Rate (FPR) with respect to the degree of overlap- 

ing between predicted and ground truth bounding boxes contain- 

ing the tumor. To consider a true positive prediction, we require at 

least 60% of area overlaping. 

The SSD method yields the best results, with the high- 

est TPR and lowest FPR. In turn, YOLO, Faster R-CNN and 

Dhungel et al. (2017) models have properly detected masses in the 

input mammograms, but with slightly worse quantitative results. 

2 http://medicalresearch.inescporto.pt/breastcancer/index.php/Get _ INbreast _ 

Database/ 
3 https://pytorch.org/ 

Fig. 7. Three cropping strategies: (a) full mammogram, (b) loose frame, (c) tight 

frame. 

Consequently, we have chosen the SSD model in order to locate 

tumors in mammograms. 

4.2. Tumor segmentation experiments 

The proposed breast tumor segmentation method is compared 

with the state-of-the-art methods and evaluated both quantita- 

tively and qualitatively. For the quantitative analysis, segmentation 

accuracy is computed using Dice coefficient (F1 score) and Jaccard 

index (IoU). In turn, for the qualitative analysis, segmentation re- 

sults with the their respective ground truth binary masks are com- 

pared visually. 

These experiments have been carried using three different 

framing of the tumor ROI: full mammogram, loose and tight 

frames (see Fig. 7 ). The ideal CAD system should be able to au- 

tomatically segment the breast tumor from a full mammogram. 

However, this is a very difficult task due to high similarity be- 

tween gray level pixel distributions of healthy and tumorous tis- 

sue. Therefore, removing most of non-ROI portions of the image 

logically helps the model on learning the visual features that dif- 

ferentiate breast tumor from non-tumor areas. As mentioned in 

the methodology, for computing the loose and tight frames we 

rely on the initial tumor delimitation provided by the SSD method 

( Liu, Anguelov et al., 2016 ). The loose frame provides a convenient 

proportion between healthy and tumorous pixels. The tight frame 

is a square shrunk on the tumor, as it is intended to evaluate the 

behavior of the segmentation model when the majority of ROI con- 

tains tumor pixels. (see Fig. 9 ). 

The three cropping strategies are evaluated on our cGAN 

and eleven baseline segmentation models, referred as FCN, FCN- 

ResNet101, UNet, UNet-VGG16, SegNet, SegNet-VGG16, CRFCNN, 

SLSDeep, cGAN-ResNet101, cGAN-ResNet101 (Dice Loss) and pro- 

posed cGAN (without post-processing). FCN, UNet, SegNet, CN- 

NCRF and proposed cGAN are trained from scratch. FCN-ResNet101, 

UNet-VGG16, SegNet-VGG16 and cGAN-ResNet101 (with and with- 

out Dice loss) are modifications of the original models, where the 

filters of the starting encoding layers are replaced by the start- 

ing convolutional layers of the well-known VGG (16 layers) and 

ResNet (101 layers) models, which were pre-trained on the Im- 

ageNet database. Thus, we loaded the pre-trained weights and 

fine tuned the network. When using cGAN-ResNet101 ( Isola et al., 

2017 ), we replaced the L 1-norm loss with the Dice loss in the gen- 

erator loss function to see how the base line model will behave 

under such change. We called this model cGAN-ResNet101 (Dice 

loss) to compare the segmentation results with our proposal. 

The results depicted in Table 2 are divided in two sections, one 

for our private dataset and another for the INbreast dataset. Note 

that all models are trained on the private dataset, and then tested 

using our private dataset as well as the INbreast dataset without 

fine tuning. The results of all tested methods are after the post 

processing explained in sub- Section 3.1 . 

#
#
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Table 2 

Dice and IoU metrics obtained with the proposed model with/without post-processing and ten alternatives eval- 

uated on the testing sets of our private and INbreast datasets, for the three cropping strategies. Best results are 

marked in bold. Dashes (-) indicate that results are not reported in referred papers. 

Dice (%) IoU (%) 

Dataset Methods Full Loose Tight Full Loose Tight 

FCN 59.06 74.94 80.20 39.92 62.21 78.89 

FCN-ResNet101 59.21 77.42 82.78 40.26 68.16 77.32 

UNet 63.69 78.03 83.15 46.73 68.36 78.81 

UNet-VGG16 59.27 78.57 83.71 42.13 69.71 79.42 

SegNet 59.87 80.26 82.33 42.79 70.07 76.17 

SegNet-VGG16 61.59 81.09 81.41 41.61 68.19 77.82 

CRFCNN 53.21 71.33 63.52 41.38 65.24 54.28 

Private SLSDeep 59.64 71.10 84.28 43.89 60.16 79.93 

cGAN-ResNet101 58.37 80.11 86.22 42.12 71.91 76.62 

cGAN-ResNet101 (Dice Loss) 61.49 86.57 86.37 45.90 76.32 77.26 

Proposed cGAN (without post-processing) 65.17 88.42 87.77 48.45 80.67 78.22 

Proposed cGAN (with post-processing) 66.38 89.99 88.12 49.68 81.81 79.87 

FCN 54.36 66.12 81.74 36.88 49.38 77.33 

FCN-ResNet101 51.76 83.80 82.38 38.49 74.12 78.09 

UNet 55.58 77.92 80.76 38.46 70.83 77.97 

UNet-VGG16 56.79 78.02 80.89 39.65 68.32 78.13 

SegNet 53.33 79.06 81.11 36.36 65.37 77.02 

SegNet-VGG16 56.27 80.17 81.75 39.46 69.79 78.68 

CRFCNN 52.96 73.25 65.41 40.41 67.14 57.69 

SLSDeep 60.35 75.90 85.53 44.63 65.16 80.26 

cGAN-ResNet101 54.69 87.19 89.17 37.94 77.51 82.26 

INbreast cGAN-ResNet101 (Dice Loss) 59.72 88.89 90.42 44.89 82.58 82.95 

Proposed cGAN (without post-processing) 67.55 93.64 91.47 50.05 86.29 83.58 

Proposed cGAN (with post-processing) 68.69 94.07 92.11 52.31 87.03 84.55 

Dhungel et al. (2015b) – – 90.00 – – –

Cardoso et al. (2017) – – 90.00 – – –

Zhu et al. (2018) – – 90.97 – – –

Al-antari et al. (2018) – – 92.69 – – 86.37 

According to the results, our method outperforms the com- 

pared state-of-the-art methods in all cases except for the IoU com- 

puted on tight crops of our private dataset. The SLSDeep approach 

yielded the best IoU (79.93%), whereas our method yielded the 

second best result (79.87%) with a very small difference of 0.06%. 

The post-processing improved the results of our proposed model 

by 1% with the three framing inputs. 

All models yielded their worst segmentation results with full 

mammograms compared to other framing inputs, which is logical 

taking into account the difficulties stated earlier in this section. 

Most of the models have obtained their best results for the tight 

frame crops except for CRFCNN and our proposal, which yielded 

their best results for loose frame crops. However, the good results 

for tight crops may be due to the imbalance of tumor/non-tumor 

pixels, since the former class is present in more than 90% of the 

image area. The learning can be biased towards this class, which 

makes rough solutions (almost everything is tumor) to provide 

very high ranks of performance. Loose frame crops, on the con- 

trary, have a more balanced proportion of pixels for both classes, 

which makes them ideal to learn and evaluate the model on a re- 

alistic situation: it is more convenient for radiologists to provide 

a fast frame drawing around the breast tumor rather than a tight 

frame. 

Comparing the general results for both datasets, most methods 

performed better on INbreast rather than on private dataset with 

loose and tight framing. This effect can be explained by the fact 

that INbreast provides more detailed ground truths, which leads to 

better testing results, despite all network training has been con- 

ducted on our private dataset. 

In general, our proposal, with and without post-processing, has 

performed well in terms of both Dice and IoU metrics. For pri- 

vate dataset, in Dice/Loose frame column, our model with post- 

processing’s score (89.99%) is almost 9% above the second best 

model, SegNet-VGG16 (81.09%). In the IoU/Loose frame column, our 

model’s percentage (81.81%) is almost 10% above the second best 

model, cGAN-ResNet101 (71.91%). For INbreast dataset, our loose 

frame results for Dice and IoU are again the best (94.07%, 87.03%), 

where cGAN-ResNet101 is the second best model for both metrics 

(87.19%, 77.51%). Thus, our model provides an improving of 7% and 

10%, respectively. The fact that the second best results are obtained 

by the cGAN-ResNet101 model indicates that the adversarial net- 

work really helps in training the generative network. In turn, the 

results obtained by the cGAN-ResNet101 (Dice Loss) mixture model 

are in-between the cGAN-ResNet101 and our proposal, since the 

Dice loss term substitution improves the accuracy of tumor seg- 

mentations. 

For the INbreast dataset, we have included the results 

mentioned in four related papers Dhungel et al. (2015b) , 

Cardoso et al. (2017) , Zhu et al. (2018) and Al-antari et al. (2018) . 

For these methods, we could not compute the metrics for all 

columns, since they have not released their source code. Our 

method outperformed the first three papers under similar frame- 

work conditions. However, Al-antari et al. (2018) yielded better re- 

sults for dice (92.69%) and IoU (86.37%) than our model in the 

Tight frame columns. Our results in the Loose frame columns sur- 

pass their results. For a fair comparison, however, it should be 

checked how the referenced methods would perform on loose 

frame crops. 

The box-plot in Fig. 8 shows Dice and IoU values obtained for 

the 106 testing samples from INbreast dataset with loose frames 

using FCN-ResNet101, Unet-VGG16, SegNet-VGG16, SLSDeep, cGAN- 

ResNet101 and proposed cGAN. The two models based on cGAN 

provide small ranges of Dice and IoU values. For instance, the pro- 

posed cGAN is in the range 0.89 to 0.93 for Dice coefficient and 

0.80 to 0.91 for IoU values, while other deep segmentation meth- 

ods, SLSDeep, Unet-VGG16 and FCN-ResNet101, show a wider range 

of values. Moreover, there are many outliers in the results for the 

segmentation based on the cGAN using pre-trained ResNet101 lay- 

ers, while using our cGAN trained from scratch there are few num- 

ber of outliers. 
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Fig. 8. Boxplot of dice (Top) and IoU (Bottom) score over five models compared to our method on loose frames of the test subset of INbreast dataset (106 samples). Blue 

boxes indicate the interquartile range (Q3-Q1) of the metrics distribution, the red line inside each box represents the median value, the whiskers extend 1.5 times the length 

of Q1 and Q3, and (+) indicate outlier values, i.e. metrics out of the whiskers. 

Fig. 9. Segmentation results of two testing samples extracted from the INbreast 

dataset with the three cropping strategies. 

The high Dice and IoU metrics obtained by our model empiri- 

cally support our hypothesis that it achieves accurate tumor seg- 

mentation. In Fig. 9 , we show some examples of our model’s seg- 

mentations using two tumors from the INbreast dataset by apply- 

ing all three cropping strategies. For each experiment, we show the 

original ROI image and the comparison of predicted and ground 

truth mask, color coded to mark up the true positives (TP:yellow), 

false negatives (FN:red), false positives (FP:green) and true nega- 

tives (TN:black). For the full mammogram, the ROI image (1) is an 

example of good segmentation, since yellow and black pixels de- 

pict a high degree of confidence between predicted and real masks. 

On the contrary, the ROI image (2) is an example of poor segmen- 

tation, since red pixels mark up a high portion of the breast tu- 

mor area that has been misclassified as healthy area (FN). At the 

same time, a tiny region of green pixels shows the misclassification 

of healthy tissue as breast tumor area (FP). Nevertheless, even in 

this second segmentation, there is a very high rate of black pixels 

(TN), which indicates that the model easily recognizes non-tumor 

areas. 

In the loose frame segmentations (middle row), specially with 

example (2), the results contain very few FN and FP pixels. For 

example (1), a modest amount of green pixels indicate that our 

model expands the tumor segmentation beyond its respective 

ground truth. In the tight frame crops (bottom row), besides the 

green areas, our model also has missed some tumor areas i.e. , the 

red pixels (FN). The mistaken areas (red and green) are mostly 

around the tumor borders, since these areas have a mixture of 
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Fig. 10. Segmentation results of seven models with the INbreast dataset and two cropping strategies: loose frame (the first four rows) and tight frame (the last four rows). 

(Col 1) original images, (Col 2) FCN-ResNet101, (Col 3) UNet-VGG16, (Col 4) SegNet-VGG16, (Col 5) CRFCNN, (Col 6) SLSDeep, (Col 7) cGAN-ResNet101, and (Col 8) proposed 

cGAN. 

healthy and unhealthy cells. At the same time, the inner part of the 

tumor as well as the image regions outside of tumors are properly 

classified, which indicates the stability of our model. 

Fig. 10 shows a comparison between our and other six segmen- 

tation models, which worked on loose and tight frame crops using 

four tumors from the INbreast dataset. For the loose frame cases 

(four top rows), our method clearly outperforms the rest for all 

tumors except for the second one, where the majority of models 

provided a similar degree of accuracy. In these four tumors, UNet- 

VGG16 and CRFCNN provided the worst results. Moreover, cGAN- 

ResNet101 also performed bad in the fourth example. 

For the tight frame cases (four bottom rows), our method also 

provides the lowest degrees of FN and FP compared to the rest of 

the models. Our cGAN and the cGAN-ResNet101 model yield irreg- 

ular borders compared to FCN-ResNet101 and SLSDeep, since GAN 

models strive for higher accuracy on edges. However, in the third 

tight frame sample (seventh row), both cGAN-ResNet101 and our 

proposal generated an irregular border that slightly differs from 

the smooth ground truth border, which results in lower segmen- 

tation accuracy around the edges. Although the rest of the models 

generate smoother borders, the resulting segmentations may differ 

from the ground truth significantly. 

From the experimental results, it can be concluded that the pro- 

posed breast tumor segmentation method is the most effective to 

date compared to the currently available state-of-the-art methods. 

However, our method needs a loose crop around the tumor to ob- 

tain a proper segmentation, which can be done by the SSD model. 

Our segmentation model contains about 13,607,043 parameters for 

tuning the generator part in the cGAN network. In addition, our 

method is fast in both training i.e. , around 30 seconds per epoch 

(220 loose frames) and predicting, around 7 images per second. 

That is 7 to 8 times faster than the segmentation method proposed 

in Al-antari et al. (2018) and 10 to 15 times faster than the FCN 

model. 
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Table 3 

Confusion matrix of the tumor shape classification of testing samples of the DDSM dataset. 

Table 4 

Shape classification overall accuracy with the DDSM dataset resulting from 

Kisilev et al. (2015) , Kim et al. (2018) and Singh, Romani et al. (2018) and 

our model. Best result is marked in bold. 

Methods Test samples Accuracy (%) 

(SSVM) ( Kisilev et al., 2015 ) 515 71 

(Multi-task CNN) ( Kim et al., 2018 ) 218 66 

(ICADx) ( Kim et al., 2018 ) 218 72 

( Singh, Romani et al., 2018 ) 113 72 

Proposed (with ground-truth masks) 292 83 

Proposed (generated masks) 292 80 

Proposed (masked ROI images) 292 70 

4.3. Shape classification experiments 

For validating the tumor shape classification performance, we 

computed the confusion matrix and the overall classification ac- 

curacy on the test set of the DDSM dataset. This set contains 292 

images divided into 126, 117, 31 and 18 for irregular, lobular, oval 

and round classes, respectively. 

However, The DDSM dataset does not have the ground truth 

binary masks for the breast tumor segmentation. Thus, we ap- 

plied active contours ( Akram, Kim, Lee, & Choi, 2015 ), which was 

also used in our previous work ( Singh, Romani et al., 2018 ), to 

generate the ground truths of the breast tumor regions. Previ- 

ously, Kisilev et al. (2015) also used active contours ( Lankton & 

Tannenbaum, 2008 ) to generate the ground truths in a similar 

fashion. These ground truth masks are verified by expert radiol- 

ogists of the hospital of Sant Joan de Reus. In addition, for reliable 

performance results, we used a stratified 5 fold cross validation 

with 50 epochs per fold. 

In Table 3 , the proposed method yielded around 73% of clas- 

sification accuracy for irregular and lobular classes. This result is 

logical, since both lobular and irregular shapes have similar irregu- 

lar boundaries. In turn, our model yielded classification accuracies 

of 84% and 89% for oval and round shape classes, respectively. 

For a quantitative comparison, we compared three state-of-the- 

art tumor shape classification methods ( Kim et al., 2018; Kisilev 

et al., 2015; Singh, Romani et al., 2018 ) with three variations of 

our shape classification model: one is fed with a binary mask with 

the ground-truth, the second is fed with a binary mask generated 

by our segmentation stage and the third is fed with the origi- 

nal ROI image masked with the segmented area (with pixel-wise 

multiplication). The five methods were evaluated on the DDSM 

dataset. We have computed the overall accuracy of each method 

by averaging the correct predictions (i.e., true positive) of the four 

classes, weighted with respect to the number of samples per class. 

As shown in Table 4 , our classifier based only on binary masks 

yields an overall accuracy of 80%, outperforming the second best 

results ( Kim et al., 2018; Singh, Romani et al., 2018 ) by 8%. The 

83% obtained with our method fed with the original ground truth 

cannot be considered as a valid result for comparison, since it is 

Fig. 11. Mean ROC curve of 5 folds, for TPR and FPR from shape classification result 

of 292 test images from DDSM dataset. 

the training data accuracy. We provide this result only to show 

the low degree of overfitting achieved by our network. In turn, the 

proposed method fed with the masked ROI images provided 70% 

of overall accuracy. This experiment indicates that gray-level vari- 

ations inside the segmented area is somehow confusing our shape 

classification network. In another hand, the multi-task CNN pro- 

posed in Kim et al. (2018) based on a pre-trained VGG-16 yielded 

the worst overall accuracy (66%), probably because the input mam- 

mograms are gray-scale images, while the VGG-16 network was 

trained on color-scale images. In addition, Fig. 11 shows ROC curve 

illustrating that our model attained AUC about 0.8. 

Furthermore, the proposed shape descriptor contains 767,684 

parameters, which can be trained in less than a second per epoch, 

and predict in about 6 milliseconds per image. 

4.4. Shape features correlation to breast cancer molecular subtypes 

Tumor shape could play an important role to predict the breast 

cancer molecular subtypes ( Tamaki et al., 2011 ). Thus, we have 

computed the correlation between breast cancer molecular sub- 

types classes of our in-house private dataset with the four shape 

classes. As shown in Table 5 , most of Luminal-A and -B samples 

(i.e., 96/123 and 82/107 for Luminal-A and -B, respectively) are 

mostly assigned to irregular and lobular shape classes. In turn, oval 

and round tumors give indications to the Her-2 and Basal-like sam- 

ples, (i.e., 23/33 and 22/37 for Her-2 and Basal-like, respectively). 

Moreover, some images related to Basal-like are moderately as- 

signed to the lobular class. Afterwards, from the visual inspection, 

if the tumor shape is irregular or lobular then radiologist can sus- 

pect that it belongs to the Luminal group. In turn, if the tumor 

shape is round or oval then it is more probable that the tumor 
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Table 5 

Distribution of breast cancer molecular subtypes samples from the hospital dataset with respect to its 

predicted mask shape. 

Fig. 12. Three mis-segmented examples of non-full tumor shapes with INbreast 

dataset. The red part in the down-left border. 

is a Her-2 or Basal-like ( Tamaki et al., 2011 ). Therefore, this study 

shows the importance of tumor shape, which can be considered 

as a key feature to distinguish between different malignancies of 

breast cancer. 

4.5. Limitations 

For the segmentation stage, our model has only one limitation. 

If there are two tumors (i.e., one is with complete shape and the 

other is incomplete) in the loose framing, the proposed segmenta- 

tion methods will be able to properly segment the complete tumor 

and it will fail to segment the incomplete one. As shown in Fig. 12 , 

we found three samples that are mis-segmented because they con- 

tained two tumors, the one in the center, which is properly seg- 

mented, and another that is shown partially in the left-down bor- 

der of the image, which is wrongly ignored as non-tumor region 

(FN). When the bigger tumor is located in the center of the crop, 

nevertheless, it is correctly segmented. 

To classify the tumor shape, we depend only on the DDSM 

dataset to train our model, since it is the only public dataset that 

has the shape classification information. Thus, more databases con- 

taining more samples are required to improve the classification ac- 

curacy of four shape classes. 

To study the molecular subtypes of breast cancer, Her-2 and 

Basal-like classes have less samples compared to the other two 

classes, Luminal-A and Luminal-B. Indeed, we used a weighted loss 

function to train our shape classification model in order to make a 

balance between the four classes. However, we anticipate that, by 

increasing the samples related to the Her-2 and Basal-like classes, 

we will improve the prediction of molecular subtypes from tumor 

shape information. 

5. Conclusion 

In this paper, we propose a two stage breast tumor segmen- 

tation and classification method, which first segments the breast 

tumor ROI using a cGAN and then classify its binary mask using a 

CNN based shape descriptor. 

The segmentation results reveal the importance of the adversar- 

ial network in the optimization of the generative network. cGAN- 

ResNet101 shows an improvement of about 1% to 3% in both Dice 

and IoU metrics in comparison to the other non-GAN methods. In 

turn, the proposed method yields an increment of about 10% over 

the results of cGAN-ResNet101 by training our model from scratch, 

and replacing the L 1-norm with the dice loss using loose frame 

crop on the given datasets. The breast tumor segmentation from 

full-mammograms yields low segmentation accuracy for all models 

including the proposed cGAN. For the tight frame crop, the pro- 

posed cGAN yields similar or better segmentation accuracy com- 

pared to the other methods. 

The classification results show that our second stage properly 

infers the tumor shape from the binary mask of the breast tu- 

mor, which was obtained from the first stage (cGAN segmentation). 

Hence, we have empirically shown that our CNN is focusing its 

learning on the morphological structure of the breast tumor, while 

the rest of approaches ( Kim et al., 2018; Kisilev et al., 2016; Kisilev 

et al., 2015; Ren et al., 2015 ) rely on the original pixel variations 

of the input mammogram to make the same inference. Moreover, 

in Al-antari et al. (2018) they used a hybrid strategy in which they 

include the pixel variability within the mask of breast tumor re- 

gion to retain the intensity and texture information. However, the 

higher performance obtained by our method supports our initial 

idea that the second stage CNN can reliably recognize the tumor 

shape based only on morphological information. 

Furthermore, this paper provided a study of correlation be- 

tween the tumor shape and the molecular subtypes of the breast 

cancer. Most samples of the Luminal-A and -B group are assigned 

to irregular shapes. In turn, the majority of Her-2 and Basal- 

like samples are assigned to regular shapes (e.g., oval and round 

shapes). That gives an indication that the tumor shape can be con- 

sidered for inferring the molecular subtype of the tumor. 

Future work aims at refining our multi-stage framework to 

detect other breast tumor features ( i.e. , margin type, micro- 

calcifications), which will be integrated into a more comprehen- 

sive diagnostic to compute the degree of malignancy of the breast 

tumors. 
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