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Abstract

Detecting communities or clusters of networks is a considerable interesting prob-
lem in various fields and interdisciplinary subjects in recent years. Tens of
hundreds of methods with significant efforts devoted to community detection in
networks, while an open problem in all methods is the unknown number of com-
munities in real networks. It is believed that the central node in a community
might be highly surrounded by its neighbours and any two centers of the com-
munity reside far from each other, and also believed the similarity among nodes
in the same community is larger than the others. Therefore, the local and the
global structures’ information shed important light on community detection. In
this work, we present a three-stage algorithm to detect communities based on
the local and the global information without giving the number of communities
beforehand. The three stages include the central nodes identification, the label
propagation and the communities combination. The central nodes are identi-
fied according to the distance between them larger than the average; the label
propagation is to label nodes with the same colors when they reach to the maxi-
mum similarity; the communities combination is to merge two communities into
one if the increment of the modularity is positive and maximum when the two
communities were combined. Experiments and simulation results both on real
world and synthetic networks show that the three-stage algorithm possesses well
matched properties compared with seven other widely used algorithms, which
indicates that three-stage algorithm can be used to detect community in social
networks.
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1. Introduction

Many complex systems in different areas can be modeled as networks or
graphs in which the function units can be considered as nodes or vertices whose
interactions are called edges. An important class of sub-network is communi-
ties which are characterized by the subgraphs of densely connected nodes and
sparsely connected with other parts of the networks. Communities detection
as a fundamental problem in the study of social network not only has impor-
tant theory research significance in the areas of sociology, biology, electronic
commerce, but also has practical applications in network security.

The community structures are closely associated with functions of specific
networks, thus identifying such structures yields insights into the functional
organization of the network. However, finding communities within an arbitrary
network is a computationally difficult task. A growing number of community
detection methods have been proposed since the significant work by Girvan and
Newman [1]. One popular criteria is to optimize the modularity measure [2],
like the Louvain algorithm [3] and the Fastgreedy algorithm [4]. Other methods
involve machine learning techniques, such as node2vec [5], seeding and semi-
supervised learning [6] and low-rank subspace learning [7]. And neural network
approaches [8], Bayesian [9] are also applied to community detection, and more
recent developed methods see [10, 11, 12] and so on.

In general, community detection falls in the scope of clustering [13, 14]. A
key concept in clustering is using local structure indexes, such as nodes simi-
larities [15, 16, 17] to detect communities. However, these similarity measures
usually do not take into account the global structures of the network, such as the
distance among the important nodes. On the other hand, community detection
designed with global structure information get the whole network’s perspectives,
such as Louvain, Fastgreedy, Infomap [18], Eigenvector [19], Label propagation
(LPA) [20] and Node2vec. While the global structure information considered in
algorithms often decreases the effectiveness.

In the previous methods on community detection, the algorithms based on
global information including whole network structure characteristics guarantee
the superior at the cost of high complexity. With the rapidly developed of infor-
mation technology, the online social networks present large scale and dynamic
characteristics, which take the community detection into complexity situations.
While algorithms employing local structures information might fall into local
optimum even though they have low time complexity. It is an interesting prob-
lem to balance the global and the local information, the accuracy and time
complexity in designing algorithms.

In this paper, we take the local and global information together and propose
a three-stage(TS) algorithm. The basic idea of TS algorithm includes three
stages: identifying central nodes, label propagation and communities combina-
tion. Identifying the community centers and assigning proper community labels
based on local density and relative distance are the global strategy in this stage;
Diffuse the labels until all nodes are labeled according to the maximum sim-
ilarity in the second stage; And merge the communities one by one until the
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modularity is not increased in the third stage. Simulations on real and synthet-
ic data prove the accuracy and efficiency of TS algorithm. The application of
TS algorithm is also settled by its basic idea, it can be applied to real busi-
ness recommendation and precision marketing. And it is also suitable for friend
recommendation in social networks based the small-world phenomenon. The
arrangement of this paper is as follows. In Section 2, the proposed three-stage
algorithm is presented in detail step by step. In Section 3, experimental results
both on real world networks and synthetic networks show the efficiency and
accuracy of three-stage algorithm compared with seven other classical method-
s. In section 4, discussion on the influence of different similar indexes for TS
algorithm is given. And finally is the conclusion and the further research.

2. Three-stage Algorithm

The networks in this paper are undirected and unweighted graph, denoted
by G = (V,E), where V and E are the vertex set and edge set respectively. Each
vertex in G represents an element in the data set, and each edge is a relationship
between a pair of elements. n = |V | is the number of nodes and m = |E| is the
number of edges in network respectively. The network structure is represented
as an adjacency matrix A = (aij)n×n, where aij = 1 if an edge exists between
nodes i and j; Otherwise aij = 0.

The main steps in the algorithm includes the central nodes identification,
the label propagation and the communities combination. We describe the three-
stage algorithm in detail in the following text.

2.1. The first stage: Central nodes identification

In the first stage, the key intuition is that the central node in a community
might have highly surrounded by neighbours in this community, while neighbors
of the central node may not connect tightly with each other. The number of
the node’s neighbours is named degree. Larger degree means that the node has
more neighbors and therefore it has a high local degree. The node with larger
degree is more likely to be a community center. Figure 1(a) shows an example
of a synthetic network and the nodes are ranked according to degree centrality,
bigger circle with larger node degree.

On the other hand, the proverb “If two men ride on a horse, one must ride
behind”. In this view, the distance among central nodes might not be very
close. So, we assume that the distance of two central nodes is not less than the
average distance of the network. Hence, we detect the central nodes by their
degree together with the distance of nodes.

Therefore, in the first stage, rank nodes with degree, and then choose the
central nodes according to the average distance of nodes.

The average distance of graphG is denoted byD,D = 2
n(n−1)

∑
u,v∈V d(u, v),

where d(u, v) is the distance defined as the shortest path between u and v.
In this stage, rank all nodes in V via their degrees. Denote the node rank

by {v1, v2, · · · , vn} when d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Calculate the average
distance D of G, set C0 = {v1} be the initial central nodes set.
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For vj 6∈ C0, if

d(v, vj) ≥ D, for any v ∈ C0. (1)

Then update C0 by C0 ∪ {vj}. Go on this operation until all nodes in
u ∈ V − C0 satisfy d(v, u) < D. At this time, the central node set is detected.
Denote the central node set by C0 = {vi1 , vi2 , · · · , vik}.

A synthetic network shows how the algorithm works for detecting commu-
nities, figure 1(a), is described step by step as above. Figure 1(b) shows 6
community centers nodes C0 = {50, 44, 37, 30, 26, 11} are got by this stage.

2.2. The second stage: Label propagation

After identifying the central nodes at the first stage, we will partition the
remained nodes such that the nods in the same part have the most similarity.

Here, we take Sφrensen similarity as the measurement, which is the com-
prehensively best compared to other similarity indexes mentioned in discussion
section, and Sφrensen index is a statistic used for comparing the similarity of
two samples. Here we take the neighbours and the degree as the statistic to
measure the similarity of two nodes:

Sim(u, v) = 2|N(u)∩N(v)|
d(u)+d(v) , where N(u) is the neighbour set of u.

In this stage, generate the initial community set at first.
Let the initial community be {C ′

1, C
′
2, · · · , C ′

k}, where C ′
j = {vij} and vij ∈

C0 for j = 1, · · · , k. That is to say, a cental node corresponds to a community.
At the second step, label the node v ∈ V − C0 the same color as the node

u ∈ C0 if v is the neighbour of u and satisfy

sim(u, v) = max
vi∈C0

max
vj∈N(vi)

Sim(vi, vj). (2)

Then label v the same color as u. If u ∈ C ′
j′ , then update C ′

j′ by C ′
j′ ∪ v.

Going on this process until all nodes in V − C0 are colored. Thus, set PreC =
{C ′

1, C
′
2, · · · , C ′

k} be the pre-community. In this step, there are two cases need
to set when the node v is to label. One case is that there are more than one
neighbors of v, say nodes u1 and u2, having the maximal similarity with the node
v, and u1 and u2 belong to two different communities C1 and C2 respectively.
Then, take v into C1 or C2 randomly, and update C1 or C2 by the choice of
the algorithm. For example, the nodes 50 and 44 are the neighbors of 45, and
they have the maximum similarity, so the node 45 is randomly marked as blue
or red. Another case is on the contrary, there are more one nodes, say v1 and
v2, having the maximal similarity with the node in the same community. In
this case, v1 or v2 will be randomly selected and colored with the same color
with the nodes in community. For example, nodes 50 and 49 are in the same
community, in the blue, and having the same maximum similarity with node
45 and 31. Then the node 45 is randomly chosen and colored blue. The node
31 would take into the next iteration. The remaining nodes will be taken into
their own communities in the rest of the iteration.
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(a) The synthetic network with n =
50.

(b) C0 = {50, 44, 37, 30, 26, 22}.

(c) 49 and 50 are in the same commu-
nity.

(d) 50 and 45 are in the same commu-
nity.

(e) All the nodes are labeled. (f) Merge communities yellow and
purple, green and cyan respectively.

Figure 1: The 6 panels show the example of the synthetic networks and results of the algo-
rithm 4 runs. The size of the node is proportional to the degree of it. That is, the larger
degrees the bigger nodes.(a) is the synthetic network with n = 50. (b) is the visualization of
the central nodes identification stage. There are six central nodes in C0. (c) to (e) are the
parts of visualization of the label propagation stage. There are six preliminary communities
PreC = {yellow, green, cyan, red, blue, purple}. And (f) is the community combination stage.
The final community set is C = {cyan, red, blue, purple}.
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In the example of figure 1(b), let the initial communities be {yellow, green, cyan,
red, blue, purple}, where yellow = {22}, green = {26}, cyan = {30}, red =
{44}, blue = {50} and purple = {37}. The maximum similarity neighbours of
center nodes in C0 = {50, 44, 37, 30, 26, 11} are shown in Table 1.

Table 1: The neighbours having the maximum similarity with nodes in C0.

Nodes Neighbors maxSim(u, v)
50 49 0.83
44 38 0.75
37 32 0.67
30 39 0.76
26 34 0.53
22 32 0.53

Clearly, nodes 50 and 49 have the largest similarity among the six maximal
similarities, so the node 49 will be detected and labeled as the same color with
the node 50 as shown in Figure 1(c). After the node 49 is labeled, update the
community blue = {50} by blue = {50, 49}. Then go on checking the unlabeled
neighbors of nodes in communities {yellow, green, cyan, red, blue, purple}. The
node 45 has the largest similarity with the node 50, as shown in table 2. So the
node 45 is taken into the community blue, and again updated blue = {50, 49}
by {50, 49, 45}, see figure 1(d).

Table 2: The neighbours having the maximum similarity with nodes in C0 ∪ {49}.

Nodes Neighbors maxSim(u, v)
50 45 0.83
49 45 0.79
44 38 0.75
37 32 0.67
30 39 0.76
22 32 0.53
26 34 0.53

The remaining unlabeled nodes are labeled in the same way as above until all
nodes are labeled. The result in figure 1(e) shows a partition of the network in
which the same color nodes are in one community. There are six parts and form-
s the preliminary communities, named pre-community, PreC={yellow={22},
green={26}, cyan={6, 8, 9, 12, 21, 18, 16, 30, 34, 39, 41}, red={3, 4, 15, 23,
24, 25, 27, 35, 36, 38, 40, 44}, blue={10, 11, 13, 19, 29, 31, 42, 43, 45, 46, 47,
48, 49, 50}, purple={1, 2, 5, 7, 14, 17, 20, 28, 32, 33, 37}}.
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2.3. The third stage: Community combination

Obviously, it is weird that the sets yellow and green are one node commu-
nities in pre-community, moreover, nodes 22 and 26 have relative large degree.
So in the third stage, we optimize the pre-community.

Modularity is introduced as evaluation index to measure the quality of the
community structure in networks. It serves as the objective function during
the process of calculating the communities [21]. Higher values for the modular-
ity Q mean better community structures. Therefore, the object is to find the
community assignment for each node in the network such that Q is maximized.
Hence, in the third stage, the optimization function is to merge two communi-
ties C ′

i0
and C ′

j0
in pre-community into one C ′

i0
∪ C ′

j0
such that the increase of

modularity 4Q satisfy

4Q(C ′
i0
∪ C ′

j0
) ≥ max{4Q(C ′

i ∪ C ′
j), 0} for any C ′

i, C
′
j ∈ PreC. (3)

Where Q = 1
2m

∑
vi,vj

(aij − d(vi)d(vj)
2m )δ(Ci, Cj), aij is the element of adjacent

matrix, d(vi) is the degree of vi. Ci is the community in which vertex vi belongs
to, δ(Ci, Cj) is an indictor function, δ(Ci, Cj) = 1 if Ci = Cj ; Otherwise 0.
m = 1

2

∑
vi∈V d(vi).

Any two communities are merged together to ensure the modularity Q is
growing to be the largest. Repeat this process until the modularity is no longer
increased. At this moment, the communities merging process stopped, and the
optimal community is formed.

There are 6 communities PreC = {yellow, green, cyan, red, blue, purple} in
figure 1(e), then the modularity of each pairs of PreC are shown in table 3:

Table 3: The increase of the modularity of each pair of communities in PreC.

4Q blue red purple cyan yellow green
blue 0 -0.1252 -0.1069 -0.1111 -0.0127 -0.0127
red -0.1252 0 -0.0747 -0.0903 -0.0091 -0.0091

purple -0.1069 -0.0747 0 -0.0719 0.0265 -0.0031
cyan -0.1111 -0.0903 -0.0719 0 -0.0033 0.0262
yellow -0.0127 -0.0091 0.0265 -0.0033 0 -0.0007
green -0.0127 -0.0091 -0.0031 0.0262 -0.0007 0
4Q is a symmetric matrix.

It is found in table 3, the maximum increase is the merging of communities
purple and yellow. Hence, merge purple and yellow into purple, and update
PreC by {green, cyan, red, blue, purple}. Therefore, we go on this process,
until any two communities in PreC do not increase. Figure 1(f) shows the 4
communities, {cyan, red, blue, purple}, are produced. During the merging, the
yellow = {22} and green = {26} are merged by purple and cyan respectively.
The final community is {cyan, red, blue, purple}.
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2.4. Three-stage algorithm and its complexity

Combining the central nodes identification, the label propagation and the
communities merger stages together, and the three-stage algorithm is presented
in table 4.

Table 4: Three-stage algorithm.

Input: An undirected and unweighted network G = (V,E).
Output: The Communities C = {C1, C2, · · · , Ct}.
Stage 1: Cental nodes identification.
Stage 1.1: Ranking all nodes {v1, v2, · · · , vn} by their degree decreasing.
Stage 1.2: Let C0 be the initial central nodes set and v1 ∈ C0.
Updating C0 by C0 ∪ vj if vj ∈ V − C0 and satisfies equation 1.
Until no any node in V − C0 such that the equation 1 holds, stop.
Denote the final C0 by C0 = {vi1 , vi2 , · · · , vik}.

Stage 2: Label propagation.
Let {C ′

1, · · · , C ′
k} be the initial communities, C ′

j = {vij} and vij ∈ C0.
For u ∈ C ′

j′ and v ∈ V − C0, if Sim(u, v) satisfies equation (2),

Then update C ′
j′ by C ′

j′ ∪ {v} and C0 by C0 ∪ {v}.
Go on this process until V − C0 = ∅. Set PreC = {C ′

1, C
′
2, · · · , C ′

k}.
Stage 3: Community combination.
Merging C ′

i0
and C ′

j0
into one if they satisfy equation (3).

Updating C ′
i0

and C ′
j0

by C ′
i0
∪ C ′

j0
in PreC.

Repeat this process until the modularity is no longer increased.
Output the final community set C = {C1, C2, · · · , Ct}.

The community detection algorithm consists of three parts: centers identify-
ing, label propagating and communities merging. In the first stage, it generally
takes O(n2) time in sorting node’s degree, and O(n3) time in calculating the
average distance of the network. In the second stage, label propagation, the pro-
cess of computing the similarity between the neighbor, the time cost is O(n〈k〉2),
where 〈k〉 is the average degree of the network. And in the last stage, the merge
process begins with the k pre-communities, and merging the k pre-communities
into t communities, (t ≤ k ≤ n). It takes O(k2) when the modularity compari-
son on the combination of k pre-communities are computed.

In summary, the algorithms complexity costs O(n3 + nlog(n) + O(k3)) ≈
O(n3).

3. Experimental results

We test the performances of three-stage algorithm on both synthetic and
real-world networks by comparing the outcomes of TS algorithm with the ground-
truth community structures and results of other community detection methods.
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3.1. Synthetic networks

In the experiment, synthetic networks are LFR [22] benchmark networks.
LFR networks have power-law distributions for both node’s degree and commu-
nities’ size, and symptom the features of real-world networks. Therefore, LFR
networks are appropriate to be used to evaluate the performance of community
detection algorithms.

Generally, there are 8 structural parameters for LFR networks: the size of
network n, the average degree 〈k〉 and the upper bound of degree kmax, the
power-law exponents for the size of communities and the nodes’ degree β and
α, the maximum and the minimum size of communities maxc and minc, the
mixing parameter µ.

Among all the parameters, the mixing parameter µ is the fraction of links
connecting each node in a community to nodes in the other communities to

the total degree of nodes. µ =
∑

C |E(C,V−C)|
∑

v∈V d(v) , where E(C, V − C) is the edges

between C and the other nodes except in C, and | · | is the size function. By the
definition of µ, it is easy to find µ displays the ratio of edges intra communities
to the total. The higher of µ means the more ambiguous community structures.
For each set of parameters, 20 networks are generated. The parameters of LFRs
are set as follows.

• The number of nodes n: n = 50, 500, 1000 and 5000 respectively.

• The average degree 〈k〉 = 5, 15, 20, 20 corresponding to n = 50, 500, 1000,
5000 and the upper bound of degree kmax = 0.1n.

• The power-law exponents for the size of communities is β = 1 or 2 respec-
tively.

• The power-law exponents for the nodes’ degree is α = 2.

• The maximum size for communities is maxc = 0.1n and the minimum is
minc = 5, 10, 10, 10, 20 corresponding to n = 50, 500, 1000, 5000.

• The mixing parameter µ is set µ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7.

To test the performance of the three-stage algorithm, we compare the re-
sults of the partitioning with the other seven popular algorithms: Louvain,
Fastgreedy, Infomap, Eigenvector, Label propagation (LPA), Walktrap and n-
ode2vec. NMI index [23] and modularity function [23] are used to evaluate the
efficient and accuracy.

Before the experiment on LFR synthetic networks, we introduce the NMI
index, normalized mutual information, to evaluate the efficiency of the three-
stage algorithm, and also compare the accuracy with the other seven algorithms.

MI measures how much knowing one of these variables reduces uncertainly
about the other. The normalized mutual information (NMI ) is usually measures
the similarity between the true community structures and the detected ones in
networks:

NMI(X,Y ) =
2I(X,Y )

H(X) +H(Y )
, (4)
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where I(X,Y ), the mutual information, measures the information shared by
variables X and Y , H(X) is the entropy of community of X. For example, if X
and Y are independent, then knowing X does not given any information about
Y and vice versa, so NMI(X,Y ) = 0. At the other extreme, if X and Y are
deterministic for each other, then all information covered by X is shared with
Y and vice versa, so NMI(X,Y ) = 1.

Figure 2 shows the results of TS algorithm comparing with seven other algo-
rithms on LFR synthetic networks comparison with NMI. Panels in figure 2(a)
to figure 2(f) show that values of NMI decrease with increasing networks’ size n
and the the mixing parameter µ respectively. It is because the greater µ means
the more ambiguous community structures. Therefore, it gets more difficult to
detect accurate communities as µ increases.

Panel 2(a) shows the results for LFR networks with nodes number n = 50.
By the generation of LFR networks, the average degree < k >= 5 = kmax =
0.1n = 5, and maxc = 0.1n = minc = 5. It is very uniform networks. It is not
hard to understand the behaviors of all algorithms. When µ ≤ 0.3, except for
the fastgreedy, Eigenvector and node2vec methods, all other algorithms’ results
have little difference, and almost reach to 1. Node2vec’s performance drops
rapidly at µ ≥ 0.2. When µ ≥ 0.3, LPA begin to have a sharp decrease and
then fall to 0 since µ = 0.4. Infomap’s performance is steady when µ ≤ 0.6, but
it radically declined to 0 when µ ≥ 0.7. As to Louvain, Walktrap and three-stage
have little difference, TS algorithm has the best result when µ = 0.7.

Panels 2(b) and 2(c) show the results for LFR networks with nodes number
n = 500 and the exponent of the size of communities distribution β = 1, 2
respectively. The average degree 〈k〉 = 15, kmax = 0.1n = 50, and maxc =
0.1n = 50, minc = 10. The difference between Panels 2(b) and 2(c) are the
distribution of community’s size, the former exponent is β = 1 and the later is
2. Even though the communities structure in this two cases might have a big
diversity, the values of three-stage algorithm together with the other seven ones
in this two panels display much similarities. When µ ≤ 0.5 all results except the
fastgreedy and Eigenvector have little difference, and almost reach to 1. When
µ ≥ 0.5, LPA has a sharp decrease and falls to 0. Infomap’s performance keeps
steady at µ ≤ 0.6 and then radically declines to 0. As to Louvain, Walktrap,
node2vec and three-stage have little difference.

Panels 2(d) and 2(e) show the results for LFR networks with n = 1000
and the topological parameters are 〈k〉 = 20, kmax = 0.1n = 100, and maxc =
0.1n = 100, minc = 10. Even though the communities structure in this two
cases might have a big diversity since the exponent of the size of communi-
ties distribution β = 1 and 2 respectively. But the algorithms display similar
behaviors to Panels 2(b) and2(c).

Panel 2(f) is the results for n = 5000. The topological parameters have
much more diversity than panel 2(d). Louvain, Infomap, node2vec and three-
stage algorithms still perform good. Others have similar trends as above panels.

Figure 2 is the results of algorithms on LFR synthetic networks with given
topological parameters. The two pairs of panels, panels 2(b) and 2(c), panels
2(d) and 2(e), make some sense: The first one is the size of the networks does
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(a) n = 50, β = 1. (b) n = 500, β = 1.

(c) n = 500, β = 2. (d) n = 1000,β = 1.

(e) n = 1000, β = 2. (f) n = 5000, β = 1.

Figure 2: Comparisons of seven algorithms, Fastgreedy, Informap,Egenvector, LPA, Walktrap
and Louvain and Node2vec with the TS algorithm on LFR networks with different network
size. The values of NMI are averages over 20 realization of each networks, and the similarity
index is Sφrenson.
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not decide the accuracy and effectiveness of algorithms; The second is the dis-
tribution of the size of communities does not distinguish the performance the
algorithms; And the third is most algorithms do not work well with the increase
of µ.

Panels in figure 2(a) to figure 2(f) show that values of NMI decreasing with
increasing networks’ size n and the mixing parameter µ respectively. It is be-
cause the greater µ means the more ambiguous community structures. There-
fore, it get more difficult to detect accurate communities as µ increases.

In figure 2, algorithms begin to lose efficacy with µ growing. It seemed that
the parameter µ affects algorithms, so we compare the feasibility and efficiency
of algorithms when networks get more ambiguous. Fix µ = 0.6 and 0.7, increase
the size of networks from 500 to 5000 with interval 500. The results are shown
in Figure 3. Panel 3(b) shows the results when µ = 0.6. Three-stage algorithm,
Infomap, Louvain and node2vec achieve better results than others in different
network scales. For n = 1000, 2000, 2500 and 4000, three-stage algorithm is
better than Infomap, Louvain. The performance of the node2vec algorithm
is quite good. Walktrap’s results are relatively good and steady. Fastgreedy
and LeadingEigen’s results are not quite well, and LPA can not detect any
communities in this test. Panel 3(b) is the result when µ = 0.7. Three-stage
algorithm, Louvain and walktrap achieve better results than others.

(a) Networks with µ = 0.6 and n = 500 to
5000.

(b) Networks with µ = 0.7 and n = 500 to
5000.

Figure 3: Comparing the effectiveness of algorithms when the size of LFR networks dynamic
for fixed µ = 0.6 and µ = 0.7. The values of NMI are averages over 20 realization of each
networks.

The pair of panels in figure 3 reveal that the robustness of the algorithm:
The robust of three-stage algorithm is close to Louvain, Walktrap and node2vec,
and they achieve similar performances whatever the networks topology are. In
other words, µ does not affect algorithms directly.

3.2. Real-world Networks with ground truth

Four real-world networks with undirect and unweighed links shown in table 5
with ground truth are used to test the efficiency and accuracy of our algorithm,
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also compared with the above seven algorithms.
Zachary karate club network [24] is a famous social network, in which 34

members a karate club and 78 links between pairs of members who interacted
outside the club. Some members formed part of a small group around the coach,
other members chose a new coach, and the last part of the members gave up
karate. So the different choices led to three divisions of the community, and
finally two communities in Zachary Karate are formed. The second social net-
work is dolphin network [25] which is formed by the frequency of the bottlenose
dolphins played together. There are 62 dolphins with 159 associations in the
dolphin network. The groups of dolphins are mainly divided into two communi-
ties: the male and female. The third is Polbooks network which is the political
books’ data on US politics recorded in 2005 by Adamic and Glance [26]. The
network is an undirected graph object with 105 books and 882 links between
them, and there is three groups. The fourth network is the American college
football [27], it is known as the validating community detection algorithms.

Table 5: Real-world Networks with ground truth for experiments.

Networks n < k > Description
Karate 34 4.59 Zacharys social network of a karate club [24]
Dolphins 62 5.13 Dolphin social network [25]
Polbooks 105 8.40 Books about US politics [26]
Football 115 10.66 Network of American football games [27]

We run three-stage algorithm on the four real networks, the detected com-
munity structures for each network with ground truth are visualized in figure 5,
each color is a community in each panel. The gray lines in panels 5(a) and 5(b)
divide the network into communities by three-stage algorithm. The values of
modularity and NMI of three-stage algorithm together with the other seven al-
gorithms are shown in table 7 respectively. The proposed three-stage algorithm
displays almost perfect performances both of modularity and NMI on the four
networks.

There are four visualized communities on Zachary Karate network in fig-
ure 5(a). If the red and the green communities, the blue and the purple com-
munities are combined to two new communities respectively, it is the ground
truth of Zachary Karate. Figure 5(b) shows detected communities on Dolphin
network. There are two communities and it is similar to the original partition
of the network. The only difference is the assignment of the node 40 because
three-stage algorithm gets a little modularity value compared with Louvain,
Fastgreedy, Infomap, node2vec, Eigenvector and Label propagation, as shown
in Table 7. Figure 5(c) visualizes American college football network. The o-
riginal divisions are 12 communities. While three-stage algorithm detects 10
communities. NMI value is 0.6 better than any of other methods as shown in
table 7. There are 3 communities in US political book network by ground truth.
While 4 communities are detected using three-stage algorithm. For LPA and
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Eigenvector algorithms, their NMI values are all bigger than ours. However, our
method can outperform them in modularity value.

From table 7, we can see that for networks with ground truth communities,
three-stage algorithm achieves good performance compared with other algo-
rithms using NMI and Q criterions.

Figure 4 summarizes the values of NMI and modularity for algorithms in
previous four real networks. In terms of NMI, the three-stage algorithm pro-
duces good results compared to other methods, especially for Karate and Dol-
phin network. In terms of modularity, three-stage algorithm performs better
than the others methods in karate and football networks. As well as for the
other networks, three-stage algorithm remains competitive.

Figure 4: NMI and modularity results for the algorithm TS in the networks with ground truth.

As mentioned above, the proposed approach deals with undirected and un-
weighted networks. The proposed algorithms are scalable and deterministic. By
the comparison with the other algorithms, the three-stage algorithm improves
the modularity and NMI values greatly.

3.3. Real-world Networks without ground truth

Six different real-world networks without ground truth with different scales,
shown in table 6, are all analyzed by three-stage algorithm as well as seven
other algorithms as mentioned above. For those networks, modularity is used
to measure the quality of community detection results.

The Lesmis network is a co-appearance network of characters in the novel
Les Miserables, as complied by Donald Ervin Knuth. The Adjnoun network
is compiled by Newman, which is the adjacency network of common adjectives
and nouns in the novel David Copperfield by Charles Dickens. The Jazz net-
work is the collaboration network between Jazz musicians. Each node is a Jazz
musician and an edge denotes that two musicians have played together in a
band. The email network is an email communication network at the University
Rovira i Virgili in Tarragona in the south of Catalonia in Spain. Nodes are
users and edges indicate that at least one email was sent. The Polblogs is a
directed network of hyperlinks between blogs on US politics, recorded in 2005
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(a) Zachary Karate. (b) Dolphins.

(c) Football. (d) US Political Books.

Figure 5: The visualizations of communities detected by three-stage algorithm.

by Adamic and Glance, and the directions on edges are omitted in this section.
The PowerGrid is an undirected, unweighted network representing the topology
of the Western States Power Grid of the United States, compiled by D. Watts
and S. Strogatz.

Table 6: Six real world networks without ground truth.

Networks n < k > Description
Lesmis 77 6.60 Network of characters in Victor Hugo’s novel “Les Miserables” [28]
Adjnoun 112 7.59 Network of common adjective and noun adjacent in novel “David Copperfield” [19]
Jazz 198 27.70 Network of Jazz musicians [29]
Email 1133 9.62 Network of e-mail interchanges [30]
Polblogs 1222 27.36 Blogs about politics [26]
PowerGrid 4941 2.67 The Western States Power Grid of the United States [31]

The values of modularity and the number of communities of three-stage algo-
rithm together with the other seven algorithms are shown in table 8 respectively.
The three-stage algorithm displays good performances both of modularity and
the number of communities on the six networks.

Three-stage algorithm detects Lesmis network into six communities C1 = {
49,56,58,59,60,61,62,63,64,65,66,67,68,74,75,77}, C2 = {13,17,18,19,20,21, 22,
23, 24, 31, 32 }, C3 = { 25,26,41, 42,43, 69,70,71, 72,76 }, C4 = { 27,40,44,50,
51,52, 53,54, 55,57,73}, C5 = {47, 48}, and C6 is the remaining 27 nodes. The
maximum size of community is 27, the minimum is 2, and the others are about
tens. And the number of communities matches to Louvain’s and LPA’s results.
For the modularity of Lesmis network, Infomap and LPA achieve the same
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modularity value, and there is not much difference for all methods. For Adjnoun
and Jazz networks, there are 7 and 3 communities by three-stage algorithm
respectively, see table 9 and 10.

Table 9: Communities in Adjnoun network detected by three-stage algorithm.

Ci Nodes
C1 18,29,31,32,33,34,35,36,39,40,53,66,83,85,87,94,104,105,108
C2 1,2,3,4,9,10,20,23,26,27,41,42,43,46,47,57,62,74,78,86,91,92,98,112
C3 5,6,21,28,44,64,65,80,81,82,84,95,99,101,110,111
C4 7,8,14,15,17,24,25,37,38,48,50,52,55,56,58,60,67,68,69,71,73,76,88,106,109
C5 11,12,13,19,22,45,49,51,54,70,79,90,100,103
C6 16,61,63,72,77,89,93,96,97,102,107
C7 30,59,75

Ci is the community index.

Table 8 shows Louvain, Fastgreedy and three-stage algorithm achieve good
results with relative small number of communities in Adjnoun network. And in
Jazz network, three-stage algorithm get 3 communities which close to Louvain
and Fastgreedy algorithms both on the number of communities and the mod-
ularity. Figure 6 show communities and their nodes. In Email network, the

Table 10: Communities in Jazz network detected by three-stage algorithm.

Ci Nodes
2,7,10,11,12,14,17,19,22,30,31,34,36,43,49,52,53,54,55,56,57,59,61,67,69,70,71,

C1 72,81,82,83,84,87,89,93,94,112,113,114,118,121,125,127,129,130, 136,141,
142,143,146,150,151,158,161,164,165,170,174,175,177,178,182,
183,185,186,190,192,193,194,195,196,197
1,8,9,15,16,20,23,24,32,33,35,38,40,42,44,46,48,50,58,60,62,63,64,65,66,68,74,78,

C2 80,91,95,98,99,100,101,103,104,105,106,107,108,109,110,111,116 117,119, 120,
122,123,131,132,134,135,137,139,154,159,162,166,168,171 179,187,188
3,4,5,6,13,18,21,25,26,27,28,29,37,39,41,45,47,51,73,75,76,77,79,85,86,88,90,92,

C3 96,97,102,115,124,126,128,133,138,140,144,145,147,148,149,152,153,155,
156,157,160,163,167,169,172,173,176,180,181,184,189,191,198

three-stage algorithm performs the best, 9 communities and modularity is 0.55.
LPA hardly detects its community structures. There is not much difference for
all methods. All algorithms except three-stage algorithm get 2 communities in
Polblogs network.All algorithms have little difference in modularity values. For
PowerGrid network, the three-stage algorithm achieves good results with rela-
tive small number of communities. The other four algorithms get community
numbers that are almost 10 times than that of Louvain, Fastgreedy, node2vec
and our three-stage algorithm. Together, table 8, 9, 10 and figure 6, it is ob-
served that for some networks, such as Jazz, Email, Adjnounil, Power Grid,
three-stage algorithm obtain the best results than other algorithms. But for
some other networks, such as Lesmis, the modularity obtained by our approach
could be inferior to several other methods. We speculate that in these networks,
there exist dense connections among detected community centers, therefore it
becomes more challenging to identify exact communities. On the contrary, for
networks whose community centers demonstrate sparse interconnections among
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(a) Email (b) Polblogs (c) Power

Figure 6: The three network’s scatter of community label’s node number.

each other, our approach is expected to produce significant performance.

4. Discussion and conclusion

The local and global information are all considered in three-stage algorithm
including central nodes identification, label propagation and communities com-
bination. The distance of each pair of nodes is a global information in the
stage of identifying the community center nodes. It completely depends on the
structure of networks even though it is also a time consuming at the first stage.
And in the third stage, there is no any doubt to take modularity to measure
community. The three-stage algorithm is also compared with the other sev-
en algorithms, in which Fastgreedy, Informap,Egenvector, LPA, Walktrap and
Louvain are popular methods to detect communities while node2vec is unusual.
In this section, the further discussion on the selection of similarities and the
node2vect are given in follows.

4.1. Similarity comparison

In the second stage of TS algorithm, the noncentral nodes will be labeled the
same color if they are the most similar, where the similarity of nodes is a local
information to diffuse the labels until all nodes are labeled. Similarity measures
play an important role in label propagation stage. And a critical effect on the
accuracy of the stage 2 is to choose proper index to express similarity. Hence,
we employ different similarity measures and compare the different results on
three-stage algorithm.

In table 11, we list ten similarity measures used to measure the similari-
ty of nodes or links in networks summarized in reference [32]. The measures
of Common Neighbors(CN), Salton, Jaccard, Hub Promoted(HP), Hub De-
pressed(HD), Leicht-Holm-Newman(LHN), Preferential Attachment(PA) and
Adamic-Adar(AA) are based on the local structural information (i.e. neigh-
borhood information). In addition, the first seven measures, from CN to LHN,
only differ in the denominator. If the investigated network simultaneously has
large clustering coefficient and large degree heterogeneity, there are significant
differences among those seven measures. PA is a proximity measure and often
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used to quantify the functional significance of edges subject to various network-
based dynamics, which does not require information on the neighborhood of
each node. AA refines the simple counting of common neighbors by assigning
the less connected neighbors more weight [33]. Assuming that each transmit-
ter has a unit of resource, and equally distribute it between all its neighbors,
then resource allocation (RA) index can be defined as the amount of resource
vj received from vi, which works well on the networks with large clustering co-
efficient, high degree heterogeneity and absence of a strongly assortative linking
pattern.

Table 11: Definition of ten similary measures.

Measures Definition Measures Definition

CN |Γ(vi) ∩ Γ(vj)| HD
|Γ(vi)∩Γ(vj)|

max{k(vi)
,k(vj)

}

Salton
|Γ(vi)∩Γ(vj)|√

k(vi)
×k(vj)

LHN
|Γ(vi)∩Γ(vj)|
k(vi)

×k(vj)

Jaccard
|Γ(vi)∩Γ(vj)|
|Γ(vi)∪Γ(vj)|

PA k(vi) × k(vj)

Sφrenson
2|Γ(vi)∩Γ(vj)|
k(vi)

+k(vj)
AA

∑
zεΓ(vi)∩Γ(vj)

1
log k(z)

HP
|Γ(vi)∩Γ(vj)|

min{k(vi)
,k(vj)

} RA
∑

zεΓ(vi)∩Γ(vj)
1

k(z)

In order to choose well-performing algorithms, the results of the tenth cited
similarities that have been tested in the algorithms will be compared: Table 12
presents the Q and NMI results for both algorithms using different similarities,
which are tested in four data sets, from which we can see that except PA, AA
and RA, other seven similarity measures can obtain better results of community
detection, but there is little difference among them on different networks, e.g.,
Jaccard, Sφrenson HD and LHN obtain the best detection results on Katate
network, LAN and HD arrive at the best detection results on Polbooks network.
The similarities except PA, AA and RA can obtain excellent results on both
dolphins and football networks.

PA, AA and RA perform the worst on four networks, because it is often used
to quantify the functional significance of edges subject to various network-based
dynamics. Maybe it is suitable to dynamical networks. The Sφrenson similarity
gives the best results compared to other similarities. Based on these results, the

Table 12: Results of NMI and Q of the above similarities on three-stage algorithm.

Sim karate dolphins football polbooks
C NMI Q C NMI Q C NMI Q C NMI Q

Jaccard 4 0.71 0.42 2 0.89 0.38 10 0.90 0.60 4 0.55 0.52
CN 2 1.00 0.37 2 0.89 0.38 9 0.87 0.60 3 0.55 0.51
Salton 2 1.00 0.37 2 0.89 0.38 10 0.90 0.60 4 0.55 0.52
Sφrenson 4 0.71 0.42 2 0.89 0.38 10 0.90 0.60 4 0.55 0.52
HP 2 1.00 0.37 2 0.89 0.38 10 0.90 0.60 3 0.55 0.51
HD 4 0.71 0.42 2 0.89 0.38 10 0.90 0.60 4 0.57 0.53
LHN 4 0.71 0.42 4 0.57 0.52 10 0.90 0.60 4 0.57 0.53
PA 2 0.73 0.31 2 0.78 0.36 6 0.59 0.41 2 0.60 0.45
AA 2 0.58 0.21 2 0.63 0.31 7 0.65 0.45 4 0.52 0.51
RA 2 0.58 0.21 2 0.63 0.31 7 0.65 0.45 4 0.52 0.51
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proposed algorithm uses Sφrenson similarity to detect similar nodes.

Figure 7: NMI and modularity results for the ten similarity algorithms.

4.2. Why node2vec is introduced?

Node2vec [5] is one of the outstanding semi-supervised machine-learning
methods by which each node in networks is translated into a vector, and then
provides the rich features’ representation of nodes. Therefore, node2vec is a
technical tool to deal with the expression of data. In this issue, node2vec is
combined with k-means clustering to detect communities and simply denoted
by node2vec. The results of the clustering are compared with the results of TS
algorithm together with the other seven algorithms.

The parameters of node2vec in this issue are set as follows: the dimension is
128, the walks per node is set 10, the walk length is set 80, and the neighbors size
is set 10. because both of the local and the global information are considered
in community detection. Then nodes in the neighborhood and nodes far away
from central nodes are both important. Therefore, during the feature learning
in node2vec, the speeds of the random walk visiting or leaving a node are set to
1.

Comparing TS algorithm with node2vec and the other six community de-
tection algorithms, experiments’ results show that Node2vec performs well on
the most networks. That might because node2vec is the node’s vector repre-
sentation while the other seven methods and our TS are the nodes’ matrix’s.
The dimension of vector representation is lower than matrix’s. Then, the ef-
ficiency of node2vec is better than TS algorithm and the other six methods.
Hence, node2vec lights up the way to detect communities by machine learning
methods.

4.3. Conclusion

The three-stage algorithm is easy to understand, because the small-world
phenomena displays the centralities, and the social convergence makes the com-
munity. Modularity is just a artificial criteria having nothing with the generating
mechanism of communities. Although TS algorithm dose not always show the
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best performance in all experimental networks comparing with the seven other
popular algorithms both on synthetic networks and real-world networks. The
results reveal that TS algorithm is close to Louvain and Walktrap and they
achieve the same performance whatever the networks topology are. In other
words, the three-stage algorithm is also robust, and the performance of efficient
and accuracy are also strong. That is, TS algorithm provides an alternative
method to detect communities step by step in social networks.

The results in this issue show that TS algorithm can often achieve better
performance except Louvain. It must be sincerely admitted that the excellent
performance of Louvain algorithm in community detection. Louvain is a classical
community detection algorithm with high efficiency, which has already been
incorporated in some network analysis tools such as Gephi, graph and networkX,
which shows that Louvain is approved by researches. We think achieving similar
results with Louvain also show the effectiveness and efficiency of the proposed
TS algorithm.

There are some works to improve for three-stage algorithm in the future:
The complexity is too high for big networks. Therefore, optimizing the first
stage is one of the further works.
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