
FSquaDRA: Fast Detection

of Repackaged Applications

Yury Zhauniarovich1, Olga Gadyatskaya1,2, Bruno Crispo1,
Francesco La Spina1, and Ermanno Moser1

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

{zhauniarovich,gadyatskaya,crispo,laspina,moser}@disi.unitn.it
2 Interdisciplinary Center for Security, Reliability and Trust,
University of Luxembourg, Luxembourg City, Luxembourg

Abstract. The ease of Android applications repackaging and prolifer-
ation of application clones in Google Play and other markets call for
new effective techniques to detect repackaged code and combat distribu-
tion of cloned applications. Today all existing techniques for repackaging
detection are based on code similarity or feature (e.g., permission set)
similarity evaluation. We propose a new approach to detect repackag-
ing based on the resource files available in application packages. Our
tool called FSquaDRA performs a quick pairwise application compari-
son (full pairwise comparison for 55,000 applications in just 80 hours on
a laptop), as it measures how many identical resources are present inside
both packages under analysis. The intuition behind our approach is that
malicious repackaged applications still need to maintain the “look and
feel” of the originals by including the same images and other resource
files, even though they might have additional code included or some of
the original code removed.

To evaluate the reliability of our approach we perform a comparison
of the FSquaDRA similarity scores with the code-based similarity scores
of AndroGuard for a dataset of randomly selected application pairs, and
our results demonstrate strong positive correlation of the FSquaDRA
resource-based score with the code-based similarity score.

Keywords: Smartphones, Repackaging, Mobile applications.

1 Introduction

Mobile ecosystems today represent a huge and fast growing market. Success
stories of such companies as Rovio (with the Angry Birds game) attract to the
mobile business vast amounts of developers. Yet, the developers can suffer from
monetary and reputation losses when their applications are stolen and appear
on the markets repackaged.

The problem of application (app for short) stealing on Android stems from
the fact that at present it is not very difficult to repackage an Android app.

V. Atluri and G. Pernul (Eds.): DBSec 2014, LNCS 8566, pp. 130–145, 2014.
c© IFIP International Federation for Information Processing 2014

FSquaDRA: Fast Detection of Repackaged Applications 131

Applications are usually signed with a self-signed certificate. Thus, an adver-
sary can easily change the code and sign the app with his own certificate. At
present, neither the official Google Play market nor alternative markets do not
detect if an application has been repackaged. At the same time, there is a strong
aspiration from adversaries to steal applications. They can earn monetary prof-
its either by changing the revenue destination of advertisement libraries, or by
embedding malware, which can transform phones into controllable “zombies”.
Thus, to maintain the healthiness of the ecosystem there is a strong need to
detect the repackaged applications and prevent their distribution.

Currently the problem of Android app repackaging is widely explored and
several solutions to identify plagiarized applications were proposed, e.g.,
[9,7,6,10,16,12]. All these solutions are based on features extracted from the
app code. However, it is clear that the code itself is often impacted by the
repackaging process: the added malicious functionality (new advertisement li-
braries and/or malware code) modifies the code of the app. Additionally, the
usage of obfuscation libraries during repackaging can further modify the code
[11]. Moreover, adversaries can simply replicate some initial behaviour of an app
(so called app spoofing [14]). Obviously, the detection rates of repackaging for
a code similarity-based techniques decrease under the influence of these factors.
Notice that the availability of various tools like smali/backsmali [4] or apktool [3]
greatly alleviates the task of code changing and application repackaging.

Yet, it is not only the code that defines an app. Nowadays, smartphones have
powerful processors, advanced video and audio systems that are able to support
screens with very high resolutions and to produce sounds of high quality. These
factors lead to the constant demand of attractive apps. Therefore, to become
popular an app should not only include the code with interesting functionality,
but should also contain attractive layouts, images and other supplementary re-
sources, which become an integral part of the user experience. These resource
files (resources, for short) are delivered on the device packaged together with the
code, and are now an inseparable part of modern mobile apps.

This paper proposes an approach to detect repackaged apps based on com-
parison of the content of the resource files forming Android app packages. Our
approach relies on the observation that usually Android packages (apk files) in-
clude a significant number of resources, and that malicious repackagers aim to
change the applications in a way they resemble the originals as much as possi-
ble. Therefore, the code parts may change but the resource files (including icons,
images, music and video files, etc.) often remain the same.

To be practical, the approach of detecting repackaged applications based on
resource files comparison needs to be fast enough, considering the vast number
of Android apps (currently there are more then 700,000 apps only in the official
market). Thus, a simple pairwise comparison of all files inside two compared
apps is not quite scalable because the complexity is proportional to the product
of the number of files inside two packages multiplied by the average size of a file.
Luckily, during the process of app signing a hash of each file inside the apk is
computed and stored in the package. We leverage this information to compute

132 Y. Zhauniarovich et al.

the similarity of applications. Thus, our approach is fast enough to be used even
for comparing applications pairwise.

To our knowledge, we are the first who propose to detect Android repackaged
applications based on similarities in resource files, and not on the ones in the
code. This paper contains the following contributions:

– We propose a novel technique to detect repackaged Android applications
based on files included in the packages.

– Using the peculiarities of Android app signing process we develop a very
fast algorithm that can be used for pairwise comparison of apps. FSquaDRA
managed to compare on average 6700 app pairs per second on our dataset
using a commodity hardware. This number shows that our approach clearly
outperforms all available solutions based on pair-wise code comparison.

– Understanding the importance of Android app repackaging problem we re-
lease our tool as open-source1 to drive the research in this direction.

– We evaluate the practicality of our approach by comparing the resource-based
similarity score produced by FSquaDRA with the code-based similarity score
computed by the open-source AndroGuard tool [8,2]. Our experiments show
that the FSquaDRA similarity score is strongly correlated with the Andro-
Guard code similarity score.

– We evaluate the effectiveness of the FSquaDRA on a dataset with more than
55000 applications crawled on Google Play and 7 alternative markets, and
report repackaging rates for this dataset.

2 Our Approach

Android applications are spread across the devices in the form of Android pack-
ages (apk files) that contain code, manifest, libraries and resource files com-
pressed in a zip archive. Thus, each app includes not only the code, but also a
large set of supplementary files being an integral part of the Android package.
This is confirmed by our dataset that consists of 55000 apps. For this dataset on
average there are 315.56 files inside an Android package with maximum value of
11099 files and minimum of 4 (we present the details of our dataset later on).

Previously, to detect repackaged applications researchers considered predom-
inantly the code (classes.dex) and the manifest AndroidManifest.xml files.
We propose to use the full set of files inside apks to detect repackaging.

Our intuitions are as follows. An adversary, who clones an application, seeks
to resemble the original one as much as possible, thus, increasing the probability
of the clone installation. In Android apps code is loosely coupled with resources
giving the adversary a possibility to easily change the code. For example, the
legitimate Opera Mini application and its repackaged version containing mal-
ware [13] coincide in 230 out of 234 files inside those packages.

For the scope of this paper we consider two cases of repackaging: (malicious)
plagiarism, when two application packages include the same files but are signed

1 https://github.com/zyrikby/FSquaDRA

#
asus
Highlight

asus
Highlight

asus
Highlight

FSquaDRA: Fast Detection of Repackaged Applications 133

by different developers (with different certificates), and (benign) rebranding,
when two application packages include the same files and are signed by the
same certificate.

Using binary comparison of files, which constitute two Android applications,
it is possible to understand to what extent these two apps are similar. Unfortu-
nately, binary comparison is not a cheap operation. Moreover, a file in the first
app should be compared against each file in the second package. These overheads
may be considerably reduced using comparison of the file digests (hashes). Our
tool uses this technique to calculate the similarity between two applications. At
the same time, digest computation against the content of a file requires consid-
erable resources consumption and, thus, directly cannot be used in a tool that
has to process significant amount of apks. To overcome this limitation we use
the hashes calculated during the application signing process. Thus, the overhead
for hash computations does not affect our tool. To facilitate the understanding
of our algorithm we first describe the code signing process used in Android.

Android application signing background. An unsigned apk file contains a com-
piled code and a set of resources. In Android, all Java code is compiled into one
file called classes.dex. Moreover, some of the xml files can also be compiled
into a binary format. Besides compiled files, an Android package usually contains
non-compiled resource such as icons, drawables, text files, different binary files,
etc. This archive is then signed with the standard Java signing tool called jar-

signer. This tool creates a special directory inside the archive called META-INF,
where it stores the information related to the code signing process.

We are only interested in the first step of the signing process, which pro-
duces the main manifest file (MANIFEST.MF). During this step the jarsigner tool
calculates a digest of each file inside the unsigned apk and writes it into the
MANIFEST.MF file. On Android, the SHA1 algorithm is used to compute the
digest of file content.

The manifest file consists of the main attributes section and and a set of per-
entry attributes, one entry for each file contained in the unsigned apk file. These
per-entry attributes store information about the file name (relative path) and
the digest encoded using the base64 format. Therefore, after the first step of
application signing process a SHA1 digest of the content of each file is available
in the manifest file. These hash values are later used in our tool.

The algorithm and implementation details. Protocol 1 describes the algorithm
implemented in FSquaDRA for pairwise comparison of apps. In Line 2 of Pro-
tocol 1 we select all apk files located under the directory, the path to which is
specified by the variable path provided as an argument. After that, in Lines 6-10
FSquaDRA extracts the required information from the apk files. At first, our
tool gets the name of the file. Then it extracts the attributes of the apk us-
ing the getApkAttributesToMemory method. In particular, it iterates over the
entries in the MANIFEST.MF file and writes the results into a map, which key
corresponds to the relative path of a file inside the package and value is equal
to the SHA1 hash of the file. Additionally, during this step FSquaDRA extracts

asus
Highlight

asus
Highlight

134 Y. Zhauniarovich et al.

Protocol 1. The algorithm of application comparison
1: ApkAttrlist ← []
2: Apklist ← getApkFileList(path)
3: \\ Get application attributes
4: for all Ai ∈ Apklist do

5: ApkNamei ← getApkName(Ai)
6: Attri ← getApkAttributesToMemory(Ai)
7: Add (fileNamei, Attri) to ApkAttrlist
8: end forall

9: size ← length(ApkAttrlist)
10: \\ Pairwise comparison of applications
11: for (k = 0; k < size; k + +) do

12: hashesk ← getF ileHashesSet(Attrk)
13: certsk ← getCertHashes(Attrk)
14: for (l = k + 1; l < size; l + +) do

15: hashesl ← getF ileHashesSet(Attrl)
16: certsl ← getCertHashes(Attrl)
17: jSim ← getJaccardIndex(hashesk, hashesl)
18: sameCert ← certsTheSame(certsk , certsl)
19: OUT: ApkNamek, ApkNamel, sameCert, jSim
20: end for

21: end for

the developer certificates, which have been used for the application signing, and
stores into Attr object the digests computed over these certificates. This allows
us to reduce the memory consumption of FSquaDRA and speed up the certifi-
cate comparison process. The name of the app file along with the object Attri
containing all required application attributes are stored into the ApkAttrlist list.

Lines 15-25 show how the comparison of applications is performed. The sim-
ilarity score (the FSquaDRA similarity, or the fss score for short) corresponds
to the Jaccard similarity coefficient (expressed by Formula 1) computed over the
sets of file hashes extracted in Line 8.

jSim(Hk, Hl) =
|Hk ∩Hl|

|Hk ∪Hl|
(1)

We implemented our algorithm in Java. We did not parallelize it intentionally
(i.e., our tool runs in a single-thread program). This allows us to calculate the
net time required to run our comparisons and predict the execution time and
memory consumption. An increase of a dataset results in the linear growth of the
execution time for attributes extraction, while the pairwise comparison operation
cumulative time rises quadratically (in the number of apks under consideration).
In the current implementation the memory consumption grows linearly with the
number of applications. The code is availabe under the Apache-2.0 license2.

3 Evaluation

Our dataset consists of 55,779 Android applications. The dataset collection was
performed during June-July of 2013. During this period we explored 8 differ-
ent markets: the official Google Play3 market (13,223 apps; including 500 top

2 https://github.com/zyrikby/FSquaDRA
3 https://play.google.com/store/apps

#
#
asus
Highlight

asus
Highlight

asus
Highlight

FSquaDRA: Fast Detection of Repackaged Applications 135

Fig. 1. Histogram of app repackaging rates detected with FSquaDRA (logarithmic
scale)

free apps for each category) and 7 third-party stores: androidbest4 (1662 apps),
androiddrawer5 (2857 apps), androidlife6 (1678 apps), anruan7 (4232 apps),
appsapk8 (2679 apps), pandaapp9 (14,143 apps), and SlideME10 (15,305). Our
dataset occupies 317.4 GB of disk space.

We have run FSquaDRA on the collected app dataset on a Mac Book Pro
laptop with 2.9 GHz Intel Core i7 Processor with 2 cores, and 8GB 1600 Mhz
DDR3 memory. FSquaDRA required 15.10 hours to load all apk attributes in
memory for our complete dataset, and 64.41 hours to compute the similarity
scores for all apk pairs (>109) in our dataset consuming less than 6GB of RAM.
On the dataset FSquaDRA performs on average 6700 app pair comparisons per
second. We consider these results quite encouraging, as pairwise app comparison
for code-based similarity metrics cannot be executed in comparable time.

Figure 1 presents a histogram of positive fss scores distribution for our
dataset of 55779 applications (in logarithmic scale). Notice that the app pairs
with fss>0 constitute approximately 5.41% of the total app pairs number for
our dataset. To simplify presentation we break down the fss values into 10 bins
in the range (0, 1]. In Fig. 1 we can see that the vast majority of the applica-
tion pairs with detected resource similarity have the fss score in the range (0,
0.1], and that for the fss score in the range (0.7, 1] there are more app pairs

4 http://androidbest.ru/
5 http://www.androiddrawer.com/
6 http://androidlife.ru/
7 http://www.anruan.com/
8 http://www.appsapk.com/
9 http://android.pandaapp.com/

10 http://slideme.org/

#
#
#
#
#
#
#
asus
Highlight

136 Y. Zhauniarovich et al.

with the same certificate detected by FSquaDRA than app pairs with different
certificates. We provide more insight why this is the case in the sequel.

To evaluate the quality of our approach we would like to compare our results
with some state-of-art code similarity-based repackaging detection technique,
e.g., [16,15,7,10]. Unfortunately, these tools were not released publicly, and we
were not able to obtain them. Similar problem was also reported in [11], where
the authors used AndroGuard as a freely available tool for comparison of code
similarity in apks. Following this approach, we use AndroGuard to provide us a
metrics of code similarity for app pairs.

The main question we would like to investigate is whether the FSquaDRA
similarity metrics is correlated with the AndroGuard code similarity metrics.
This can be interpreted twofold:

– Problem of false positives. For apps that FSquaDRA classifies as similar,
are they similar also according to the AndroGuard classification (and vice-
versa)? If our tool classifies an app pair as similar, but there is no actual
code similarity, this pair can be interpreted as false positive. It is obvious that
it is impossible to completely avoid false positives for FSquaDRA because
common resources, such as, e.g., open source sound and image files, can
increase the FSquaDRA metrics, while the code would be different. So here
we are interested in strong correlation of the similarity metrics values.

– Problem of false negatives. For apps that FSquaDRA classifies as completely
different, are there many app pairs sharing code similarities according to
AndroGuard? Again, it is not possible to completely avoid false negatives
due to the different nature of code similarity and resource similarity, but we
would like to assert that the false negatives rate is not too high.

Notice that in this section we interpret the AndroGuard code similarity score
as the ground truth. We have performed manual inspection of some application
pairs to confirm the findings of FSquaDRA (reported further), but it is impos-
sible to inspect manually a substantial subset of our dataset. Therefore we have
to rely on the code similarity metrics as the ground for evaluating FSquaDRA
reliability.

The AndroGuard algorithm which computes the similarity score (ags for
short) of two apps is presented in [8]. The similarity score is based on the analy-
sis of Dalvik code of an app pair and detection of identical, similar and different
(new or deleted) methods in the apps. To perform this, the algorithm a) gener-
ates a signature for each method of each application, b) identifies all methods
that are identical in both apps, c) discovers all methods that are similar. A signa-
ture is generated based on the method control flow information, used API calls
and exceptions inside the method. If two signature hashes are identical then the
methods are considered identical. To compute the similarity between methods
Normalized Compression Distance (NCD) [5] is used.

AndroGuard however was found to be not very reliable, as its similarity met-
rics was discovered to be not commutative. That is, for two apks A and B, it
could be that ags*(A,B) �= ags*(B,A), where ags* is the value computed by
the AndroGuard tool directly. We have decided to still use the existing Andro-

FSquaDRA: Fast Detection of Repackaged Applications 137

Guard implementation, but to adjust the AndroGuard score. We have experi-
mented with a series of app pairs, and have established that the metrics ags=
(ags*(A,B) + ags*(B,A))/2 is more faithful than the original ags* similarity
score, and we have used this metrics for comparison with FSquaDRA results.

To compute a similarity value for two applications AndroGuard takes sig-
nificantly more time than FSquaDRA, and it was not possible to compute the
similarity metrics for the whole app corpus we have crawled. E.g., it takes approx-
imately 65 seconds on average to compare one pair of apps using AndroGuard
(the actual time of comparison depends a lot on the similarity of apps in the
pair; it takes significantly less time to compare very similar apps than completely
different ones). We cannot also rely on a straightforward random selection of app
pairs, because it is clear from Fig. 1 that, e.g., the share of app pairs with fss

similarity in the range (0, 0.2] is a lot larger than the share of app pairs in (0.8,
1.0], which is as interesting. Therefore, we have performed a random selection of
100 app pairs with same certificate and 100 app pairs with different certificates
from each bin with non-null fssmetrics, and we have computed the AndroGuard
similarity metrics for these pairs (2000 pairs total). This selection enables the
best selection of an app pairs corpus with different fss metrics, and without
strong predominance of some fss value range. To evaluate the false negative
rates we have randomly selected 100 apk pairs with same certificate and 100 apk
pairs with different certificates from the dataset with fss=0.

Table 1 presents summary statistics computed for the randomly selected app
pairs. Notice that for non-null fss values we compare separately app pairs with
same certificate and with the different ones, as these two groups are different
by nature. This observation is indeed reinforced by the data we have. Fig. 2(a)
presents a scatterplot of the fss and ags similarity metrics values for the selected
app pairs with different certificates (potentially plagiarised). We can see the
strong correlation of the values from the figure. This is confirmed by the data:
the standard Pearson’s product-moment correlation computed for data in this
figure is 0.791. Notice that any value ≥0.5 is commonly considered as strong
correlation. Testing for the null-hypothesis (that true correlation is non existent)
for this dataset gives that the 95% confidence interval is [0.767, 0.813]; and the
p-value≈10−16, so we can safely reject the null-hypothesis. The sample mean of
the difference (fss-ags) for each selected app pair with different certificates is
approximately equal to -0.047, with standard t-test rejecting the null-hypothesis
(the p-value≈10−12), and the 95% confidence interval for true mean [-0.052, -
0.029]. The standard deviation for the difference (fss-ags) is 0.186. We also
present a boxplot for this difference in Fig. 3(a).

These data confirm that FSquaDRA can be an effective tool to detect repack-
aged applications, as the fss similarity values for app pairs with different certifi-
cates are highly correlated with code-based similarity metrics of AndroGuard;
and the average difference in the similarity metrics produced by FSquaDRA and
by AndroGuard is not significant.

Fig. 2(b) presents a scatterplot of the fss and ags similarity metrics for
the randomly selected apk pairs signed with the same certificate (potentially

138 Y. Zhauniarovich et al.

rebranded). The standard Pearson’s product-moment correlation for this dataset
is approximately 0.58 (the null-hypothesis on correlation is rejected, with 95%
confidence interval for correlation [0.538, 0.62] , and p-value ≈10−16). This can
be still interpreted as a strong correlation, but it is less strong than for the
apk pairs with different certificate. The sample mean for the difference (fss-
ags) in this dataset is approximately equal to -0.27 (standard t-test reports 95%
confidence interval for true mean [-0.292, -0.259], and the null-hypothesis for
sample difference mean being zero is rejected with p-value≈10−16). This means
that on average for apks signed with the same certificate FSquaDRA tends to
estimate their similarity score noticeably lower than the code-based similarity
score computed by AndroGuard. These findings can be intuitively explained by
the fact that developers tend to reuse the code patterns across their products.
For app pairs signed with the same certificate it is clear that they can contain
similar code snippets with high probability. Therefore higher code similarity
score is expectable.

We can also see from Fig. 2(b) that there is a lot of app pairs with very high
AndroGuard similarity score, but varying FSquaDRA similarity score, which are
most probably the pairs impacting the correlation coefficient for this dataset. We
have manually inspected some of these pairs and have managed to find several
patterns, when such situations occur. One of the most common observed case is
when the same code is used for displaying different content. For instance, in our
dataset we found several applications, which were developed to display books.
For every book a single application has been developed. All these applications
use the same code but the resources (the book chapters) are different. Thus, our
tool shows low similarity score (because still some files, e.g., classes.dex, are
the same), while according to the code similarity score the applications in the
pair are the same. Similar behaviour we also witnessed with other categories of
applications, which display the same type of content, e.g., for wallpaper apps
and widgets. Another interesting example, which falls into this category, is when
the apps in the pair provide a UI customization functionality for the third appli-
cation. In this case, AndroGuard produces high similarity score for such pairs of
apps, while because of the difference of the UI components FSquaDRA reports
low similarity.

The lower correlation of the metrics can be also attributed to the usage of
the same ad libraries. This happens when the fraction of the code produced by
a developer significantly smaller than the ones brought by ad libraries. In this
case AndroGuard falsely detects applications as repackaged, while FSquaDRA
produces more credible results (because the applications are different).

Fig. 3(b) presents a boxplot for the sample difference (fss-ags). In comparison
with Fig. 3(a), we can notice that for apk pairs with the same signature the range
of the similarity scores difference is larger. Our data suggests that FSquaDRA
may not be as efficient for detecting repackaging in apps signed with the same
certificate (rebranded), as it is for the apps signed with different certificates
(plagiarized). Nevertheless, correlation of the FSquaDRA score with the code-
based similarity score of AndroGuard is still strong (>0.5).

FSquaDRA: Fast Detection of Repackaged Applications 139

(a) (b)

Fig. 2. Scatterplots of FSquaDRA similarity vs. AndroGuard similarity for the pairs:
a) signed with different certificates; b) signed with the same certificate. The red line
is the line of best fit, the blue curve is the LOWESS (locally weighted scatterplot
smoothing line).

Finally, let us consider the difference (fss-ags) for the randomly selected
app pairs with fss=0. The sample mean of (fss-ags), or, simply, of the ags

similarity score taken with the negative sign, for these app pairs is approximately
-0.041, with the 95% confidence interval for the true mean [-0.051, -0.0309], and
the standard deviation for this dataset is approximately equal to 0.0737. Thus,
FSquaDRA does not error a lot on average. From these statistics we can see
that for apk pairs not marked as similar by FSquaDRA AndroGuard does not
see significant code similarity either, even for applications signed with the same
certificate. Therefore we can conclude that if developers do not include any
similar resouces in apps, they also mostly do not reuse code (this is often the
case of apps produced by companies). We do not report the correlation coefficient
for this type of dataset, as the fss score equals to 0.

4 Cross-Market Repackaging

After asserting that FSquaDRA produces similarity metrics that is valuable
for detecting repackaged applications, being strongly correlated with the code
similarity metrics, we look into repackaging rates corresponding to the markets
under consideration, and investigate clusters of repackaged applications. Notice
that clearly any FSquaDRA score greater than 0 for a pair of apks can be
an indication that these apks are clones. However, to increase the certainty of
detecting clones we have chosen the fss value of 0.7 to be a reliable threshold
for repackaging. Based on our observations, we consider it a good starting point
for resource similarity score sufficient to reliably detect clones, and we leave the
task of identifying the threshold precisely for future work.

140 Y. Zhauniarovich et al.

Table 1. Summary statistics for comparison of the fss and ags metrics

Sample Statistics Value Details

App pairs with non-null fss Mean of difference fss - ags -0.04122781 Standard one sample t-test
with different certificates 95% confidence interval: [-0.05278174, -0.02967388]
in comparison with ags; p-value = 4.62e-12
1000 app pairs Standard deviation 0.1861895

for difference fss - ags

Median -0.04799
Correlation coefficient 0.7919082 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.7675988, 0.8139426]

p-value ≤ 2.2e-16
App pairs with non-null fss Mean of difference fss - ags -0.276119 Standard one sample t-test
with same certificates 95% confidence interval: [-0.2928976, -0.2593405]
in comparison with ags; p-value = 2.2e-16
1000 app pairs Standard deviation 0.2703832

for difference fss - ags
Median -0.25180

Correlation coefficient 0.580733 Pearson’s product-moment correlation
of fss and ags values 95% confidence interval [0.5381128, 0.6203911]

p-value ≤ 2.2e-16
App pairs with null fss Mean of difference fss - ags -0.04124 Standard one sample t-test
with mixed certificates 95% confidence interval: [-0.05152188, -0.03095351]
in comparison with ags; p-value = 1.777e-13
200 app pairs Standard deviation 0.07375432

for difference fss - ags
Median -0.01304

2200 app pairs, fss Mean of difference fss - ags -0.14800 Standard one sample t-test
including app pairs 95% confidence interval: [-0.1585031, -0.1374917]
with the same ags; p-value = 2.2e-16
and different Standard deviation 0.2512748
certificates, and with for difference fss - ags

fss=0 and Median -0.09894
fss>0 1st quartile -0.27380

3rd quartile 0.00000
Correlation coefficient 0.7149053 Pearson’s product-moment correlation
of fss and ags values 99% confidence interval [0.6869681, 0.7407324]

p-value ¡ 2.2e-16

(a) (b)

Fig. 3. Boxplot of the difference of FSquaDRA similarity with AndroGuard similarity
for app pairs with fss>0: a) signed with different certificates; b) sighed with the same
certificate

Cross-market comparison. Table 2 presents the repackaging rates of Google Play
applications cloned in other markets. Under the assumption that the Google Play
market is the source of original applications, this table reports how many cloned
pairs were detected with the fss score greater than 0.7, and the total number of
apk pairs with fss>0 for all markets of our study compared with Google Play
(the corresponding subset of our dataset). In this experiment we have compared
each crawled apk in Google Play with each apk crawled in the considered third

FSquaDRA: Fast Detection of Repackaged Applications 141

party markets. We also provide the processing time required for each market
comparison with Google Play. Notice that for all markets the number of app
pairs with the fss score greater than 0.7 is not very significant. To understand
better how the big is the subset of potentially repackaged applications we also
provide the total number of app pairs with fss>0 detected, and the number of
pairs with fss>0 and signed with different certificates.

From Table 2 we can observe that the markets with the highest repackaging
rates are androiddrawer (16.16% of app pairs have similarity of resources fss>0)
and Google Play (10.31% of app pairs have fss>0). We suspect that this is the
case because these markets are more popular sources of apps, in comparison with
others; and malicious repackagers that seek acquiring significant ad revenues
or big user base for their botnets may target more popular markets. Yet, this
intuition needs to be confirmed with more data, and there can be other plausible
explanations.

Table 2. Results of experiments, each market in comparison with Google Play

Market

Repackaging Rates Time

Same Different Total fss>0 Total fss>0 with Loading apk Processing
signature signature (% of total diff. cert. attributes
pairs # pairs pair #) (% of total in memory

(fss>0.7) (fss>0.7) pair #)

androidbest 27 10 714258 (3.25%) 713194 (3.24%) 14.16 min 12.274 min
androiddrawer 528 14 6108547 (16.16%) 6097437 (16.14%) 15.46 min 56.02 min
androidlife 41 44 1145396 (5.16%) 1143400 (5.15%) 14.24 min 15.67 min
anruan 106 97 3349271(5.985%) 3347895 (5.982%) 15.26 min 36.11 min
appsapk 422 86 2105334 (5.94%) 2094716 (5.91%) 15.66 min 22.52 min

Google Play 1897 1301 9019858 (10.31%) 8985401 (10.27%) 13.28 min 59.97 min
pandaapp 755 381 10741872 (5.74%) 10726743 (5.73%) 28.52 min 136.65 min
SlideME 475 579 9496874 (4.69%) 9481029 (4.68%) 25.96 min 97.07 min

Application clusters. Repackaged applications can form clusters (a set of repack-
aged apps stemming from some original application). We tried to elicit and
analyze strongly connected clusters containing applications with very similar
resources. The results produced by FSquaDRA can be interpreted as an undi-
rected labelled graph, where nodes correspond to the applications in our dataset
and edges represent similarity relationship between two applications, labelled
with the fss similarity score. Thus, to find the clusters of applications we used
the following algorithm. At first, we selected all pairs, which had shown the
FSquaDRAsimilarity value more than 0.7. After that in the resulting graph we
searched for connected components (i.e., set of connected nodes), which corre-
sponded to application clusters. We looked for clusters that have 3 and more
nodes. Using this approach we discovered 71 cluster, the largest of which in-
cluded 9 applications.

We have investigated manually some of the clusters, and we report on the
largest two of them (smaller clusters are not reported for the lack of space).
The largest cluster with 9 nodes contains applications from 3 different markets
(4 from Google Play, 4 from SlideME and 1 from appsapk), all signed with

142 Y. Zhauniarovich et al.

different certificates. The nodes are connected with 8 edges; similarity scores for
app pairs not connected by an edge vary in the range [0.61, 0.7). The cluster
with 8 applications contains packages distributed on 5 different markets (2 come
from Google Play, 3 from SlideME, 1 from anruan, and 2 from pandapp). These
8 applications are connected by 7 nodes, and the fss scores for the app pairs
not connected by an edge vary in [0.4, 0.6). In this cluster 3 applications (from
anruan and pandapp) were signed by the same certificate, and others were signed
with different certificates.

After we manually inspected all applications in these clusters, we discovered
that these apps were legitimate applications and not maliciously repackaged.
These “false positives” appeared because all apps in the cluster used the same
popular library ActionBarSherlock [1], which is supplied with lots of files. Addi-
tionally, the applications contained a very limited number of their own unique
files, and thus FSquaDRA falsely detected them as repackaged applications. We
performed also an analysis using AndroGuard and found out that the code files
were also very poisoned with this library. AndroGuard similarity scores for these
clusters were in the range [0.46, 0.96]. Therefore, in the shadow of the method-
ology selected for our analysis this is still a good result for our tool. However,
this example clearly shows that it is desirable to implement techniques for auto-
matic library resources detection and exclusion, similarly as it is done for code
in [7,15]. We leave this problem for the future work.

5 Related Work

Existing works in repackaging detection on Android mostly focus on code sim-
ilarity and do not consider the resource similarity, in contrast to FSquaDRA.
Unfortunately, it is impossible to compare our tool with others because existing
research tools, excluding AndroGuard, are not publicly available.

In [16] the authors search repackaged applications in third-party markets using
Google Play as a baseline. A tool called DroidMOSS uses fuzzy hashing of code
to calculate a fingerprint of the app and then computes the edit distance between
two fingerprints to compute the similarity score. The analysis performed in [16]
shows that 5-13% applications hosted in alternative markets are repackeged.
These conclusions agree with our findindings reported in Sec. 4.

In the paper [15] the authors further investigate the problem of repackaged
apps and concentrate on detection of piggybacked applications (repackaged apps
that carry a malicious payload). To find these apps the authors perform code de-
coupling into primary and non-primary modules, and compute a fingerprint for
each primary module, which contains the main functionality. After that while it-
erating over the fingerprints the linearithmic algorithm detects apps with similar
primary modules, which are considered as piggybacked candidates. Finally, pig-
gybacked apps are detected comparing the sets of non-primary modules of these
similar apps. The experiments show the presence of 1.3% piggybacked apps in
the dataset.

Paper [6] presents the DNADroid tool detecting cloned (plagiarized) appli-
cations. Using the semantic similarity of apps the tool detects potential clone

FSquaDRA: Fast Detection of Repackaged Applications 143

candidates. At the second step, the tool extracts Program Flow Graph of each
method in compared applications, and, based on the subgraph isomorphism
problem as a final criteria of method similarity, computes similarity score of
the apps. DNADroid managed to detect 191 cloned pairs (0% false positives was
reported). The authors also compared their tool with AndroGuard [2]. On 191
pairs AndroGuard failed for 24 pairs and produced very low similarity score for
10 pairs meaning that it missed 18% of the pairs found by DNADroid. Contin-
uing the work on DNADroid [6] Crussell et al. developed a new tool AnDarwin
[7], which extracts features from app code and compares them, instead of pair-
wise comparisons of code, allowing to perform large-scale analysis of Android
applications. On a dataset of 265,359 third-party apps collected from 17 mar-
kets DNADroid detected 4,295 cloned and 36,106 rebranded applications (cloned
apps with the same signature).

The authors in the work [12] concentrate on investigation which applications
are likely to suffer from being plagiarised, and how to detect plagiarised ap-
plications uploaded to a market. The authors analysed the meta-information of
158,000 applications. They detected that 29.4% of applciations are more likely to
be plagiarised, based on the assumption that it was more likely that a malicious
developer would use for plagiarising the applications, which alredy contained the
permissions needed to perform malicios actions.

The paper [10] presents another approach to detect code reuse among Android
apps. To discover the similarities between the code they use k -grams of Dalvik
opcode sequences as features. To obtain app representation they apply hashing
to the extracted features. The Juxtapp tool can detect (a) buggy and vulnerable
code reuse (b) known malware instances and (c) pirated applications. To assess
the Juxtapp efficiency the authors ran the experiment of pairwise comparison
on a set of 95.000 Android apps (an Amazon EC2 cluster with 25 slave nodes
was used) that lasted about 200 minutes. As for effectiveness, among the apps
from Android Market the authors identified 174 samples containing vulnerable
patterns in the in-app billing code and 239 apps containing those in the code
using Licence Verification Library. Moreover, they identified 34 new instances of
known malware in the alternative Anzhi market.

Recently, a framework for evaluating Android application repackaging detec-
tion algorithms has been proposed [11]. In the paper the authors classify cur-
rently available approaches for detection of repackaged applications and present a
framework that can be used to assess the effectiveness of this kind of algorithms.
The framework translates Dalvik bytecode into Java code, applies obfuscation
techniques and packs back the code into the Dalvik representation. To assess the
effectiveness of a tool is run over real and modified by the framework app. The
authors proposed to assess repackaging detection algorithms by broadness (i.e.,
how an algorithm can stand to obfuscation techniques applied separately) and
by depth (i.e., if an algorithm is resilient to techniques applied sequentially). As
the case study, the authors applied the framework to AndroGuard [2] – the only
publicly available tool for repackaging detection. The results show that Andro-
Guard can successfully combat with different obfuscation techniques and, thus,

144 Y. Zhauniarovich et al.

can be widely used to detect repackaged applications. Notice that FSquaDRA
will successfully pass the tests of [11], because it does not rely on code similarity.

6 Conclusions

In this paper we present an approach to detect Android application repackag-
ing based on the apk resource files, and an implementation of this approach in
the FSquaDRA tool. Leveraging hash files of resources already present in apks,
FSquaDRA is capable of fast pairwise apk comparison. It computes the Jaccard
similarity score for compared apks and classifies them as similar if substantial
number of resource files are the same in both packages.

We have evaluated practicality of FSquaDRA in two aspects: whether it
gives results similar to the code-based app repackaging detection techniques,
and whether it is fast enough to handle significant number of apks. Our results
are encouraging. The FSquaDRA resource similarity score is strongly correlated
with the AndroGuard code similarity score, especially for the apks signed with
different certificates, and thus, potentially, plagiarized. FSquaDRA is also has
good performance, as it was able to process a dataset of more than 55000 apks on
a laptop in less than 80 hours. Notice that our implementation was not optimized
for better performance, as it is single-threaded. Yet, the approach can be easily
parallelized using different parallelization algorithms for pairwise comparison.

The obvious limitation of the current tool is that an adversary who is familiar
with the approach can easily change all resource files in the package to make his
plagiarized application virtually undetectable by FSquaDRA. Resource similar-
ity metrics can be hardened against this by looking into files themselves rather
than just comparing the digests, but it will lead to performance losses (which
can become comparable with those of the code-based repackaging detection tech-
niques if implemented reasonably). The most promising, to our point of view,
is a hybrid approach, when repackaged applications are detected using both ap-
proaches, code and resource comparison. We believe this is a very interesting
research direction.

Another interesting future work direction is to look into the data produced by
FSquaDRA looking for patterns and interesting findings, such as the fact that on
average applications signed with the same certificate have higher code similarity
score than resource similarity score, while this difference is not so evident in the
apps signed with different certificates.

FSquaDRA opens an avenue of enhancement for app plagiarism detection
algorithms, and not only for Android. For other ecosystems, such as iOS or
Windows Phone, that request the developers to submit the full source code and
resources before publishing apps on the market our technique can be used to
improve the on-market plagiarism detection algorithms by complementing the
code similarity-based approaches.

Acknowledgements. This work has been partially supported by the FP7-ICT
SecCord Project 316622 funded by the EU, and the TENACE PRIN Project
(grant no. 20103P34XC) funded by the Italian MIUR.

FSquaDRA: Fast Detection of Repackaged Applications 145

References

1. ActionBarSherlock, http://actionbarsherlock.com/
2. AndroGuard: Reverse engineering, Malware and goodware analysis of Android ap-

plications, https://code.google.com/p/androguard/
3. Android-apktool: A tool for reverse engineering Android apk files, https://code.

google.com/p/android-apktool/

4. Smali: An assembler/disassembler for Android’s dex format,
https://code.google.com/p/smali/

5. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Transactions on
Information Theory 51, 1523–1545 (2005)

6. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applica-
tions on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

7. Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
android applications. In: Proc. of Esorics 2013 (2013)

8. Desnos, A.: Android: Static analysis using similarity distance. In: Proc. of HICSS
2012, pp. 5394–5403 (2012)

9. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Adrob: examining
the landscape and impact of android application plagiarism. In: Proc. of MobiSys
2013, pp. 431–444 (2013)

10. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A scalable sys-
tem for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81. Springer, Hei-
delberg (2013)

11. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app repack-
aging detection algorithms. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I.,
Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 169–186. Springer, Hei-
delberg (2013)

12. Potharaju, R., Newell, A., Nita-Rotaru, C., Zhang, X.: Plagiarizing smartphone
applications: attack strategies and defense techniques. In: Barthe, G., Livshits,
B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 106–120. Springer,
Heidelberg (2012)

13. Protalinski, E.: Warning: New Android malware tricks users with real Opera Mini
(July 2012), http://www.zdnet.com/warning-new-android-malware-
tricks-users-with-real-opera-mini-7000001586/

14. Vidas, T., Christin, N.: Sweetening android lemon markets: measuring and com-
bating malware in application marketplaces. In: Proc. of CODASPY 2013, pp.
197–208 (2013)

15. Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of ”pig-
gybacked” mobile applications. In: Proc. of CODASPY 2013, pp. 185–196 (2013)

16. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone ap-
plications in third-party android marketplaces. In: Proc. of CODASPY 2012, pp.
317–326 (2012)

#
#
#
#
#
#
#

