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Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and

machine learning. Recent breakthrough results in image analysis and speech recognition

have generated a massive interest in this field because also applications in many

other domains providing big data seem possible. On a downside, the mathematical

and computational methodology underlying deep learning models is very challenging,

especially for interdisciplinary scientists. For this reason, we present in this paper an

introductory review of deep learning approaches including Deep Feedforward Neural

Networks (D-FFNN), Convolutional Neural Networks (CNNs), Deep Belief Networks

(DBNs), Autoencoders (AEs), and Long Short-Term Memory (LSTM) networks. These

models form the major core architectures of deep learning models currently used

and should belong in any data scientist’s toolbox. Importantly, those core architectural

building blocks can be composed flexibly—in an almost Lego-like manner—to build

new application-specific network architectures. Hence, a basic understanding of these

network architectures is important to be prepared for future developments in AI.

Keywords: deep learning, artificial intelligence, machine learning, neural networks, prediction models, data

science

1. INTRODUCTION

We are living in the big data era where all areas of science and industry generate massive
amounts of data. This confronts us with unprecedented challenges regarding their analysis and
interpretation. For this reason, there is an urgent need for novel machine learning and artificial
intelligence methods that can help in utilizing these data. Deep learning (DL) is such a novel
methodology currently receiving much attention (Hinton et al., 2006). DL describes a family of
learning algorithms rather than a single method that can be used to learn complex prediction
models, e.g., multi-layer neural networks with many hidden units (LeCun et al., 2015). Importantly,
deep learning has been successfully applied to several application problems. For instance, a deep
learning method set the record for the classification of handwritten digits of the MNIST data set
with an error rate of 0.21% (Wan et al., 2013). Further application areas include image recognition
(Krizhevsky et al., 2012a; LeCun et al., 2015), speech recognition (Graves et al., 2013), natural
language understanding (Sarikaya et al., 2014), acoustic modeling (Mohamed et al., 2011) and
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computational biology (Leung et al., 2014; Alipanahi et al., 2015;
Zhang S. et al., 2015; Smolander et al., 2019a,b).

Models of artificial neural networks have been used since
about the 1950s (Rosenblatt, 1957); however, the current wave
of deep learning neural networks started around 2006 (Hinton
et al., 2006). A common characteristic of the many variations
of supervised and unsupervised deep learning models is that
these models have many layers of hidden neurons learned, e.g.,
by a Restricted Boltzmann Machine (RBM) in combination
with Backpropagation and error gradients of the Stochastic
Gradient Descent (Riedmiller and Braun, 1993). Due to the
heterogeneity of deep learning approaches a comprehensive
discussion is very challenging, and for this reason, previous
reviews aimed at dedicated sub-topics. For instance, a bird’s eye
view without detailed explanations can be found in LeCun et al.
(2015), a historic summary with many detailed references in
Schmidhuber (2015) and reviews about application domains, e.g.,
image analysis (Rawat andWang, 2017; Shen et al., 2017), speech
recognition (Yu and Li, 2017), natural language processing
(Young et al., 2018), and biomedicine (Cao et al., 2018).

In contrast, our review aims at an intermediate level,
providing also technical details usually omitted. Given the
interdisciplinary interest in deep learning, which is part of
data science (Emmert-Streib and Dehmer, 2019a), this makes it
easier for people new to the field to get started. The topics we
selected are focused on the core methodology of deep learning
approaches including Deep Feedforward Neural Networks (D-
FFNN), Convolutional Neural Networks (CNNs), Deep Belief
Networks (DBNs), Autoencoders (AEs), and Long Short-Term
Memory (LSTM) networks. Further network architectures which
we discuss help in understanding these core approaches.

This paper is organized as follows. In the section 2, we provide
a historical overview of general developments of neural networks.
Then in section 3, we discuss major architectures distinguishing
neural networks. Thereafter, we discuss Deep Feedforward
Neural Networks (section 4), Convolutional Neural Networks
(section 5), Deep Belief Networks (section 6), Autoencoders
(section 7) and Long Short-Term Memory networks (section 8)
in detail. In section 9, we provide a discussion of important issues
when learning neural network models. Finally, this paper finishes
in section 10 with conclusions.

2. KEY DEVELOPMENTS OF NEURAL
NETWORKS: A TIME LINE

The history of neural networks is long, and many people
have contributed toward their development over the decades.
Given the recent explosion of interest in deep learning,
it is not surprising that the assignment of credit for key
developments is not uncontroversial. In the following, we were
aiming at an unbiased presentation highlighting only the most
distinguished contributions.

In 1943, the first mathematical model of a neuron was
created by McCulloch and Pitts (1943). This model aimed at
providing an abstract formulation for the functioning of a
neuron without mimicking the biophysical mechanism of a real

TABLE 1 | An overview of frequently used activation functions for neuron models.

Activation function φ(x) φ′(x) Values

Hyperbolic tangent tanh(x) = ex−e−x

ex+e−x
1− φ(x)2 (−1, 1)

Sigmoid S(x) = 1
1+e−x

φ(x)(1− φ(x)) (0, 1)

ReLu R(x) =

{

0 for x < 0

x for x ≥ 0

{

0 for x < 0

1 for x ≥ 0
[0,∞)

Heaviside function H(x) =

{

0 for x < 0

1 for x ≥ 0
δ(x) [0, 1]

Signum function sgn(x) =















−1 for x < 0

0 for x = 0

1 for x > 0

2δ(x) [−1, 1]

Softmax yi =
exi

∑n
j e

xj

∂yi
∂ j

= yi
(

δij − yj
)

(0, 1)

biological neuron. It is interesting to note that this model did not
consider learning.

In 1949, the first idea about biologically motivated learning
in neural networks was introduced by Hebb (1949). Hebbian
learning is a form of unsupervised learning of neural networks.

In 1957, the Perceptron was introduced by Rosenblatt (1957).
The Perceptron is a single-layer neural network serving as a
linear binary classifier. In the modern language of ANNs, a
Perceptron uses the Heaviside function as an activation function
(see Table 1).

In 1960, the Delta Learning rule for learning a Perceptron
was introduced by Widrow and Hoff (1960). The Delta Learning
rule, also known as Widrow & Hoff Learning rule or the
Least Mean Square rule, is a gradient descent learning rule for
updating the weights of the neurons. It is a special case of the
backpropagation algorithm.

In 1968, a method called Group Method of Data Handling
(GMDH) for training neural networks was introduced by
Ivakhnenko (1968). These networks are widely considered the
first deep learning networks of the Feedforward Multilayer
Perceptron type. For instance, the paper (Ivakhnenko, 1971) used
a deep GMDH network with 8 layers. Interestingly, the numbers
of layers and units per layer could be learned and were not fixed
from the beginning.

In 1969, an important paper by Minsky and Papert (1969)
was published which showed that the XOR problem cannot be
learned by a Perceptron because it is not linearly separable.
This triggered a pause phase for neural networks called
the “AI winter.”

In 1974, error backpropagation (BP) has been suggested to use
in neural networks (Werbos, 1974) for learning the weighted in a
supervised manner and applied in Werbos (1981). However, the
method itself is older (see e.g., Linnainmaa, 1976).

In 1980, a hierarchical multilayered neural network for
visual pattern recognition called Neocognitron was introduced
by Fukushima (1980). After the deep GMDH networks (see
above), the Neocognitron is considered the second artificial NN
that deserved the attribute deep. It introduced convolutional NNs
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(today called CNNs). The Neocognitron is very similar to the
architecture of modern, supervised, deep Feedforward Neural
Networks (D-FFNN) (Fukushima, 2013).

In 1982, Hopfield introduced a content-addressable memory
neural network, nowadays called Hopfield Network (Hopfield,
1982). Hopfield Networks are an example for recurrent
neural networks.

In 1986, backpropagation reappeared in a paper by Rumelhart
et al. (1986). They showed experimentally that this learning
algorithm can generate useful internal representations and,
hence, be of use for general neural network learning tasks.

In 1987, Terry Sejnowski introduced the NETtalk algorithm
(Sejnowski and Rosenberg, 1987). The program learned how to
pronounce English words and was able to improve over time.

In 1989, a Convolutional Neural Network was trained with
the backpropagation algorithm to learn handwritten digits
(LeCun et al., 1989). A similar system was later used to read
handwritten checks and zip codes, processing cashed checks in
the United States in the late 90s and early 2000s.

Note: In the 1980s, the second wave of neural network
research emerged in great part via a movement called
connectionism (Fodor and Pylyshyn, 1988). This wave lasted until
the mid 1990s.

In 1991, Hochreiter studied a fundamental problem of any
deep learning network, which relates to the problem of not being
trainable with the backpropagation algorithm (Hochreiter, 1991).
His study revealed that the signal propagated by backpropagation
either decreases or increases without bounds. In case of a decay,
this is proportional to the depth of the network. This is now
known as the vanishing or exploding gradient problem.

In 1992, a first partial remedy to this problem has been
suggested by Schmidhuber (1992). The idea was to pre-train a
RNN in an unsupervised way to accelerate subsequent supervised
learning. The studied network had more than 1,000 layers in the
recurrent neural network.

In 1995, oscillatory neural networks have been introduced
in Wang and Terman (1995). They have been used in various
applications like image and speech segmentation and generating
complex time series (Wang and Terman, 1997; Hoppensteadt and
Izhikevich, 1999; Wang and Brown, 1999; Soman et al., 2018).

In 1997, the first supervised model for learning RNN was
introduced by Hochreiter and Schmidhuber (1997), which was
called Long Short-Term Memory (LSTM). A LSTM prevents the
decaying error signal problem between layers by making the
LSTM networks “remember” information for a longer period
of time.

In 1998, the Stochastic Gradient Descent algorithm (gradient-
based learning) was combined with the backpropagation
algorithm for improving learning in CNN (LeCun et al., 1989).
As a result, LeNet-5, a 7-level convolutional network, was
introduced for classifying hand-written numbers on checks.

In 2006, is widely considered a breakthrough year because in
Hinton et al. (2006) it was shown that neural networks called
Deep Belief Networks can be efficiently trained by using a strategy
called greedy layer-wise pre-training. This initiated the third
wave of neural networks that made also the use of the term deep
learning popular.

FIGURE 1 | Number of publications in dependence on the publication year for

DL, deep learning; CNN, convolutional neural network; DBN, deep belief

network; LSTM, long short-term memory; AEN, autoencoder; and MLP,

multilayer perceptron. The legend shows the search terms used to query the

Web of Science publication database. The two dashed lines are scaled by a

factor of 5 (deep learning) and 3 (convolutional neural network).

In 2012, Alex Krizhevsky won the ImageNet Large Scale
Visual Recognition Challenge by using AlexNet, a Convolutional
Neural Network utilizing a GPU and improved upon LeNet5 (see
above) (LeCun et al., 1989). This success started a convolutional
neural network renaissance in the deep learning community
(see Neocognitron).

In 2014, generative adversarial networks were introduced in
Goodfellow et al. (2014). The idea is that two neural networks
compete with each other in a game-like manner. Overall, this
establishes a generative model that can produce new data. This
has been called “the coolest idea in machine learning in the last
20 years” by Yann LeCun.

In 2019, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun
were awarded the Turing Award for conceptual and engineering
breakthroughs that have made deep neural networks a critical
component of computing.

The reader interested in a more detailed early history of neural
networks is referred to Schmidhuber (2015).

In Figure 1, we show the evolution of publications related
to deep learning from the Web of Science publication database.
Specifically, the figure shows the number of publications in
dependence on the publication year for DL, deep learning;
CNN, convolutional neural network; DBN, deep belief network;
LSTM, long short-term memory; AEN, autoencoder; and MLP,
multilayer perceptron. The two dashed lines are scaled by a factor
of 5 (deep learning) and 3 (convolutional neural network), i.e.,
overall, for deep learning we found the majority of publications
(in total 30, 230). Interestingly, most of these are in computer
science (52.1%) and engineering (41.5%). In application areas,
medical imaging (6.2%), robotics (2.6%), and computational
biology (2.5%) received most attention. These observations are
a reflection of the brief history of deep learning indicating that
the methods are still under development.

In the following sections, we will discuss all of these methods
in more detail because they represent the core methodology of
deep learning. In addition, we present background information
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about general artificial neural networks as far as this is needed for
a better understanding of the DL methods.

3. ARCHITECTURES OF NEURAL
NETWORKS

Artificial Neural Networks (ANNs) are mathematical models that
have been motivated by the functioning of the brain. However,
the models we discuss in the following do not aim at providing
biologically realistic models. Instead, the purpose of these models
is to analyze data.

3.1. Model of an Artificial Neuron
The basic entity of any neural network is a model of a neuron. In
Figure 2A, we show such a model of an artificial neuron.

The basic idea of a neuron model is that an input, x, together
with a bias, b is weighted by, w, and then summarized together.
The bias, b, is a scalar value whereas the input x and the weights
w are vector valued, i.e., x ∈ R

n and w ∈ R
n with n ∈ N

corresponding to the dimension of the input. Note that the bias
term is not always present but is sometimes omitted. The sum
of these terms, i.e., z = wTx + b forms then the argument
of an activation function, φ, resulting in the output of the
neuron model,

y = φ
(

z
)

= φ
(

wTx+ b
)

. (1)

Considering only the argument of φ one obtains a linear
discriminant function (Webb and Copsey, 2011).

The activation function, φ, (also known as unit function
or transfer function) performs a non-linear transformation
of z. In Table 1, we give an overview of frequently used
activation functions.

The ReLU activation function is called Rectified Linear Unit or
rectifier (Nair and Hinton, 2010). The ReLU activation function
is the most popular activation function for deep neural networks.
Another useful activation function is the softmax function
(Lawrence et al., 1997):

yi =
exi

∑n
j e

xj
. (2)

The softmax maps a n-dimensional vector x into a n-dimensional
vector y having the property

∑

i yi = 1. Hence, the components
of y represent probabilities for each of the n elements. The
softmax is often used in the final layer of a network. If the
Heaviside step function is used as activation function, the neuron
model is known as perceptron (Rosenblatt, 1957).

Usually, the model neuron shown in Figure 2A is represented
in a more ergonomic way by limiting the focus on its key
elements. In Figure 2B, we show such a representation that
highlights merely the input part.

3.2. Feedforward Neural Networks
In order to build neural networks (NNs), the neurons need to be
connected with each other. The simplest architecture of a NN is

a feedforward structure. In Figures 3A,B, we show examples for
a shallow and a deep architecture.

In general, the depth of a network denotes the number of non-
linear transformations between the separating layers whereas the
dimensionality of a hidden layer, i.e., the number of hidden
neurons, is called its width. For instance, the shallow architecture
in Figure 3A has a depth of 2 whereas Figure 3B has a depth
of 4 [total number of layers minus one (input layer)]. The
required number to call a Feedforward Neural Network (FFNN)
architecture deep is debatable, but architectures with more than
two hidden layers are commonly considered as deep (Yoshua,
2009).

A Feedforward Neural Network, also called a Multilayer
Perceptron (MLP), can use linear or non-linear activation
functions (Goodfellow et al., 2016). Importantly, there are no
cycles in the NN that would allow a direct feedback. Equation
(3) defines how the output of a MLP is obtained from the input
(Webb and Copsey, 2011).

f (x) = ϕ(2)(W(2)ϕ(1)(W(1)x+ b(1))+ b(2)). (3)

Equation (3) is the discriminant function of the neural network
(Webb and Copsey, 2011). For finding the optimal parameters
one needs a learning rule. A common approach is to define an
error function (or cost function) together with an optimization
algorithm to find the optimal parameters byminimizing the error
for training data.

3.3. Recurrent Neural Networks
The family of Recurrent Neural Network (RNN) models has
two subclasses that can be distinguished based on their signal
processing behavior. The first contains finite impulse recurrent
networks (FRNs) and the second infinite impulse recurrent
networks (IIRNs). That difference is that a FRN is given by a
directed acyclic graph (DAG) that can be unrolled in time and
replaced with a Feedforward Neural Network, whereas an IIRN
is a directed cyclic graph (DCG) for which such an unrolling is
not possible.

3.3.1. Hopfield Networks
A Hopfield Network (HN) (Hopfield, 1982) is an example for a
FRN. A HN is defined as a fully connected network consisting of
McCulloch-Pitts neurons. A McCulloch-Pitts neuron is a binary
model with an activation function given by

s = sgn(x) =

{

+1 for x ≥ 0

−1 for x < 0
(4)

The activity of the neurons xi, i.e.,

xi = sgn(

N
∑

j=1

wijxj − θi) (5)

is either updated synchronously or asynchronously. To be
precise, xj refers to x

t
j and xi to x

t+1
i (time progression).

Hopfield Networks have been introduced to serve as a model
of a content-addressable (“associative”) memory, i.e., for storing
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FIGURE 2 | (A) Representation of a mathematical artificial neuron model. The input to the neuron is summed up and filtered by activation function φ (for examples see

Table 1). (B) Simplified Representation of an artificial neuron model. Only the key elements are depicted, i.e., the input, the output, and the weights.

FIGURE 3 | Two examples for Feedforward Neural Networks. (A) A shallow FFNN. (B) A Deep Feedforward Neural Network (D-FFNN) with 3 hidden layers.

patterns. In this case, it has been shown that the weights are
obtained by

wij =

P
∑

k=1

ti(k)tj(k) (6)

whereas P is the number of patterns, t(k) is the k-th pattern and
ti(k) its i-th component. From Equation (6), one can see that the
weights are symmetrical. An interesting question in this context
is what is the maximal value of P or P/N, called the network
capacity (here N is the total number of patterns). In Hertz et al.
(1991) it was shown that the network capacity is ≈ 0.138. It
is interesting to note that the neurons in a Hopfield Network
cannot be distinguished as input neurons, hidden neurons and
output neurons because at the beginning every neuron is an input
neuron, during the processing every neuron is a hidden neuron
and at the end every neuron is an output neuron.

3.3.2. Boltzmann Machine
A Boltzmann Machine (Hinton and Sejnowski, 1983) can
be described as a noisy Hopfield network because it uses a
probabilistic activation function

p(si = 1) =
1

1+ exp(−xi)
(7)

whereas xi is obtained as in Equation (5). This model is important
because it is one of the first neural networks that uses hidden
units (latent variables). For learning the weights, the Contrastive
Divergence algorithm (see Algorithm 9) can be used to train
Boltzmann Machines. Put simply, Boltzmann Machines are
neural networks consisting of two layers—a visible layer and a
hidden layer. Each edge between the two layers is undirected,
implying that information can flow in a bi-directional way. The
whole network is fully connected, which means that each neuron
in the network is connected to all other neurons via undirected
edges (see Figures 8A,B).
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3.4. An Overview of Network Architectures
There is a large variety of different network architectures used
as deep learning models. The following Table 2 does not aim to
provide a comprehensive list, but it includes the most popular
models currently used (Yoshua, 2009; LeCun et al., 2015).

It is interesting to note that some of the models in Table 2

are composed by other networks. For instance, CDBNs are based
on RBMs and CNNs (Lee et al., 2009); DBMs are based on
RBMs (Salakhutdinov and Hinton, 2009); DBNs are based on
RBMs and MLPs; dAEs are stochastic Autoencoders that can
be stacked on top of each other to build stacked denoising
Autoencoders (SdAEs).

In the following sections, we discuss the major core
architectures Deep Feedforward Neural Networks (D-FFNN),
Convolutional Neural Networks (CNNs), Deep Belief Networks
(DBNs), Autoencoders (AEs), and Long Short-Term Memory
networks (LSTMs) in more detail.

4. DEEP FEEDFORWARD NEURAL
NETWORKS

It can be proven that a Feedforward Neural Network with one
hidden layer and a finite number of neurons can approximate
any continuous function on a compact subset of Rn (Hornik,
1991). This is called the universal approximation theorem. The
reason for using a FFNN with more than one hidden layer
is that the universal approximation theorem does not provide
information on how to learn such a network, which turned out to
be very difficult. A related issue that contributes to the difficulty
of learning such networks is that their width can become
exponentially large. Interestingly, the universal approximation
theorem can also be proven for FFNN with many hidden layers
and a bounded number of hidden neurons (Lu et al., 2017)
for which learning algorithms have been found. Hence, D-
FFNNs are used instead of (shallow) FFNNs for practical reasons
of learnability.

Formally, the idea of approximating an unknown function f ∗

can be written as

y = f ∗(x) ≈ f (x,w) ≈ φ(xTw). (8)

Here f is a function from a specific family that depends on the
parameters θ , and φ is a non-linear activation function with one
layer. For many hidden layers φ has the form

φ = φ(n)
(

. . . φ(2)(φ(1)(x)) . . .
)

. (9)

Instead of guessing the correct family of functions from which f

should be chosen, D-FFNNs learn this function by approximating
it via φ, which itself is approximated by the n hidden layers.

The practical learning of the parameters of a D-FFNN
(see Figure 3B) can be accomplished with the backpropagation
algorithm, although for computational efficiency nowadays
the Stochastic Gradient Descent is used (Bottou, 2010). The
Stochastic Gradient Descent calculates a gradient for a set of
randomly chosen training samples (batch) and updates the
parameters for this batch sequentially. This results in a faster

learning. A drawback is an increase in imprecision. However, for
data sets with a large number of samples (big data), the speed
advantage outweighs this drawback.

5. CONVOLUTIONAL NEURAL NETWORKS

AConvolutional Neural Network (CNN) is a special Feedforward
Neural Network utilizing convolution, ReLU and pooling layers.
Standard CNNs are normally composed of several Feedforward
Neural Network layers including convolution, pooling, and fully-
connected layers.

Typically, in traditional ANNs, each neuron in a layer
is connected to all neurons in the next layer, whereas each
connection is a parameter in the network. This can result in a
very large number of parameters. Instead of using fully connected
layers, a CNN uses a local connectivity between neurons, i.e., a
neuron is only connected to nearby neurons in the next layer.
This can significantly reduce the total number of parameters in
the network.

Furthermore, all the connections between local receptive fields
and neurons use a set of weights, and we denote this set of weights
as a kernel. A kernel will be shared with all the other neurons
that connect to their local receptive fields, and the results of these
calculations between the local receptive fields and neurons using
the same kernel will be stored in a matrix denoted as activation
map. The sharing property is referred to as weight sharing of
CNNs (Le Cun, 1989). Consequently, different kernels will result
in different activation maps, and the number of kernels can be
adjusted with hyper-parameters. Thus, regardless of the total
number of connections between the neurons in a network, the
total number of weights corresponds only to the size of the local
receptive field, i.e., the size of the kernel. This is visualized in
Figure 4B, where the total number of connections between the
two layers is 9 but the size of the kernel is only 3.

By combining weight sharing and the local connectivity
property, a CNN is able to handle data with high dimensions.
See Figure 4A for a visualization of a CNN with three hidden
layers. In Figure 4A, the red edges highlight the locality
property of hidden neurons, i.e., only very few neurons
connect to the succeeding layers. This locality property of
CNN makes the network sparse compared to a FFNN which is
fully connected.

5.1. Basic Components of CNN
5.1.1. Convolutional Layer
A convolutional layer is an essential part in building a
convolutional neural network. Similar to a hidden layer of
an ordinary neural network, a convolutional layer has the
same goal, which is to convert the input into a representation
of a more abstract level. However, instead of using a full
connectivity, the convolutional layer uses a local connectivity
to perform the calculations between input and the hidden
neurons. A convolutional layer uses at least one kernel to slide
across the input, performing a convolution operation between
each input region and the kernel. The results are stored in
the activation maps, which can be seen as the output of
the convolutional layer. Importantly, the activation maps can
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TABLE 2 | List of popular deep learning models, available learning algorithms (unsupervised, supervised) and software implementations in R or python.

Model Unsupervised Supervised Software

Autoencoder X Keras (Chollet, 2015), R: dimRed (Kraemer et al., 2018), h2o (Candel et al., 2015),

RcppDL (Kou and Sugomori, 2014)

Convolutional Deep Belief Network (CDBN) X X R & python: TensorFlow (Abadi et al., 2016), Keras (Chollet, 2015), h2o (Candel et al.,

2015)

Convolutional Neural Network (CNN) X X R & python: Keras (Chollet, 2015) MXNet (Chen et al., 2015), Tensorflow (Abadi et al.,

2016), h2O (Candel et al., 2015), fastai (python) (Howard and Gugger, 2018)

Deep Belief Network (DBN) X X RcppDL (R) (Kou and Sugomori, 2014), python: Caffee (Jia et al., 2014), Theano

(Theano Development Team, 2016), Pytorch (Paszke et al., 2017), R & python:

TensorFlow (Abadi et al., 2016), h2O (Candel et al., 2015)

Deep Boltzmann Machine (DBM) X python: boltzmann-machines (Bondarenko, 2017), pydbm (Chimera, 2019)

Denoising Autoencoder (dA) X Tensorflow (R, python) (Abadi et al., 2016), Keras (R, python) (Chollet, 2015), RcppDL

(R) (Kou and Sugomori, 2014)

Long short-term memory (LSTM) X rnn (R) (Quast, 2016), OSTSC (R) (Dixon et al., 2017), Keras (R and python) (Chollet,

2015), Lasagne (python) (Dieleman et al., 2015), BigDL (python) (Dai et al., 2018),

Caffe (python) (Jia et al., 2014)

Multilayer Perceptron (MLP) X SparkR (R) (Venkataraman et al., 2016), RSNNS (R) (Bergmeir and Benítez, 2012),

keras (R and python) (Chollet, 2015), sklearn (python) (Pedregosa et al., 2011),

tensorflow (R and python) (Abadi et al., 2016)

Recurrent Neural Network (RNN) X RSNNS (R) (Bergmeir and Benítez, 2012), rnn (R) (Quast, 2016), keras (R and python)

(Chollet, 2015)

Restricted Boltzmann Machine (RBM) X X RcppDL (R) (Kou and Sugomori, 2014), deepnet (R) (Rong, 2014), pydbm (python)

(Chimera, 2019), sklearn (python) (Chimera, 2019), Pylearn2 (Goodfellow et al., 2013),

TheanoLM (Enarvi and Kurimo, 2016)

FIGURE 4 | (A) An example for a Convolutional Neural Network. The red edges highlight the fact that hidden layers are connected in a “local” way, i.e., only very few

neurons connect the succeeding layers. (B) An example for shared weights and local connectivity in CNN. The red edges highlight the fact that hidden layers are

connected in a “local” way, i.e., only very few neurons connect the succeeding layers. The labels w1,w2,w3 indicate the assigned weight for each connection, three

hidden nodes share the same set of weights w1,w2,w3 when connecting to three local patches.

contain features extracted by different kernels. Each kernel
can act as a feature extractor and will share its weights with
all neurons.

For the convolution process, some spatial arguments need to
be defined in order to produce the activation maps of a certain
size. Essential attributes include:

1. Size of kernels (N). Each kernel has a window size, which is
also referred to as receptive field. The kernel will perform a
convolution operation with a region matching its window size
from the input, and produce results in its activation map.

2. Stride (S). This parameter defines the number of pixels the
kernel will move for the next position. If it is set to 1, each
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kernel will make convolution operations around the input
volume and then shift 1 pixel at a time until it reaches the
specified border of the input. Hence, the stride can be used
to downsize the dimension of the activation maps as the larger
the stride the smaller the activation maps.

3. Zero-padding (P). This parameter is used to specify howmany
zeros one wants to pad around the border of the input. This is
very useful for preserving the dimension of the input.

These three parameters are the most common hyper-parameters
used for controlling the output volume of a convolutional layer.
Specifically, for an input of dimension Winput × Hinput × Z, for
the hyper-parameters size of the kernel (N), Stride (S), and Zero-
padding (P) the dimension of the activation map, i.e., Wout ×

Hout × D can be calculated by:

Wout =
(Winput − N + 2P)

S+ 1

Hout =
(Hinput − N + 2P)

S+ 1

D = Z

(10)

An example of how to calculate the result between an input
matrix and a kernel can be seen in Figure 5.

The shared weights and the local connectivity help
significantly in reducing the total number of parameters of
the network. For example, assuming that an input has dimension
100 × 100 × 3, and that the convolutional layer and the number
of kernels is 2 and each kernel has a local receptive field of size
4, then the dimension of each kernel is 4 × 4 × 3 (3 is the depth
of the kernel which will be the same as the depth of the input
volume). For 100 neurons in the layer there will be in total only
4 × 4 × 3 × 2 = 96 parameters in this layer because all the
100 neurons will share the same weights for each kernel. This
considers only the number of kernels and the size of the local
connectivity but does not depend on the number neurons in
the layer.

In addition to reducing the number of parameters, shared
weights and a local connectivity are important in processing
images efficiently. The reason therefore is that local convolutional
operations in an image result in values that contain certain
characteristics of the image, because in images local values are
generally highly correlated and the statistics formed by the local
values are often invariant in the location (LeCun et al., 2015).
Hence, using a kernel that shares the same weights can detect
patterns from all the local regions in the image, and different
kernels can extract different types of patterns from the image.

A non-linear activation function (for instance ReLu, tanh,
sigmoid, etc.) is often applied to the values from the
convolutional operations between the kernel and the input. These
values are stored in the activationmaps, which will be later passed
to the next layer of the network.

5.1.2. Pooling Layer
A pooling layer is usually inserted between a convolutional layer
and the following layer. Pooling layers aim at reducing the
dimension of the input with some pre-specified pooling method,

resulting in a smaller input by conserving as much information
as possible. Also, a pooling layer is able to introduce spatial
invariance into the network (Scherer et al., 2010), which can help
to improve the generalization of the model. In order to perform
pooling, a pooling layer uses stride, zero-padding, and a pooling
window size as hyper-parameters. The pooling layer will scan the
entire input with the specified pooling window size in the same
manner as the kernel in a convolutional layer. For instance, using
a stride of 2, window size of 2 and 0 zeros-padding for pooling
will half the size of the input dimension.

There are many types of pooling methods, e.g., averaging-
pooling, min-pooling and some advanced pooling methods, such
as fractional max-pooling and stochastic pooling. The most
common used pooling method is max-pooling, as it has been
shown to be superior in dealing with images by capturing
invariances efficiently (Scherer et al., 2010). Max-pooling extracts
the maximum value within each specified sub-window across the
activation map. The max-pooling can be formulated as Ai,j,k =

max(Ri−n : i+n,j−n : j+n,k), where Ai,j,k is the maximum activation
value from the matrix R of size n × n centered at index i, j in the
kth activation map with n is the window size.

5.1.3. Fully-Connected Layer
A fully-connected layer is the basic hidden layer unit in
FFNN (see section 3.2). Interestingly, also for traditional CNN
architectures, a fully connected layer is often added between
the penultimate layer and the output layer to further model
non-linear relationships of the input features (Krizhevsky et al.,
2012b; Simonyan and Zisserman, 2014; Szegedy et al., 2015).
However, recently the benefit of this has been questioned because
of the many parameters introduced by this, leading potentially to
overfitting (Simonyan and Zisserman, 2014). As a result, more
and more researchers started to construct CNN architecture
without such a fully connected layer using other techniques like
max-over-time pooling (Lin et al., 2013; Kim, 2014) to replace the
role of linear layers.

5.2. Important Variants of CNN
5.2.1. VGGNet
VGGNet (Simonyan and Zisserman, 2014) was a pioneer
in exploring how the depth of the network influences the
performance of a CNN. VGGNet was proposed by the Visual
Geometry Group and Google DeepMind, and they studied
architectures with a depth of 19 (e.g., compared to 11 for AlexNet
Krizhevsky et al., 2012b).

VGG19 extended the network from eight weight layers (a
structure proposed by AlexNet) to 19 weights layers by adding
11 more convolutional layers. In total, the parameters increased
from 61million to 144million, however, the fully connected layer
takes up most of the parameters. According to their reported
results, the error rate dropped from 29.6 to 25.5 regrading top-
1 val.error (percentage of times the classifier did not give the
correct class with the highest score) on the ILSVRC dataset, and
from 10.4 to 8.0 regarding top-5 val.error (percentage of times
the classifier did not include the correct class among its top
5) on the ILSVRC dataset in ILSVRC2014. This indicates that
a deeper CNN structure is able to achieve better results than
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FIGURE 5 | An example for calculating the values in the activation map. Here, the stride is 1 and the zero-padding is 0. The kernel slides by 1 pixel at a time from left

to right starting from the left top position, after reaching the boarder the kernel will start from the second row and repeat the process until the whole input is covered.

The red area indicates the local patch to be convoluted with the kernel, and the result is stored in the green field in the activation map.

shallower networks. In addition, they stacked multiple 3 × 3
convolutional layers without a pooling layer placed in between
to replace the convolutional layer with a large filter sizes, e.g., 7
× 7 or 11× 11. They suggested such an architecture is capable of
receiving the same receptive fields as those composed of larger
filter sizes. Consequently, two stacked 3 × 3 layers can learn
features from a 5× 5 receptive field, but with less parameters and
more non-linearity.

5.2.2. GoogLeNet With Inception
The most intuitive way for improving the performance of a
Convolutional Neural Network is to stack more layers and add
more parameters to the layers (Simonyan and Zisserman, 2014).
However, this will impose two major problems. One is that too
many parameters will lead to overfitting, and the other is that the
model becomes hard to train.

GoogLeNet (Szegedy et al., 2015) was introduced by
Google. Until the introduction of inception, traditional state-
of-the-art CNN architectures mainly focused on increasing
the size and depth of the neural network, which also
increased the computation cost of the network. In contrast,
GoogLeNet introduced an architecture to achieve state-of-the-art
performance with a light-weight network structure.

The idea underlying an inception network architecture is to
keep the network as sparse as possible while utilizing the fast
matrix computation feature provided by a computer. This idea
facilitates the first inception structure (see Figure 6).

As one can see in the Figure 6, several parallel layers including
1 × 1 convolution and 3 × 3 max pooling operate at the
same level on the input. Each tunnel (namely one separated
sequential operation) has a different child layer, including 3 × 3
convolutions, 5 × 5 convolutions and 1 × 1 convolution layer.
All the results from each tunnel are concatenated together at
the output layer. In this architecture, a 1x1 convolution is used
to downscale the input image while reserving input information
(Lin et al., 2013). They argued that concatenating all the features
extracted by different filters corresponds to the idea that image
information should be processed at different scales and only the
aggregated features should be sent to the next level. Hence, the
next level can extract features from different scales. Moreover,

this sparse structure introduced by an inception block requires
much fewer parameters and, hence, is much more efficient.

By stacking the inception structure throughout the network,
GoogLeNet won first place in the classification task of
ILSVRC2014, demonstrating the quality of the inception
structure. Followed by the inception v1, inception v2, v3, and
the latest version v4were introduced. Each generation introduced
some new features, making the network faster, more light-weight
and more powerful.

5.2.3. ResNet
In principle, CNNs with a deeper structure perform better than
shallow ones (Simonyan and Zisserman, 2014). In theory, deeper
networks have a better ability to represent high level features
from the input, therefore improving the accuracy of predictions
(Donahue et al., 2014). However, one cannot simply stack more
and more layers. In the paper (He et al., 2016), the authors
observed the phenomena that more layers can actually hurt the
performance. Specifically, in their experiment, network A had
N layers, and network B had N + M layers, while the initial
N layers had the same structure. Interestingly, when training
on the CIFAR-10 and ImageNet dataset, network B showed a
higher training error than network B. In theory, the extra M
layers should result in a better performance, but instead they
obtained higher errors which cannot be explained by overfitting.
The reason for this is that the loss is getting optimized to local
minima, which is different to the vanishing gradient phenomena.
This is referred to as the degradation problem (He et al., 2016).

ResNet (He et al., 2016) was introduced to overcome the
degradation problem of CNNs to push the depth of a CNN
to its limit. In (He et al., 2016), the authors proposed a novel
structure of a CNN, which is in theory capable of being extended
to an infinite depth without losing accuracy. In their paper, they
proposed a deep residual learning framework, which consists of
multiple residual blocks to address the degradation problem. The
structure of a residual block is shown in the Figure 7.

Instead of trying to learn the desired underlying mapping
H(x) from each few stacked layers, they used an identity
mapping for input x from input to the output of the layer,
and then let the network learn the residual mapping F(x) =

H(x) − x. After adding the identity mapping, the original
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FIGURE 6 | Inception block structure. Here multiple blocks are stacked on top of each other, forming the input layer for the next block.

FIGURE 7 | The structure of a residual block. Inside a block there can be as

many weight layers as desired.

mapping can be reformulated as H(x) = F(x) + x. The
identity mapping is realized by making shortcut connections
from the input node directly to the output node. This can help
to address the degradation problem as well as the vanishing
(exploding) gradient issue of deep networks. In extreme cases,
deeper layers can just learn the identity map of the input
to the output layer, by simply calculating the residuals as 0.
This enables the ability for a deep network to perform at least
not worse than shallow ones. Also, in practice, the residuals
are never 0, which makes it possible for very deeper layers
to always learn something new from the residuals therefore
producing better results. The implementation of ResNet helped
to push the layers of CNNs to 152 by stacking so-called
residual blocks through out the network. ResNet achieved the
best result in the ILSVRC2016 competition, with an error rate
of 3.57.

6. DEEP BELIEF NETWORKS

A Deep Belief Network (DBN) is a model that combines
different types of neural networks with each other to form
a new neural network model. Specifically, DBNs integrate
Restricted Boltzmann Machines (RBMs) with Deep Feedforward
Neural Networks (D-FFNN). The RBMs form the input unit
whereas the D-FFNNs form the output unit. Frequently, RBMs
are stacked on top of each other, which means more than

one RBM is used sequentially. This adds to the depth of
the DBN.

Due to the different nature of the networks RBM and D-
FFNN, two different types of learning algorithms are used.
Practically, the Restricted Boltzmann Machines are used for
initializing a model in an unsupervised way. Thereafter, a
supervisedmethod is applied for the fine tuning of the parameters
(Yoshua, 2009). In the following, we describe these two phases of
the training of a DBN in more detail.

6.1. Pre-training Phase: Unsupervised
Theoretically, neural networks can be learned by using
supervised methods only. However, in practice it was found
that such a learning process can be very slow. For this
reason, unsupervised learning is used to initialize the model
parameters. The standard neural network learning algorithm
(backpropagation) was initially only able to learn shallow
architectures. However, by using a Restricted Boltzmann
Machine for the unsupervised initialization of the parameters one
obtains a more efficient training of the neural network (Hinton
et al., 2006).

A Restricted Boltzmann Machine is a special type of a
Boltzmann Machine (BM), see section 3.3.2. The difference
between a Restricted Boltzmann Machine and a Boltzmann
Machine is that Restricted Boltzmann Machines (RBMs)
have constraints in the connectivity of their structure
(Fischer and Igel, 2012). Specifically, there can be no
connections between nodes in the same layer. For an example,
see Figure 8C.

The values of neurons, v, in the visible layer are known, but
the neuron values, h, in the hidden layer are unknown. The
parameters of the network are learned by defining an energy
function, E, of the model which is then minimized.

Frequently, a RBM is used with binary values, i.e., vi ∈ {0, 1}
and hi ∈ {0, 1}. The energy function for such a network is given
by (Hinton, 2012):

E(v, h) = −

m
∑

i

aivi −

n
∑

j

bjhj −

m
∑

i

n
∑

j

vihjwi,j (11)

whereas 2 = {a, b,W} is the set of model parameters.

Frontiers in Artificial Intelligence | www.frontiersin.org 10 February 2020 | Volume 3 | Article 4

#
#
#


Emmert-Streib et al. Deep Learning Models

FIGURE 8 | Examples for Boltzmann Machines. (A) The neurons are arranged on a circle. (B) The neurons are separated according to their type. Both Boltzmann

Machines are identical and differ only in their visualization. (C) Transition from a Boltzmann Machine (left) to a Restricted Boltzmann Machine (right).

Each configuration of the system corresponds to a
probability defined via the Boltzmann distribution in
Equation (11):

p(v,h) =
1

Z
e−E(v,h) (12)

In Equation (12), Z is the partition function given by:

Z =
∑

v,h

e−E(v,h) (13)

The probability for the network assigning to a visible vector v is
given by summing over all possible hidden vectors:

p(v) =
1

Z

∑

h

e−E(v,h) (14)

Maximum-likelihood estimation (MLE) is used for estimating
the optimal parameters of the probabilistic model (Hayter, 2012).
For a training data set D = Dtrain = {v1, . . . , vl} consisting
of l patterns, assuming that the patterns are iid (independent
and identical) distributed, the log-likelihood function is
given by:

L(θ) = lnL(θ |D) = ln

l
∏

i=1

p(vi|θ) =

l
∑

i=1

ln p(vi|θ) (15)

For simple cases, onemay be able to find an analytical solution for
Equation (15) by solving ∂

∂θ
lnL(θ |D) = 0. However, usually the

parameters need to be found numerically. For this, the gradient
of the log-likelihood is a typical approach for estimating the
optimal parameters:

θ (t+1) = θ (t)+1θ (t) = θ (t)+η
∂L(θ t)

∂θ (t)
−λθ (t)+ ν1θ (t−1) (16)

In Equation (16), the constant, η, in front of the gradient is
the learning rate and the first regularization term, −λθ (t), is
the weight-decay. The weight-decay is used to constrain the
optimization problem by penalizing large values of θ (Hinton,
2012). The parameter λ is also called the weight-cost. The second
regularization term in Equation (16) is called momentum. The
purpose of the momentum is to make learning faster and to
reduce possible oscillations. Overall, this should stabilize the
learning process.

For the optimization, the Stochastic Gradient Ascent
(SGA) is utilized using mini-batches. That means one selects
randomly a number of samples from the training set, k,
which are much smaller than the total sample size, and
then estimates the gradient. The parameters, θ , are then
updated for the mini-batch. This process is repeated iteratively
until an epoch is completed. An epoch is characterized
by using the whole training set once. A common problem
is encountered when using mini-batches that are too
large, because this can slow down the learning process
considerably. Frequently, k is chosen between 10 and 100
(Hinton, 2012).

Before the gradient can be used, one needs to approximate
the gradient of Equation (16). Specifically, the derivatives
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with respect to the parameters can be written in the
following form:















∂L(θ |v)
∂wij

= p(Hj = 1|v)vi −
∑

v p(v)p(Hj = 1|v)vi
∂L(θ |v)

∂ai
= vi −

∑

v p(v)vi
∂L(θ |v)

∂bj
= p(Hj = 1|v)−

∑

v p(v)p(Hj = 1|v)

(17)

In Equation (17), Hi denotes the value of hidden unit i and p(v)
is the probability defined in Equation (14). For the conditional
probability, one finds

p(Hj = 1|v) = σ (

n
∑

j=1

wijvi + bj) (18)

and correspondingly

p(Vi = 1|h) = σ (

m
∑

i=1

wijhj + ai) (19)

Using the above equations in the presented form would be
inefficient because these equations require a summation over
all visible vectors. For this reason, the Contrastive Divergence
(CD) method is used for increasing the speed for the estimation
of the gradient. In Figure 9A, we show pseudocode of the
CD algorithm.

The CD uses Gibbs sampling for drawing samples from
conditional distributions, so that the next value depends only
on the previous one. This generates a Markov chain (Hastie
et al., 2009). Asymptotically, for k → ∞ the distribution
becomes the true stationary distribution. In this case, the CD →

ML. Interestingly, already k = 1 can lead to satisfactory
approximations for the pre-training (Carreira-Perpinan and
Hinton, 2005).

In general, pre-training of DBNs consists of stacking RBMs.
That means the next RBM is trained using the hidden layer of the
previous RBM as visible layer. This initializes the parameters for
each layer (Hinton and Salakhutdinov, 2006). Interestingly, the
order of this training is not fixed but can vary. For instance, first,
the last layer can be trained and then the remaining layers can be
trained (Hinton et al., 2006). In Figure 10, we show an example
for the stacking of RBMs.

6.2. Fine-Tuning Phase: Supervised
After the initialization of the parameters of the neural network, as
described in the previous step, these can now be fine-tuned. For
this step, a supervised learning approach is used, i.e., the labels of
the samples, omitted in the pre-training phase, are now utilized.

For learning the model, one minimizes an error function
(also called loss function or sometimes objective function). An
example for such an error function is the mean squared error
(MSE).

E =
1

2n

n
∑

i=1

‖oi − ti‖
2 (20)

In Equation (20), oi = φ(xi) is the i
th output from the network

function φ :R
m → R

n given the ith input xi from the training set
D = Dtrain = {(x1, t1), . . . (xl, tl)} and ti is the target output.

Similarly, for maximizing the log-likelihood function of a
RBM (see Equation 16), one uses gradient descent to find the
parameters that minimize the error function.

θ (t+1) = θ (t) − 1θ (t) = θ (t) − η
∂E

∂θ (t)
− λθ (t) + ν1θ (t−1) (21)

Here, the parameters (η, λ and ν) have the same meaning as
explained above. Again, the gradient is typically not used for the
entire training data D, but instead smaller batches are used via
the Stochastic Gradient Descent (SGD).

The gradient of the RBM log-likelihood can be approximated
using the CD algorithm (see Figure 9A). For this, the
backpropagation algorithm is used (LeCun et al., 2015).

Let us denote by ai
l the activation of the ith unit in the lth layer

(l ∈ {2, . . . , L}), bti the corresponding bias and wl
ij the weight for

the edge between the jth unit of the (l− 1)th layer and the ith
unit of the lth layer. For activation function, ϕ, the activation
of the lth layer with the (l-1)th layer as input is al = ϕ(z(l)) =

ϕ(w(l)a(l−1) + b(l)).
Application of the chain rule leads to (Nielsen, 2015):



























δ(L) = ∇aE · ϕ′(z(L))

δ(l) = ((w(l+1))Tδ(l+1)) · ϕ′(z(l))
∂E

∂b
(l)
i

= δ
(l)
i

∂E

∂w
(l)
ij

= x
(l−1)
j δ

(l)
i

(22)

In Equation (22), the vector δL contains the errors of the output
layer (L), whereas the vector δl contains the errors of the lth layer.
Here, · indicates the element-wise product of vectors. From this
the gradient of the error of the output layer is given by

∇aE =

{ ∂E

∂a
(L)
1

, . . . ,
∂E

∂a
(L)
k

}

. (23)

In general, the result of this depends on E. For instance, for the
MSE we obtain ∂E

∂a
(L)
j

= (aj − tj). As a result, the pseudocode

for the backpropagation algorithm can be formulated as shown
in Figure 9B (Nielsen, 2015). The estimated gradients from
Figure 9B are then used to update the parameters (weights
and biases) via SGD (see Equation 21). More updates are
performed using mini-batches until all training data have been
used (Smolander, 2016).

The resilient backpropagation algorithm (Rprop) is a
modification of the backpropagation algorithm that was
originally introduced to speed up the basic backpropagation
(Bprop) algorithm (Riedmiller and Braun, 1993). There exist at
least four different versions of Rprop (Igel and Hüsken, 2000)
and in Algorithm 9 pseudocode for the iRprop+ algorithm
(which improves Rprop with weight-backtracking) is shown
(Smolander, 2016).
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FIGURE 9 | (A) Contrastive Divergence k-step algorithm using Gibbs sampling. (B) Backpropagation algorithm. (C) iRprop+ algorithm.

As one can see in Algorithm 9, iRprop+ uses information
about the sign of the partial derivative from time step (t − 1) to
make a decision for the update of the parameter. Importantly, the
results of comparisons have shown that the iRprop+ algorithm is
faster than Bprop (Igel and Hüsken, 2000).

It has been shown that the backpropagation algorithm with
SGD can learn good neural network models even without a

pre-training stage when the training data are sufficiently large
(LeCun et al., 2015).

In Figure 11, we show an example of the overall DBN learning
procedure. The left-hand side shows the pre-training phase and
the right-hand side the fine-tuning.

DBNs have been used successfully for many application tasks,
e.g., natural language processing (Sarikaya et al., 2014), acoustic
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FIGURE 10 | Visualizing the stacking of RBMs in order to learn the parameters 2 of a model in an unsupervised way.

FIGURE 11 | The two stages of DBN learning. (Left) The hidden layer (purple) of one RBM is the input of the next RBM. For this reason their dimensions are equal.

(Right) The two edges in fine-tuning denote the two stages of the backpropagation algorithm: the input feedforwarding and the error backpropagation. The orange

layer indicated the output.

modeling (Mohamed et al., 2011), image recognition (Hinton
et al., 2006) and computational biology (Zhang S. et al., 2015).

7. AUTOENCODER

An Autoencoder is an unsupervised neural network model used
for representation learning, e.g., feature selection or dimension
reduction. A common property of autoencoders is that the size
of the input and output layer is the same with a symmetric
architecture (Hinton and Salakhutdinov, 2006). The underlying
idea is to learn a mapping from an input pattern x to a new
encoding c = h(x), which ideally gives as output pattern the same
as the input pattern, i.e., x ≈ y = g(c). Hence, the encoding c,
which has usually lower dimension than x, allows to reproduce
(or code for) x.

The construction of Autoencoders is similar to DBNs.
Interestingly, the original implementation of an autoencoder
(Hinton and Salakhutdinov, 2006) pre-trained only the first half
of the network with RBMs and then unrolled the network,
creating in this way the second part of the network. Similar to
DBNs, a pre-training phase is followed by a fine-tuning phase. In
Figure 12, an illustration of the learning process is shown. Here,
the coding layer corresponds to the new encoding c providing,
e.g., a reduced dimension of x.

An Autoencoder does not utilize labels and, hence, it is an
unsupervised learningmodel. In applications, themodel has been
successfully used for dimensionality reduction. Autoencoders
can achieve a much better two-dimensional representation of
array data, when an adequate amount of data is available (Hinton
and Salakhutdinov, 2006). Importantly, PCAs implement a linear
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FIGURE 12 | Visualizing the idea of autoencoder learning. The learned new encoding of the input is represented in the code layer (shown in blue).

transformation, whereas Autoencoders are non-linear. Usually,
this results in a better performance. We would like to highlight
that there are many extensions of these models, e.g., sparse
autoencoder, denoising autoencoder or variational autoencoder
(Vincent et al., 2010; Deng et al., 2013; Pu et al., 2016).

8. LONG SHORT-TERM MEMORY
NETWORKS

Long short-term memory (LSTM) networks were introduced
by Hochreiter and Schmidhuber in 1997 (Hochreiter and
Schmidhuber, 1997). LSTM is a variant of a RNN that has
the ability to address the shortcomings of RNNs which do
not perform well, e.g., when handling long-term dependencies
(Graves, 2013). Furthermore, LSTMs avoid the gradient
vanishing or exploding problem (Hochreiter, 1998; Gers et al.,
1999). In 1999, a LSTM with a forget gate was introduced which
could reset the cell memory. This improved the initial LSTM
and became the standard structure of LSTM networks (Gers
et al., 1999). In contrast to Deep Feedforward Neural Networks,
LSTMs contain feedback connections. Furthermore, they can
not only process single data points, such as vectors or arrays, but
sequences of data. For this reason, LSTMs are particularly useful
for analyzing speech or video data.

8.1. LSTM Network Structure With Forget
Gate
Figure 13 shows an unrolled structure of a LSTM network model
(Wang et al., 2016). In this model, the input and output are
organized vertically, while information is delivered horizontally
over the time series.

In a standard LSTM network, the basic entity is called LSTM
unit or a memory block (Gers et al., 1999). Each unit is composed
of a cell, the memory part of the unit, and three gates: an input
gate, an output gate and a forget gate (also called keep gate) (Gers

et al., 2002). A LSTM unit can remember values over arbitrary
time intervals and the three gates control the flow of information
through the cell. The central feature of a LSTM cell is a part called
“constant error carousel” (CEC) (Lipton et al., 2015). In general,
a LSTM network is formed exactly like a RNN, except that the
neurons in the hidden layers are replaced by memory blocks.

In the following, we discuss some core concepts and the
corresponding technicalities (W and U stand for the weights and
b for the bias). In Figure 14, we show a schematic description of
a LSTM block with one cell.

• Input gate: A unit with sigmoidal function that controls the
flow of information into the cell. It receives its activation from
both output of the previous time h(t−1) and current input
x(t). Under the effect of the sigmoid function, an input gate it

generates values between zero and one. Zero indicates it blocks
the information entirely, whereas values of one allow all the
information to pass.

it = σ (W(ix)x(t) + U(ih)h(t−1) + bi) (24)

• Cell input layer: The cell input has a similar flow as the
input gate, receiving h(t−1) and x(t) as input. However, a tanh
activation is used to squish input values to a range between -1
and 1 (denoted by lt in Equation 25).

lt = tanh(W(lx)x(t) + U(lh)h(t−1) + bl) (25)

• Forget gate: A unit with a sigmoidal function determines
which information from previous steps of the cell should be
memorized or forgotten. The forget gate f t assumes values
between zero and one based on the input, h(t−1) and x(t). In
the next step, f t is given by a Hadamard product with an old
cell state ct−1 to update to a new cell state ct (Equation 26). In
this case, a value of zero means the gate is closed, so it will
completely forget the information of the old cell state ct−1,
whereas values of one will make all information memorable.
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FIGURE 13 | (Left) A folded structure of a LSTM network model. (Right) An unfolded structure of a LSTM network model. xi is the input data at time i and yi is the

corresponding output (i is the time step starting from (t− 1)). In this network, only y′t+2 activated by softmax function is the final network output.

Therefore, a forget gate has the right to reset the cell state if the
old information is considered meaningless.

f t = σ (W(fx)x(t) + U(fh)h(t−1) + bf ) (26)

• Cell state: A cell state stores the memory of a cell over a longer
time period (Ming et al., 2017). Each cell has a recurrently
self-connected linear unit which is called Constant Error
Carousel (CEC) (Hochreiter and Schmidhuber, 1997). The
CEC mechanism ensures that a LSTM network does not suffer
from the vanishing or exploding gradient problem (Elsayed
et al., 2018). The CEC is regulated by a forget gate and it can
also be reset by the forget gate. At time t, the current cell
state ct is updated by the previous cell state ct−1 controlled
by the forget gate and the product of the current input and
the cell input, i.e., (it ◦ lt). Overall, Equation (27) describes the
combined update of a cell state,

ct = f t ◦ ct−1 + it ◦ lt . (27)

• Output gate: A unit with a sigmoidal function can control the
flow of information out of the cell. A LSTM uses the values of
the output gate at time t (denoted by ot) to control the current
cell state ct activated by a tanh function, to obtain the final
output vector h(t),

ot = σ (W(ox)x(t) + U(oh)h(t−1) + bo), (28)

ht = ot ◦ tanh(ct). (29)

8.2. Peephole LSTM
A Peephole LSTM is a variant of a LSTM proposed by Gers
and Schmidhuber (2000). In contrast to a standard LSTM
discussed above, a Peephole LSTM uses the cell state c, instead
of h for regulating the forget gate, input gate and output
gate. In Figure 15, we show the internal connectivity of a
Peephole LSTM unit whereas the red arrows represent the new
peephole connections.

The key difference between a Peephole LSTM and a standard
LSTM is that the forget gate f t , input gate it and output gate ot do
not use h(t−1) as input. Instead, these gates use the cell state ct−1.

FIGURE 14 | Internal connectivity pattern of a standard LSTM unit (blue

rectangle). The output from the previous time step, h(t−1), and x(t), are the input

to the block at time t, then the output h(t) at time t will be an input to the same

block in the next time step (t+ 1).

In order to understand the base idea behind a Peephole LSTM, let
us assume the output gate ot−1 in a traditional LSTM network is
closed. Then the output of the network h(t−1) at time (t − 1) will
be 0, according to Equation (29), and in the next time step t, the
regulating mechanism of all three gates will only depend on the
network input x(t−1). Therefore, the historical information will be
lost completely. A Peephole LSTM avoids this problem by using
a cell state instead of output h to control the gates. The following
equations describe a Peephole LSTM formally.

it = σ (W(ix)x(t) + U(ic)ct−1 + bi) (30)

lt = tanh(W(lx)x(t) + bl) (31)

f t = σ (W(fx)x(t) + U(fc)ct−1 + bf ) (32)

ot = σ (W(ox)x(t) + U(oc)ct−1 + bo) (33)

ct = f t ◦ ct−1 + it ◦ lt (34)

ht = ot ◦ ct (35)
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FIGURE 15 | Internal connectivity of a Peephole LSTM unit (blue rectangle).

Here x(t) is the input to the cell at time t, and h(t) is its output. The red arrows

are the new peephole connections added, compared to the standard LSTM in

Figure 14.

Aside from these main forms of LSTMs described above, there
are further variants. For instance, a Bidirectional LSTM Network
(BLSTM) has been introduced by (Graves and Schmidhuber,
2005), which can access long-range context in both input
directions. Furthermore, in 2014, the concept of “Gated
Recurrent Unit” was proposed, which is viewed as a simplified
version of LSTM (Cho et al., 2014) and in 2015, Wai-kin
Wong and Wang-chun Woo introduced a Convolutional LSTM
Network (ConvLSTM) for precipitation nowcasting (Xingjian
et al., 2015). There are further variants of LSTM networks;
however, most of them are designed for specific application
domains without clear performance advantage.

8.3. Applications
LSTMs have a wide range of applications in text generation,
text classification, language translation or image captioning
(Hwang and Sung, 2015; Vinyals et al., 2015). In Figure 16, an
LSTM classifier model for text classification is shown. In this
figure, the input of the LSTM structure at each time step is a
word embedding vector Vi, which is a common choice for text
classification problems. A word embedding technique maps the
words or phrases in the vocabulary to vectors consisting of real
numbers. Some common word embedding techniques include
word2vec, GloVe, FastText, etc. Zhou (2019). The output yN is
the corresponding output at the Nth time step and y′N is the final
output after softmax activation of yN , which will determine the
classification of the input text.

9. DISCUSSION

9.1. General Characteristics of Deep
Learning
A property common to all deep learning models is that they
perform so-called representation learning. Sometimes this is also

called feature learning. This denotes a model that learns new and
better representations compared to the raw data. Importantly,
deep learning models do not learn the final representation
within one step but multiple ones corresponding to multi-
level representation transformations between the hidden layers
(LeCun et al., 2015).

Another common property of deep learning models is that
the subsequent transformations between layers are non-linear
(see Figure 3). This increases the expressive power of the model
(Duda et al., 2000). Furthermore, individual representations are
not designed manually, but learned via training data (LeCun
et al., 2015). This makes deep learning models very flexible.

9.2. Differences Between Models
Currently, CNNs are the dominating deep learning models for
computer vision tasks (LeCun et al., 2015). They are effective
when the data consist of arrays where nearby values in an
array are correlated with each other, e.g., as is the case for
images, videos, and sound data. A convolutional layer can easily
process high-dimensional input by using the local connectivity
and shared weights, while a pooling layer can down-sample the
input without losing essential information. Each convolutional
layer is capable of converting the input image into groups of more
abstract features using different kernels; therefore, by stacking
multiple convolution layers, the network is able to transform the
input image to a representation that captures essential patterns
from the input, thus making precise predictions.

However, also in other areas, CNNs have shown very
competitive results compared to other deep learning
architectures, e.g., in natural language processing (Kim,
2014; Yang et al., 2020). Specifically, CNNs can be good at
extracting local information from text and exploring meaningful
semantic and syntactic meanings between phrases and words.
Also, the natural composition of text data can be easily handled
by a CNN architecture. Hence, CNNs show very strong potential
in performing classification tasks where successful predictions
heavily rely on extracting key information from input text (Yin
et al., 2017).

The classical network architecture is fully connected and
feedforward corresponding to a D-FFNN. Interestingly, in (Mayr
et al., 2016), it has been shown that a D-FFNN outperformed
other methods for predicting the toxicity of drugs. Also for drug
target predictions, a D-FFNN has been shown to be superior
compared to other methods (Mayr et al., 2018). This shows
that even such an architecture can be successfully used in
modern applications.

Commonly, RNNs are used for problems with sequential
data, such as speech and language processing or modeling
(Sundermeyer et al., 2012; Graves et al., 2013; Luong and
Manning, 2015). While DBNs and CNNs are feedforward
networks, connections in RNNs can form cycles. This allows the
modeling of dynamical changes over time (LeCun et al., 2015).

A problem with finding the right application for a deep
learning model is that their application domains are not mutually
exclusive from each other. Instead, as the discussion above
shows, there is a considerable overlap and the best model can in
many cases only be found by conducting a comparative study.
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FIGURE 16 | An LSTM classifier model for text classification. N is the sequence length of the input text (the number of words). Input from V1 to VN is a sequence of

word embedding vectors used as input to the model at different time steps. y′N is the final prediction result.

TABLE 3 | Overview of applications of deep learning methods.

Description DL type Application References

Dermatologist-level classification of skin cancer with deep neural networks CNN Images Esteva et al., 2017

Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study CNN Images Hosny et al., 2018

Character-level convolutional networks for text classification CNN Text Zhang X. et al., 2015

Recurrent convolutional neural networks for text classification CNN Text Lai et al., 2015

Comparing deep belief networks with support vector machines for classifying gene expression

data from complex disorders

DBN Genomics Smolander et al., 2019a

Unsupervised feature learning for audio classification using convolutional deep belief networks C-DBN Audio Lee et al., 2009

Acoustic modeling using deep belief networks DBN Audio Mohamed et al., 2011

Jiang, M., et al. Text classification based on deep belief network and softmax regression DBN Text Jiang et al., 2018

Autoencoder for words AE Text Liou et al., 2014

Deep neural networks for learning graph representations AE Text Cao et al., 2016

Stacked denoising autoencoders: learning useful representations in a deep network with a

local denoising criterion

SD-AE Images Vincent et al., 2010

DeepCare: a deep dynamic memory model for predictive medicine LSTM Text Pham et al., 2016

Framewise phoneme classification with bidirectional LSTM and other neural network

architectures

B-LSTM Audio Graves and Schmidhuber, 2005

Deep sentence embedding using long short-term memory networks: analysis and application

to information retrieval

LSTM Text Palangi et al., 2016

Drug-drug interaction extraction from biomedical texts using long short-term memory network LSTM Text Sahu and Anand, 2018

In Table 3, we show several examples of different applications
involving images, audio, text, and genomics data.

9.3. Interpretable Models vs. Black-Box
Models
Any model in data science can be categorized either as an
inferential model or a prediction model (Breiman, 2001; Shmueli,
2010). An inferential model does not only make predictions
but provides also an interpretable structure. Hence, it is a
model of the prediction process itself, e.g., a causal model. In

contrast, a prediction model is merely a black-box model for
making predictions.

The models discussed in this review neither aim at
providing physiological models of biological neurons nor
offer an interpretable structure. Instead, they are prediction
models. An example for a biologically motivated learning
rule for neural networks is the Hebbian learning rule (Hebb,
1949). Hebbian learning is a form of unsupervised learning
of neural networks that does not use global information
about the error as backpropagation. Instead, only local
information is used from adjacent neurons. There are
many extensions of Hebb’s basic learning rule that have
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FIGURE 17 | Classification error of the EMNIST data in dependence on the number of training samples. The standard errors are shown in red and the horizontal

dashed line corresponds to an error of 5% (reference). The results are averaged over 10 independent runs.

been introduced based on new biological insights (see e.g.,
Emmert-Streib, 2006).

Recently, there is great interest in interpretable or explainable
AI (XAI) (Biran and Cotton, 2017; Doshi-Velez and Kim, 2017).
Especially in the clinical and medical area, one would like to
have understandable decisions of statistical prediction models
because patients are affected (Holzinger et al., 2017). The field
is still in its infancy, but if meaningful interpretations of general
deep learning models could be found this would certainly
revolutionize the field.

As a note, we would like to add that the distinction between
an explainable AI model and a non-explainable model is not
well-defined. For instance, the sparse coding model by Olshausen
and Field (1997) was shown to be similar to the coding of
images in the human visual cortex (Tosic and Frossard, 2011)
and an application of this model can be found in Charles et al.
(2011), where an unsupervised learning approach was used to
learn an optimal sparse coding dictionary for the classification
of high spectral imagery (HIS) data. Some may consider this
model as an XAI model because of the similarity to the working
mechanism of the human cortex, whereas others may question
this explanation.

9.4. Big Data vs. Small Data
In statistics, the field of experimental design is concerned
with assessing if the available sample sizes are sufficient to
conduct a particular analysis (for a practical example see
Stupnikov et al., 2016). In contrast, for all methods discussed
in this paper, we assumed that we are in the big data domain
implying sufficient samples. This corresponds to the ideal
case. However, we would like to point out that for practical
applications, one needs to assess this situation case-by-case to
ensure the available data (respectively the sample sizes) are
sufficient to use deep learning models. Unfortunately, this issue
is not well-represented in the current literature. As a rule-
of-thumb, deep learning models usually perform well for tens

of thousands of samples but it is largely unclear how they
perform in a small data setting. This leaves it to the user to
estimate learning curves of the generalization error for a given
model to avoid spurious results (Emmert-Streib and Dehmer,
2019b).

As an example to demonstrate this problem, we conducted
an analysis to explore the influence of the sample size on
the accuracy of the classification of the EMNIST data.
EMNIST (Extended MNIST) (Cohen et al., 2017) consists
of 280, 000 handwritten characters (240, 000 training samples
and 40, 000 test samples) for 10 balanced classes (0–9). We
used a multilayered Long Short-Term Memory (LSTM)
model for the 10-class handwritten digit classification
task. The model we used is a four-layer network (three
hidden layers and one fully connected layer), and each
hidden layer contains 200 neurons. For this analysis, we
set the batch size to 100 and the training samples were
randomly drawn if the number of training samples was
< 240, 000 (subsampling).

From the results in Figure 17, one can see that thousands
of training samples are needed to achieve a classification error
below 5% (blue dashed line). Specifically, more than 25, 000
training samples are needed. Given the relative simplicity
of the problem—classification of ten digits, compared to
classification or diagnosis of cancer patients—the severity of
this issue should become clear. Also, these results show that
a deep learning model cannot do miracles. If the number
of samples is too small, the method breaks down. Hence,
the combination of a model and data is crucial for solving
a task.

9.5. Data Types
A related problem to the sample size issue discussed above is
the type of data. Examples for different data types are text data,
image data, audio data, network data or measurement/sensor
data (for instance from genomics) to name just a few. One
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can further subdivide these data according to the application
domain from which these originate, e.g., text data from medical
publications, text data from social media or text data from
novels. Considering such categorizations, it becomes clear that
the information content of ’one sample’ does not have the
same meaning for each data type and for each application
domain. Hence, the assessment of deep learning models
needs to be always conducted in a domain specific manner
because the transfer of knowledge between such models is not
straight forward.

9.6. Further Advanced Models
Finally, we would like to emphasize that there are additional
but more advanced models of deep learning networks, which
are outside the core architectures. For instance, deep learning
and reinforcement learning have been combined with each
other to form deep reinforcement learning (Mnih et al., 2015;
Arulkumaran et al., 2017; Henderson et al., 2018). Such models
have found application in problems from robotics, games
and healthcare.

Another example for an advanced model is a graph CNN,
which is particularly suitable when data have the form of graphs
(Henaff et al., 2015; Wu et al., 2019). Such models have been used
in natural language processing, recommender systems, genomics
and chemistry (Li et al., 2018; Yao et al., 2019).

Lastly, a further advanced model is a Variational Autoencoder
(VAE) (An and Cho, 2015; Doersch, 2016). Put simply, a VAR
is a regularized Autoencoder that uses a distribution over the
latent spaces as encoding for the input, instead of a single
point. The major application of VAE is as a generative model
for generating similar data in an unsupervised manner, e.g., for
image or text generation.

10. CONCLUSION

In this paper, we provided an introductory review for deep
learning models including Deep Feedforward Neural Networks,
(D-FFNN), Convolutional Neural Networks (CNNs), Deep Belief
Networks (DBNs), Autoencoders (AE) and Long Short-Term
Memory networks (LSTMs). These models can be considered
the core architectures that currently dominate deep learning. In
addition, we discussed related concepts needed for a technical
understanding of these models, e.g., Restricted Boltzmann
Machines and resilient backpropagation. Given the flexibility
of network architectures allowing a “Lego-like” construction
of new models, an unlimited number of neural network
models can be constructed by utilizing elements of the core
architectural building blocks discussed in this review. Hence, a
basic understanding of these elements is key to be equipped for
future developments in AI.
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