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A B S T R A C T   

Today, due to the increasing environmental hazards and governmental regulations, as well as the limitation of 
sources of production, researchers have paid special attention to the design of closed-loop green supply chain 
networks. The closed-loop supply chain networks (CLSCN) include the returns processes and the producers aim 
to capturing additional value considering further integration of all supply chain activities. Therefore, all return 
processes need to be optimized as well as considering environmental impacts leading to form a closed-loop green 
supply chain network (CLGSCN). For decision making purposes, operational and tactical decision making levels 
are integrated to configure a coordinated supply chain network aiming to maximize profit while keeping en-
vironmental-friendly policies. The case is more sophisticated in melting industries where the collection and 
categorization in return process and different environmental challenges should be considered at the same time. 
Thus, in this paper, a CLGSCN of a melting industry is modeled with respect to environmental hazards to op-
timiza overall profits. Since real-world demand in melting industry under study is uncertain, the robust opti-
mization has been employed, and while the optimization of the proposed mathematical model is time con-
suming, an improved version of the genetic algorithm has been implemented as a solution method. This study 
has been carried out at Melting Imen Tabarestan (MIT) company in Iran. The proposed model along with the 
solution method are investigated in the case study. The results imply the effectiveness and applicability of the 
model and provide tactical considerations for the managers and practitioners.   

1. Introduction 

The closed loop supply chain involves designing, controlling and 
implementing a system to maximize the value created over the lifetime 
of the product, by generating a dynamic value of the various returning 
products over time (Govindan, Soleimani, & Kannan, 2015). 

Reducing harmful environmental impacts was considered as a major 
goal in the supply chain. The carbon dioxide emission index is ex-
tensively considered to determine environmental impacts which can be 
used during the supply chain environmental modeling. Many indicators 
have also been investigated in the study of environmental impacts in-
cluding energy consumption, solid waste, water consumption, and 
waste water. These indicators are analyzed in an article by Ahi and 
Searcy (2015). Borumand and Rasti-Barzoki (2019) studied greening, 
pricing, and advertising policies in a supply chain with government 
intervention. The supply chain had two elements of a manufacturer 
seeking to determine the wholesale price and the greening level and a 
retailer that has to determine the advertising cost and the retail price. 

Green supply chain is closely influenced by the type of production 
system being very significant to try to reduce the carbon impact in 
melting related industries. 

The design of a closed loop supply chain is a problem that has at-
tracted much attention in recent years. In general, most of the inter-
esting researches considered single goal, which mainly involves mini-
mizing fixed costs of launch, operation, and transportation. Also, 
optimization approaches employed in the literature for closed loop or 
green supply chains included both certain and uncertain namely, sto-
chastic programming, robust optimization, genetic algorithm, hybrid 
particle swarm-genetic algorithm and other metaheuristics. A summary 
of the literature review is given in Table 1. In closed loop supply chain it 
is important to provide profit for the system while controlling costs. In 
the literature mostly cost managemet was targeted since in nowadays 
comptetive mark profit is more attractive. 

Software packages like Lingo and GAMS and programming en-
vironments such as CPLEX and MATLAB were mostly used for im-
plementing optimization approaches to obtain solutions. But, 

https://doi.org/10.1016/j.cie.2020.106653 
Received 16 January 2019; Received in revised form 30 June 2020; Accepted 6 July 2020    

⁎ Corresponding author. 
E-mail addresses: Hadi.gh1988@gmail.com (H. Gholizadeh), hfazl@du.ac.ir (H. Fazlollahtabar). 

Computers & Industrial Engineering 147 (2020) 106653

Available online 13 July 20200360-8352/ © 2020 Elsevier Ltd. All rights reserved.

T

#
#
#
#
#
#
#
#


optimization software was mostly used for small echelon or scale pro-
blems (El-Sayed, Afia, & El-Kharbotly, 2010; Wang, Lu, & Zhang, 2013; 
Özkir & Basligil, 2013; Soleimani, Seyyed-Esfahani, & Shirazi, 2013). 
Scenario-based planning under uncertainty was handled using decom-
position techniques or exploratory algorithms. This robust modeling 
technique is aimed at producing feasible and optimal solutions for the 
worst control parameters to achieve the goals (Ramezani, Bashiri, & 
Tavakkoli-Moghaddam, 2013). Uncertainty is inevitable in real in-
dustrial systems specifically in the current comptetive market where 
systems face with various circumstances that should interact and decide 
so that to keep the system active and obtain economic advantages. 

In summary the main focus of the reviewed past researches are 
listed below:  

• Most of the researches considered single product closed loop supply 
chain but many multi-product manufacturing systems fail in con-
figuring a comprehensive green closed loop supply chain;  

• Cost optimization was a main objective function considered in past 
works, while in the tactical level decision making the profit is sig-
nificant;  

• The quality of the products was considered almost the same while in 
the reality the quality of products can not be same; 

• Uncertainty was considered on specific parameters and not a com-
prehensive model based on scenarios;  

• Using genetic optimization algorithm was very common in the 
published papers but all of them used the standard form despite 
different problems have various setting of parameters. 

The contributions of this paper can be roughly summarized as fol-
lows:  

• The concept of grading for multi-product closed loop supply chain is 
firstly considered.  

• The model is solved by using the modified genetic algorithm. It is 
then updated with a robust optimization approach to obtain a faster 
and more reliable solution. Seriously, at the beginning of the ori-
ginal algorithm, a local search has been developed that can produce 
optimal solutions faster. In fact, the comparison between the results 
is expressed.  

• The proposed genetic algorithm in this work is slightly different 
from other studies in the literature. The initial population is pro-
duced in a way that many of the constraints are met based on a 
heuristic generation of feasible solutions. Therefore, this can help 
the genetic algorithm to be more agile in iterations and generating 
populations.  

• The goal is to maximize profits in the network having a melting 
process in a reverse flow. The proposed model is for a multi-level 
closed loop green supply chain, on the other hand, the new multi- 
product approach makee this study more practical. 

In the next section, the problem is formulated. Section 3 explains 
solution approach. Section 4 presents a numerical implementation to 
illustrate the effectiveness of the proposed model and to analyze the 
results. More analysis and managerial implications are give nin Secton 
5. We conclude in Section 6. 

2. Statement of the problem and mathematical formulation 

The problem under study consiers a closed-loop supply chain in 
which the reverse process triggers to collect products so that to increase 
the total profit. The elements in forward flow are suppliers of raw 
materials, manufacturers, distributors and customers. In the reverse 
flow collection centers, disassembly centers and disposal centers are 
considered. The significance is to keep environmental-friendly ploicies 
in all processes of the proposed closed-loop green supply chain net-
work. The specific industrial case of melting company is considered. 

Table 1 
Summary of literature review.      

Researchers Problem Objective Solution approach  

Pishvaee, Kianfar, and Karimi (2010), Pishvaee, 
Farahani and Dullaert (2010) 

Reverse multilateral logistics network Minimize shipping costs and fixed 
setup costs 

Simulated annealing 

Pishvaee, Rabbani, and Torabi (2011) Reverse logistics network Minimize cost and maximize 
response levels 

Mimetic multipurpose algorithm 

Alshamsi and Diabat (2015) Reverse logistics Minimize costs Mathematical optimization 
Pishvaee, Torabi and Razmi (2012), Pishvaee, 

Razmi and Torabi (2012) 
Closed loop supply chain Cost minimization Possibilistic programming 

Abdallah, Farhat, Diabat, and Kennedy (2012) Closed loop supply chain Carbon emission minimization  
Amin and Zhang (2013) Closed-loop supply chain network Facility location Uncertain mathematical optimization 
Ahi and Searcy (2015) Green and sustainable supply chains Environmental factors Performance measurement 
Diabat and Al-Salem (2015) Integrated supply chain problem Environmental considerations Mathematical optimization 
Diabat (2016) Capacitated facility location and inventory 

management 
Single sourcing Mathematical optimization 

Al-Salem, Diabat, Dalalah, and Alrefaei (2016) Closed-loop supply chain management 
problem 

Cost optimization Reformulation and piecewise 
linearization 

Diabat and Theodorou (2015) Location–inventory supply chain problem Cost optimization Reformulation and piecewise 
linearization 

Govinden et al. (2015) Reverse logistics and closed-loop supply 
chain 

Multiple objectives Deterministic models 

El-Sayed et al. (2010) Forward–reverse logistics Risk optimization Stochastic model 
Pishvaee, Torabi and Razmi (2012), Pishvaee, 

Razmi and Torabi (2012) 
Green logistics Cost optimization Credibility-based fuzzy mathematical 

programming 
Ramezani et al. (2013) Forward/reverse logistic network Cost optimization Multi-objective stochastic model 
Soleimani and Govindan (2015) Closed-loop supply chain network Cost optimization Hybrid particle swarm optimization and 

genetic algorithm 
Santibanez-Gonzalez and Diabat (2013) Reverse supply chain Cost optimization Improved Benders decomposition 
Diabat and Deskoores (2016) Integrated supply chain Cost optimization Hybrid genetic algorithm based heuristic 
Alshamsi and Diabat (2017) Reverse logistics Cost optimization Genetic algorithm 
Hiassat, Diabat, and Rahwan (2017) Location inventory- routing problem Routing cost Genetic algorithm 
Zohal and Soleimani (2016) Green closed-loop supply chain Cost optimization Ant colony 
Wang, Soleimani, Kannan, and Xu (2016) Closed-loop supply chain Cost optimization Cross-entropy 
Kumar, Soleimani, and Kannan (2014) Forward/reverse supply chain Forecasting return products ANFIS 
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The supply chain begins with the provision of raw materials from 
suppliers. It is assumed that all stages of production are within the 
organization and are carried out within the desired production centers. 
Finally, the products are sent to the customers. In the reverse flow of the 
proposed network, products purchased by customers and depreciated at 
their end of use stage; and the returned products due to deficiencies 
both are collected and transferred to disassembly centers. The inspec-
tion and separation are performed to categorize the reverse products 
into usable and useless. The usable products are the ones which can be 
reused with respect to the appropriate quality and the manufacturing 
level of the original product. These products are transferred to the 
production centers for refurbishment. The useless products are the ones 
that can not be used anymore and considered as wastes to be trans-
ferred to disposal centers. The case study of this paper is a melting 
industry that the CLGSCN and the proposed mathematical model are 
developed accordingly. 

Melting of metals, glass, and other materials has been a vital man-
ufacturing process for several thousand years, producing molten liquids 
that can be poured and solidified into useful shapes. 

Although the basic process continues to be the same, the utility of 
cast products has come a long way. 

The melting of any industrial metal used in manufacturing involves 
the following steps:  

1. Preparing the Metal and Loading – removing dirt and moisture and 
sometimes, preheating the charge material, such as scrap metal or 
ingot; and introducing solid charge into the furnace system;  

2. Melting the metal – Supplying energy from combustion of fuels, 
electricity or other sources to raise the metal temperature above its 
melting point to a pouring temperature;  

3. Refining and Treating Molten Metals – introducing elements or 
materials to purify, adjust molten bath composition to provide a 
specific alloy chemistry and/or affect nucleation and growth during 
solidification;  

4. Holding Molten Metal – maintaining the molten metal in molten 
state until it is ready for tapping;  

5. Tapping Molten Metal – transferring the molten metal from the 
furnace to transport ladle;  

6. Transporting Molten Metal – moving the molten metal to the point 
of use and keeping the metal in molten state until it is completely 
poured. 

Material and energy losses during these process steps represent in-
efficiencies that waste energy and increase the costs of melting opera-
tions. Modifying the design and/or operation of any step in the melting 
process may affect the subsequent steps. It is, therefore, important to 
examine the impact of all proposed modifications over the entire 
melting process to ensure that energy improvement in one step is not 
translating to energy burden in another step. 

In the reverse flow, collected materials are sent to the disassembly 
center and then the six steps of melting are performed. The remainder is 
also sent to the disposal center. To kepp the environment green it is 
necessary to recycle the materials have more side effects on the en-
vironment with higher priority. This way, metal melting is aimed here. 
A configuration of the CLGSCN in a melting industry embedded with 
the six steps of melting process is depicted in Fig. 1. 

As shown in Fig. 1. The forward flow is composed of suppliers, 
manufacturers, distributors and finally customers that forms a supply 
chain network. In the reverse flow, on the other hand, in the collection 
center the returned products are collected and then classified, and then 
in the disassembly center the parts are separated and forwarded to the 
six step melting process. The output is sent to the manufacturing center 
for reprocessing. Also, the remainders are sent to disposal center. 

According to the melting process in the reverse flow and the ma-
terials supplied by the suppliers in the forward flow, two types of 
products are produced by manufacturers namely grade 1 and 2. Grade 1 

products are reffered to the one that are produced by the materials 
supplied by the suppliers and grade 2 are composed of materials that 
are inserted from the melting process in the reverse flow. 

The following assumptions are considered to formulate the mathe-
matical model:  

• The customers’ demands are uncertain;  

• Deficiencies are not allowed;  

• The location of facilities is known and fixed;  

• The flow of products, parts, and materials can only occur between 
two successive supply chain layers. The flow of products between 
similar facilities is not possible; 

• The operations of the proposed CLGSCN are performed under ca-
pacity constraints; 

• The cost of adjusting a facility is considered as a part of its opera-
tional cost; 

• The inspection and separation costs are considered at the dis-
assembly center. 

With respect to the problem definition and assumptions explained 
above, the mathematical notations are presented in Table 2. 

The formulations of the problem follows here. 
Objective function and constraints: 

= +
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The objective function (1) maximizes the total profit in the CLGSCN. 
The benefit is obtained by differentiating revenue and cost. Sources of 
revenue are the products, both grades 1 and 2, sold to customers. The 
total cost to the company includes operating and shipping costs. 

Therefore, the operating costs incurred in each period in the for-
ward flow are costs of purchasing raw materials, the production of 
grade 1, the assembly of products grades 1 and 2, as well as operating 
costs of distribution centers. The reverse chain requires to pay for 
purchasing used products from customers. Also, the cost of separating 
returned products, testing the quality of the separated parts that are 
included in the operating cost of the disassembly center and the cost of 
disposal of the waste parts are included in the reverse flow. 

The shipping costs include the cost of transportation of raw mate-
rials, all products (grades 1 and 2) from manufacturing centers to dis-
tribution centers and from distribution centers to customers in the 
forward chain; transportation costs of products return from collection 
centers to disassembly centers, the cost of transporting reusable parts 
from disassembly centers being used in the melting process to pro-
duction centers, and the cost of transporting waste pieces to disposal 
centers. 

Constraint (2) emphasizes that the amount of raw materials pur-
chased from suppliers is equal to the amount of raw materials required 
for the production of grade 1 products. Constraint (3) shaows that the 
total amount of raw material shipped from each supplier cannot ex-
ceed the supply capacity of the supplier. Constraint (4) shows that the 
amount of the grade 1 products produced carried from the production 
centers to the distribution centers is equal with the amount of the first 
grade products carried from the distribution centers to customers. 
Constraint (5) shows that the amount of grade 2 products shipped 
from production centers to distribution centers is equal to grade 2 
products shipped from distribution centers to customers. Constraint  
(6) ensures that in each period, the flow of output from each dis-
tribution center does not exceed its capacity. Constraint (7) shows the 
number of pieces required for the production of first-grade products. 
Constraint (8) shows the number of pieces required for the production 
of second-grade products. Constraint (9) ensures that in each period, 
the flow of output from each production center does not exceed its 
production capacity. Constraint (10) ensures that a shortage is not 
allowed in each period for each customer for the first-grade product. 
Constraint (11) ensures that a shortage is not allowed in each period 
for each customerfor the second-grade product. Constraint (12) com-
putes the total number of returned products of the first and second 
grades. Constraint (13) calculates the total number of returning pro-
ducts to each collection center. Constraint (14) calculates the amount 
of reusable parts inserted into the melting process. Constraint (15) 
shows the amount of waste pieces to be disposed. Constraint (16) 
shows that in each period, each distribution center serves the custo-
mert that is assigned to. Constraint (17) shows that in each period, 
each collection center can only collect returning products from each 
customerthat is assigned to. Constraints (18, 19) show binary vari-
ables and also indicates the integrity of the variables. 

2.1. Uncertainty in the model 

In the real world CLGSCN several parameters are not definite. The 

Suppliers Manufacturers Distributors 

Customers 

Collection centerDisassembly center

Disposal 

Fig. 1. The configuration of the proposed CLGSC.  
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reasons could be, fluctuations in customers needs, material cost varia-
tions, differences in production cycle time, and etc. To achieve more 
realistic results, it is logical to consider uncertainty as much as possible 
(Gholizadeh, Fazlollahtabar, & Khalilzadeh, 2020; Gholizadeh, Tajdin, 
& Javadian, 2020; Pishvaee, Torabi, & Razmi, 2012; Qin & Ji, 2010). To 
address this challenge, a robust optimization approach has been used.  
Mulvey, Vanderbei, and Zenios (1995) presented a framework for op-
timization that includes two important definitions of “stable response” 
and “solid model”. That is, an answer to the optimization model is 
called a steady response and remain optimal under all scenarios; and it 
is called “solid” when a model is almost justified under all scenarios. 

According to these definitions, researchers have developed a robust 
optimization model, which is related to data sets related to different 
scenarios. Mulvey and Ruszczynski (1995) stated that mathematical 
programming models are faced with oscillatory and reliable data 
leading to probabilistic uncertainty. In general, in confronting with our 
optimization model, we have a structural part, which is constant and 
free of any fluctuations in the input data; and the control part having 
functions with uncertain data. We consider three demand scenarios and 
update the model accordingly. Below, the required mathematical no-
tations for uncertain model are given and the robust counterpart 
mathematical model is formulated accordingly. 

Table 2 
Mathematical notations of the proposed CLGSCN.    

Index  
M Piece of product set =M m1, ,

q

Quality set =q
Pieceofproductqualityreusable

ThequalityofthewastePieceofproduct

1

2

T Period set =T t1, ,

R Raw material set =R r1, ,

I Suppliers set =I i1, ,

D Distributors set =D d1, ,

J Manufacturers (producerc) set =J j1, ,

C Collecting centers set =C c1, ,

P Disassembly centers set =P p1, ,

F Disposal centers set =F f1, ,

L Customers set =L l1, ,

Parameters  
Prrijt The cost of purchasing raw materials r from the supplier i for the production center j in the periodt

PMmit The cost of producing a Piece of product m in the j production center during period t
HMjt The cost of assembly of the product at the j production center in the period t

opckt Operational cost of distribution center k in periodt

PBt The cost of purchasing a returning item from the customer at the collection centers in the periodt
PCpt Operational cost of the P disassembly center during the period t for each unit of return product 

PDft The operating cost of the disposal center f for each product in period t

TCijrt The cost of the transferring raw materialsr from the supplier i to the production center j during the period t

TCjkt The cost of transferring each product unit from the production center j to the distribution center k in periodt

TCklt The cost of transferring each product unit from the distribution center k to the customerl during period t
TCcpt The cost of transferring each unit of returned product from the collection center c to the disassemble center p in period t

TCpjmt The cost of transferring each Piece of product unit m from the center of disassemble p to the production center j in period t

TCpfmt The cost of transferring a unit of product m from the center of the disassemble P to the disposal center f during period t

De1lt Customer demand for the first grade product in the period t
De2lt Customer demand for the second grade product in the period t

lt The return rate of first grade product used by the customer l in the period t

lt
The return rate of second grade product used by the customer l in the period t

µ
mr

The rate of using the raw material r in the Piece of product m

QF1lt The selling price of the first-grade product to the customerl in the period t
QF2lt The selling price of the second-grade product to the customer l in the period t
BigM A big number 
Capir The supplier i capacity to supply raw materials r

Capj Production capacity at the production center j

Capk Capacity of distribution center k

t
The rate of return of reusable parts from melting process at the disassemble center in period t

m
The use rate of piece m in the product 

Decision variables  
Xrijt The amount of raw material r delivered from the supplier i to the production center j in period t

Xmjt The amount of the first-grade piece of product of typem produced at the production center j in period t

X1jkt The amount first-grade product produced at the production center j and shipped to the distribution center k in period t

X2jkt The amount second-grade product produced at the production center j is shipped to the distribution center k in period t

X1klt The quantity of the first-grade product that shipped from the distribution center k to customer l during period t
X2klt The quantity of the second-grade product that shipped from the distribution center k to customer l during period t
Xlct The amount of returned product shipped from customer l to the collection center c in period t
Xct The total amount of returning product available at the collection center c that is shipped to the disassembly center in periodt
Xmpjqt The amount of the product m which is of =q 1 quality and is reusable and shipped from the center of disassembly p to the j production center during period t . 

Xmpfqt The amount of the product m, which is of =q 2 quality, and considered as wastes to be shipped from the center of the disassembly p to the disposal center f

at period t
Ylc 1, If the collection center c collect the returned product from customer l is open, otherwise 
Ukl 1, If the distribution center k served customer l, otherwise 0    
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The robust mathematical notations are as follows:   

Index  
S Demand scenario (high, average, low) =s S1, ,

Parameters  
PS Probability of scenarios
w Weight for the violated constraints 

Constant values 
Decision vari-

ables  

s
The linearization coefficient under the scenarios

1lts The amount of unsuccessful demand first-grade product in the 
scenarios

2lts The amount of unsuccessful demand second-grade product in the 
scenarios

= +
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S.t: 

=X µ X j r t s, , ,
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rijts
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mr mjts

(21)  

X Cap r i t s, , ,
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rijts ir

(22)  

=X X k t s1 1 , ,
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=X X k t s2 2 , ,
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(24)  
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+X De l t s1 1 1 , ,

l
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p f
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(34)  

+X X BigMY k l t s( 1 2 ) , , ,klts klts kl (35)  

X BigMU l c t s, , ,lcts lc (36)  
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U Y k l c, {0, 1} , ,lc kl (38)  

X X X X X X X X X X

i r j m q t k l p f c t

, 1 , 2 , 1 , 2 , , , , ,

0 , , , , , , , , , , ,

cts klts klts jkts jkts lcts pjmq ts pfmq ts rijts mjts1 2

(39)  

In the relation (20), the objective function consists of three parts, 
the first two are the mean and the variance of the total time of the 
CLGSCN; the third part measures the objective functionro-
bustnessconsidering uncertain values of control constraints under each 
scenario. Constraints (21) to (36) are similar to the ones in the definite 
model under different scenarios. The constraint (37) is added to the 

model for converting the nonlinear objective function to a linear one. 
And constraints (38) and (39) indicate the type of variables and the 
assurance of non-negativity. Since the model assumptions state that the 
deficiency is not allowed, the unresolved demand 
is = =and1 0 2 0lts lts . 

To optimize such a complex multi period tobust mathematical 
model, while the complexity increases by adding the number of sce-
narios and period of times. Thus, a meta-heuristic optimization ap-
proach is required. Next, we develop a modified version of genetic al-
gorithm as a solution approach. 

3. Solution approach 

3.1. Modified genetic algorithm 

The genetic algorithm (GA) creates an initial population for the 
optimization purpose. Each person is tested against a set of data, and 
the most suitable ones (perhaps 11% of the most suitable ones) are left 
out. The rest is set aside, the most suitable individuals mating together, 
the displacement of the DNA elements leading to random changes of 
DNA elements. We aim to modify the local search process of classic GA 
while the number of iterations influence the outputs of the optimiza-
tion. 

The procedure is to define an objective/fitness function, and set the 
GA operators (such as population size, parent/offspring ratio, selection 
method, number of crossovers, and mutation rate); then randomly 
generate the initial population, as the current parent population; next 
the objective function is evaluated and a new generation of an offspring 
is populated; the objective function is evaluated and a local search on 
each offspring is performed to evaluate fitness of each new location, 
and replace the offspring if there exists a locally improved solution (this 
modification is peformed on the general GA to decrease the optimiza-
tion time); decide about a replacement and check the stopping cri-
terion. 

In this algorithm, the chromosome is composed of seven parts. All of 
these parts are composed of strings of real value in the range [0,1]. 
Together, they create an answer to the problem that the values of the 
variables and the objective function can be calculated; we now detail 
each of the steps proposed for the developed robust mathematical 
model. 

Step 1: This step consists of a five-dimensional matrix measuring 
K L Q T S[ ]. The real numbers are in the range [0,1]. This step 
specifies that each customer in each period, receives the required grade 
1 products from distributors. 

Step 2: This step is the same as in the previous step, with the dis-
tinction being the relationship between the customer and the dis-
tributor. It consists of a matrix with dimensions J K Q T S[ ] and 
the allocation method is quite similar to the first step. 

Step 3: After determining the demand of production for each of the 
manufacturers from steps 1 and 2, the third part of the chromosome for 
supplying the required raw materials identifies the relationship be-
tween the producers and the suppliers of the raw materials. In this step, 
a matrix of I J R T S[ ] is formed and, as in the previous steps, 
specifies how the material flows. 

Step 4: In the fourth step, the chromosome consists of a 
L C T S[ ] matrix that determines how to send the returned pro-
ducts to the collection center. 

Step 5: Once the amounts collected products in the collection cen-
ters have been determined, in the fifth step of the chromosome, sending 
products from the collection centers to the disassembly centers is car-
ried out. This step consists of a matrix C P T S[ ].

Step 6: Once the materials are collected and sent to the disassembly 
centers, these centers divide the products into two usable (to be sent to 
the melting process) and useless categories. This step consists of a 
matrix P J T S[ ] determining how to ship recycled materials to 
manufacturers based on their needs. 

Local search

Fig. 2. Overview of the modified GA.  
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Step 7: In this step, a chromosome with P F T S[ ] unused 
products is sent from disassembly centers to disposal centers. 

Step 8: In the crossover process, Pn is considering as a crossover 
probability. Randomly, two chromosomes are selected as parents of the 
population. For two-parent chromosomes, a random number r is de-
termined in the interval [0,1]. Then, the middle point of the two par-
ents’ chromosomes are changed to produce their offsprings. 

Step 9: After the crossover process, we populate the population with 
mutation operations. In the process of mutation Pm is considered as a 
probability of mutation. A multi-point mutation operation is used for 
population renewal. For each chromosome, a random number r is de-
fined in interval [0,1]. In order to mutate in each of the chromosome 
portions, two rows or two columns are randomly selected, and using the 
local search the optimal pointsbetween them are displaced, invertly. 

Step 10: After selection, crossover and mutation, a new population 
is created. The genetic algorithm is terminated up to a maximum 
number of G repetitions. 

The process of our proposed modified GAis depicted in Fig. 2. 

4. Numerical case study 

In this section, numerical experiments are carried out to evaluate 
the proposed model's behavior and solution. Solutions methods are 
encoded in MATLAB environment. 

The melting industry (called Melting Imen Tabarestan company), 
which is considered in this research, is an industrial furnace manu-
facturing company located in North part of Iran. Production of in-
dustrial furnaces has been widely used to supply industrial companies 
using casting and foundary shops. Given the demand for melting fur-
naces, time for delivery and recycling are especially important. At 
present, the company is under great pressure to recycle the materials 
used because of government regulations and economic benefits. We 
apply a scenario-based linear programming model for this closed-loop 

Table 3 
Problem dimensions.              

Problem No Number of 
suppliers 

Number of 
manufacturers 

Number of 
distribution 
centers 

Number of 
customers 

Number of 
collections 
centers 

Number of 
disassemble 
centers 

Number of 
disposing 
centers 

Number 
of period 

Number of 
piece 
product 

Number of 
materials 

Number of 
strategies  

1 3 2 2 3 2 2 2 3 2 2 3 
2 3 2 2 3 2 2 2 3 2 2 3 
3 3 3 2 3 2 2 2 3 2 2 3 
4 4 3 3 3 2 2 3 3 3 3 3 
5 4 3 3 3 2 2 3 3 3 3 3 
6 4 4 3 4 4 3 3 4 3 3 3 
7 5 4 4 4 4 3 4 4 4 4 3 
8 5 3 4 4 4 3 4 4 4 4 3 
9 5 5 4 4 4 3 4 4 4 4 3 
10 5 2 3 4 4 3 3 4 5 5 3 
11 5 2 3 3 5 4 3 5 5 5 3 
12 5 4 3 7 5 4 3 5 5 5 3 
13 5 5 3 7 5 4 2 5 6 6 3 
14 6 2 4 4 5 4 8 5 6 6 3 
15 6 4 4 4 3 4 4 5 6 6 3 
16 6 2 4 6 3 5 3 6 7 3 3 
17 6 8 4 6 3 5 5 6 7 2 3 
18 6 3 3 7 4 5 6 6 7 8 3 
19 7 5 3 7 4 5 3 6 4 4 3 
20 7 7 8 6 5 5 5 6 6 3 3 
21 7 7 8 6 5 6 5 7 6 6 3 
22 7 7 8 6 5 6 5 7 9 6 3 
23 8 8 8 5 5 6 8 7 9 6 3 
24 8 8 8 5 6 6 8 7 9 8 3 
25 8 6 6 5 6 6 8 7 10 8 3 
26 8 6 6 7 6 4 8 8 10 8 3 
27 8 6 6 7 6 4 8 8 10 8 3 
28 9 7 9 7 5 4 4 8 5 6 3 
29 9 7 9 8 5 5 4 8 5 6 3 
30 9 7 9 8 5 5 4 8 5 6 3 

Table 4 
Parameters values.    

Parameters Probability distribution function  

Prrijt U[4,19] 

PMmit U[32,65] 
HMjt U[50,155] 

opckt U[105,185] 

PBt U[85,220] 
PCpt U[45,105] 

PDft U[50,110] 

TCijrt U[20,35] 

TCjkt U[20,35] 

TCklt U[20,33] 
TCcpt U[20,33] 

TCpjmt U[20,32] 

TCpfmt U[20,32] 

De1lt U[0,200] 
De2lt U[0,100] 

lt U[0.52,0.78] 

lt
U[0.28,0.56] 

µ
mr

U[0.37,0.67] 

QF1lt U[2000,12000] 
QF2lt U[1950,11950] 
Capir U[60000,120000] 

Capj U[15000,75000] 

Capk U[10000,20000] 

t
U[0.2,0.6] 

m
U[0.37,0.57] 

BigM U[10000,100000] 
Ps U[0,1] 

U[1000,10000] 
w U[0.2,0.65]    
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green supply chain network problem. Initially solved in small dimen-
sions in the Lingo software; and then we solve the larger dimension 
with the modified genetic algorithm encoded in MATLAB environment. 

The genetic algorithm is developed using the MATLAB 2014 program-
ming language. Using a 1.6 GHz computer with a capacity of 6 GB, the 
generated code is executed and the results are shown in the following 
tables. To solve large dimensions, 30 sample instances were selected 
and each problem was replicated 5 times and solved individually. The 
dimensions of the sample problems listed in Table 3. 

The values of the parameters used in the model are based on the 
collected data from the case study that are fitted on probability dis-
tributions using the goodness of fit technique; some data are also ran-
domly generated from the probabilityfunctions listed in Table 4 and 
employed in each step of the modified genetic algorithm. 

In the following experiments, we consider the number of repetitions 
G = 150 and pop-size = 250. In addition, we perform the algorithm 
based on P P,n m. The results are shown in Table 5. We used relative 
percent deviation (RPD) to compare our results. 

According to Table 5, in the evaluation of the first nineteen in-
stances, the exact solution was obtained by LINGO. The exact solution 
time of LINGO and the outcomes of modified GA are compared in Fig. 3. 
The results show that the solutions of the proposed modified GA are 
close to the exact solution of the problem. Therefore, the modified GA is 
appropriate to provide efficient solutions. 

According to Fig. 4, in evaluating the the first 9 instances, the time 
needed to provide a solution has increased significantly, even beyond 
the modified genetic algorithm. But from the ninth instance onwards, 
the solution time of the modified genetic algorithm has increased. In the 
evaluation of the ninth and later samples, the criteria for stopping the 
modified genetic algorithm from 150 to 170 were modified. 

Meanwhile, the time required for the modified GA is increased to 
provide a much better and more resonable solution than LINGO. From 
sample nineteen to thirteen, no precise solution has been provided by 
LINGO in about 1200 s. However, the proposed modified genetic al-
gorithm obtained solutions in less than two hours. These results are 
shown in Table 5. Items 19 to 30 have larger dimensions and their 
solutions are shown in Table 5. 

Compared to the optimal objective value obtained by Lingo 

Table 5 
Results obtained from the modified GA algorithm and Lingo.          

Problem No. Pc Pm Modified GA objective function Elapsed time RPD objective function Lingo Elapsed time Lingo  

1 0.9 0.1 10,225,622 109.3354 0.0471 11,005,413 1 
2 0.9 0.1 11,366,666 111.9889 0.007 10,363,216 1 
3 0.9 0.1 15,561,965 112.5743 0.1132 15,344,758 1 
4 0.9 0.1 20,438,669 113.1315 0.0381 20,483,956 2 
5 0.9 0.1 15,911,009 128.5515 0.2351 16,050,510 7 
6 0.9 0.1 29,796,618 122.1124 0.0849 28,996,989 5 
7 0.9 0.1 21,563,661 136.0714 0.4116 20,668,679 41 
8 0.9 0.1 22,010,916 134.3176 0.066 22,790,123 32 
9 0.9 0.1 24,985,003 141.5507 0.0195 23,998,908 38 
10 0.9 0.1 15,807,592 239.3354 0.2742 14,999,575 279 
11 0.9 0.1 114,874,615 385.3631 0.05 106,452,114 307.5 
12 0.9 0.1 117,178,746 405.1270 0.044 110,167,849 409.531 
13 0.9 0.1 103,721,244 493.9971 0.0121 102,725,266 592.4571 
14 0.9 0.1 103,751,814 585.3685 0.0955 102,891,418 643.2241 
15 0.9 0.1 108,934,385 604.1986 0.02 113,925,483 623.4512 
16 0.9 0.1 112,178,223 584.5906 0.0435 109,173,224 598.6574 
17 0.9 0.1 118,857,453 657.2647 0.0421 105,485,326 689.5785 
18 0.9 0.1 109,827,650 631.3870 0.0031 101,817,560 687.5421 
19 0.9 0.1 128,224,137 664.5361 0.0041 115,143,714 712.1435 
20 0.9 0.1 125,731,184 6612.794 0.0331 – – 
21 0.9 0.1 120,771,813 6802.066 0.0096 – – 
22 0.9 0.1 120,516,772 6543.759 0.2048 – – 
23 0.9 0.1 125,489,941 6541.040 0.0071 – – 
24 0.9 0.1 132,010,034 6627.233 0.0198 – – 
25 0.9 0.1 135,226,526 6793.165 0.0358 – – 
26 0.9 0.1 133,784,253 6871.449 0.0146 – – 
27 0.9 0.1 126,342,144 6827.041 0.0151 – – 
28 0.9 0.1 131,081,973 6908.552 0.0229 – – 
29 0.9 0.1 138,118,163 6972.706 0.0271 – – 
30 0.9 0.1 128,224,137 7049.317 0.0111 – – 
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software, the desired value obtained from the modified genetic algo-
rithm can be considered as an optimal optimum value. As can be seen, 
the proposed modified GA is applied with a scenario-driven optimiza-
tion model to maximize the total profit of the closed-loop green supply 
chain. Based on the numerical examples and results, the modified GA is 
an efficient approach for optimization of the problem. Thus, the outputs 
of the proposed modified GA are efficient in comparison to the exact 
solutions. Also, the modified GA is effective for obtaining solution of 
larger sized problems. The solution time of the modified GA is very 
satisfactory for different problem sizes. 

5. Analysis and managerial implications 

In this section analyses are performed to investigate the efficiency of 

the proposed modified GA. As explained in Section 1, in past researches 
classic GA was used to optimize a CLGSCN. Therefore, we modified the 
classic GA to strengthen its performance. Nonetheless, the best com-
parison would be between classic GA and our modified GA to in-
vestigate the efficiency. Two dimensions of solution time and objective 
function value are considered for comparison purposes. Also, it should 
be note that our proposed modified GA performs very close to the exact 
method in small size problems and outperforms the exact method for 
larger sizes since exact method could not obtain the results in reason-
able time. Here, the developed robust mathematical formulation is 
implemented using classic GA. It should be note that the setting and 
other require data were exactly as modified GA. The results are shown 
in Table 6. 

To analyze the differences, objective valuaes of both aalgorithms are 

Table 6 
Comparison between classic GA and modified GA.         

Problem No. Pc Pm Modified GA objective function Elapsed time Classic GA Objective function Elapsed time  

1 0.9 0.1 10,225,622 109.3354 10,125,622 111.5364 
2 0.9 0.1 11,366,666 111.9889 11,335,341 113.7889 
3 0.9 0.1 15,561,965 112.5743 14,678,695 113.6787 
4 0.9 0.1 20,438,669 113.1315 19,235,512 115.2367 
5 0.9 0.1 15,911,009 128.5515 15,815,321 129.7756 
6 0.9 0.1 29,796,618 122.1124 28,654,512 124.2143 
7 0.9 0.1 21,563,661 136.0714 20,432,521 138.9845 
8 0.9 0.1 22,010,916 134.3176 21,820,715 136.7649 
9 0.9 0.1 24,985,003 141.5507 23,768,992 144.7689 
10 0.9 0.1 15,807,592 239.3354 14,987,571 242.5693 
11 0.9 0.1 114,874,615 385.3631 10,875,214 389.6798 
12 0.9 0.1 117,178,746 405.1270 109,788,766 410.6523 
13 0.9 0.1 103,721,244 493.9971 102,625,354 498.7736 
14 0.9 0.1 103,751,814 585.3685 102,641,734 591.7864 
15 0.9 0.1 108,934,385 604.1986 107,835,487 611.3569 
16 0.9 0.1 112,178,223 584.5906 111,098,723 597.8923 
17 0.9 0.1 118,857,453 657.2647 117,937,763 664.8741 
18 0.9 0.1 109,827,650 631.3870 108,937,762 638.6893 
19 0.9 0.1 128,224,137 664.5361 128,224,137 672.9635 
20 0.9 0.1 125,731,184 6612.794 124,821,475 6731.528 
21 0.9 0.1 120,771,813 6802.066 119,861,923 6915.266 
22 0.9 0.1 120,516,772 6543.759 119,546,891 6725.371 
23 0.9 0.1 125,489,941 6541.040 124,569,762 6638.075 
24 0.9 0.1 132,010,034 6627.233 131,923,078 6711.466 
25 0.9 0.1 135,226,526 6793.165 134,678,789 6862.315 
26 0.9 0.1 133,784,253 6871.449 132,894,567 6964.772 
27 0.9 0.1 126,342,144 6827.041 125,678,435 6973.347 
28 0.9 0.1 131,081,973 6908.552 130,976,870 7082.223 
29 0.9 0.1 138,118,163 6972.706 137,896,254 7190.512 
30 0.9 0.1 128,224,137 7049.317 127,657,234 7279.559 
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depicted in Fig. 5. It is clear that the objective function values of the 
modified GA outperforms the classic GA specifically in larger size 
problems. It is necessary to emphazie that in maximixation problem the 
objective value is the more the better. This performance is due to the 
activation of the local search inserted in the GA where it finds better 
initial solution for the replications of GA operators. 

Another analysis is performed on the solution times of the two al-
gorithms. The comparsion of solution time is shown in Fig. 6. In small 
size problems the solution times are almost similar but for larger sizes 
the modified GA solves the problems in less time (consider the dashed 
curve). It is due to the omission of extra solutions via local search since 
the population size deacreases and the solution time is reduced. 

These comparisons show the efficiency of the modified GA being 
effective on tactical decisions of the proposed CLGSCN. Managers and 
policy makers need to know the amounts of decision variables and also 
the output of different scenarios in both economic and timely aspects. It 
is necessary to handle the operational decisions so that minimum en-
vironmental side effects are incurred to the CLGSCN. 

Managers will be benefited by the outputs of the model. Since un-
certainty is inavoidable in melting industry, then it is necessary to be 
prepare to encounter different scenarios in production system. In some 
circumstances, interaction among scenarios is important. Consider, 
demand reduction, raw material costs increase, and operator dismiss 
occur at the same time. Then, the manager needs to know which grade 
of product and to what amount to produce and with which price to 
maximiza the revenues while at the same time the overall costs are 
rising. Due to the velocity of the fluctuations athe level of dynamism is 
also changed leading to essense of rapid decisions to keep existing in 
the competitive market. Another decision being based on the condi-
tions, is applying reusable material in grade 2 products which is in-
evitable to expand markets to a low income market. 

6. Conclusions 

In this paper, the closed loop green supply chain has been studied as 
a very challenging issue in the contemporary world. Based on literature 
research gap, a closed-loop green supply chain with different grades 
extracted from a melting process in a reverse flow were investigated. 
Scenario based demand planning was considered to handle uncertainty 
of the model. Modeling emphasizes high profitability due to uncertainty 
in demand. To investigate various issues in this field, a robust optimi-
zation approach was used and embedded with a modified GA as an 
optimization approach. In order to prove the strength and convergence 
of GA, the proposed model was encoded and implemented in the LINGO 
15.0 package and the results were compared with the proposed 

modified GA in small size problems. According to the results, the con-
vergence of the proposed algorithm was proved to guarantee accuracy. 
As for future research, measuring the reliability of parts and products is 
suggested. In pricing, we can use various pricing strategies, including 
the game theory. Discount policies can be studied in the purchase of 
raw materials and products. 
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Fig. 6. Comparison of solution time- classic GA versus modified GA.  
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