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Abstract

The recent advancement and development of computer electronic devices has led to

the adoption of smart home sensing systems, stimulating the demand for associated

products and services. Accordingly, the increasingly large amount of data calls the ma-

chine learning (ML) field for automatic recognition of human behaviour. In this work,

different deep learning (DL) models that learn to classify human activities were pro-

posed. In particular, the long short-term memory (LSTM) was applied for modelling

spatio-temporal sequences acquired by smart home sensors. Experimental results per-

formed on the Center for Advanced Studies in Adaptive Systems datasets show that the

proposed LSTM-based approaches outperform existing DL and ML methods, giving

superior results compared to the existing literature.

Keywords: Smart Home; Human Activity Recognition; Deep Learning; LSTM.

1. Introduction

In the last few decades, human activity recognition (HAR) has been a lively and

challenging research area, due to its applicability to different active and assisted living

(AAL) domains, as well as the increasing demand for home automation and conve-

nience services for the elderly [1]. Nowadays, mainly because of the rapid increase in5

the world’s ageing population [2], HAR has acquired much interest in the field of ambi-
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ent intelligence and assisted living technologies in smart homes. It is meant to improve

the residents’ quality of life with the use of simple and ubiquitous sensors [3]. Accord-

ing to [4], a smart home provides independence and comfort to the residents by using

all technological devices interconnected within the network, capable of communicat-10

ing and learning through the user’s habits, creating an interactive space. In particular,

HAR is the most salient process for incorporating ambient intelligence into smart envi-

ronments. It involves a series of complex modelling, reasoning, and decision-making

procedures [5, 6]. The goal of HAR is to detect and then identify simple and complex

human activities in real-world settings by processing spatial and temporal information15

acquired by visual and non-visual sensory data [6, 7]. The adopted sensors may be

fused in the environment, connected with its objects, or worn directly by the occu-

pant. Compared to wearable sensors, object or environment sensors are advantageous,

as they can give an indirect indication of the occupant’s activities; moreover, they can

discriminate similar actions [3, 8]. According to [7, 9], HAR application domains are20

among the most varied, but they can be enclosed in three macro categories: health-

care monitoring applications [10], monitoring and surveillance systems for indoor and

outdoor activities [11], and lastly, AAL systems [12] for smart homes.

AAL systems are to provide an adequate, non-invasive, technological support, al-

lowing the inhabitants to live independently in safety and in comfort for as long as25

possible in their homes. Achievement of this goal depends on how the HAR system is

able to learn the person’s behaviour during daily life. However, the real-world settings

are complex and full of uncertainties: data captured by sensors may be ambiguous, as

well as noisy and sparse. This leads to the design and implementation of consistent

machine learning (ML) techniques to discover knowledge from data and provide a reli-30

able prediction of human behaviour [13]. In order to manage uncertainties and temporal

information, data-driven approaches require very large datasets to learn human activi-

ties and behaviours [14]. Unfortunately, large real-world datasets are rarely available,

and this limitation is one of the major challenges in the AAL field. Accordingly, the

knowledge-driven approaches are easy to apply, but they are less robust for managing35

noisy and temporal data [15]. Hence, it is common practice to consider the HAR task

a classification problem. In the past, various classification algorithms have been em-
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ployed, such as naive bayes (NB) [16], random forest (RF) [17], hidden markov model

(HMM) [16], conditional random field (CRF) [16], k-nearest neighbour (k-NN) [18],

and support vector machine (SVM) [19]. Most existing ML approaches result in static40

models, without the need of evolving and adapting with the changing environment.

However [20, 21] proposed an automatic context management system which is able to

discover dynamically contextual information, incorporate new data sources, and iden-

tify the context with greater discriminative power. Moreover, the self-verification and

the reliability measure of the HAR prediction can be performed automatically, measur-45

ing the confidence score based on posterior probability and clustering approaches [22].

Each ML algorithm for the HAR task has its own advantages, but none of these

approaches prevail over others in all application scenarios [3]. The authors in [23]

developed a framework for smart home datasets analysis, employing also the artificial

neural network with one hidden layer. Their analysis suggested that the performance50

of different classifiers is influenced by the dataset characteristic.

For instance, the NB probabilistic classifier obtains good accuracy with large amounts

of sample data but does not fit any temporal information. Instead, the HMM and CRF

are the most popular approaches for inclusion of such temporal information. Other

approaches [24] include hierarchical methods for modelling high-level features which55

encapsulate past information. Therefore, few existing sensor-based HAR approaches

comprehensively explore the temporal patterns among actions [25], handling sequen-

tial, interleaved, and concurrent temporal relations [26, 27].

In recent years, there has been an increasing interest in DL techniques for HAR ap-

plications [13] and human pose recognition [28–30], which are able to learn multiple,60

non-linear representations of raw data through multiple hidden layers [31]. This allows

the DL application to perform a feature extraction and transformation without prior

knowledge. The deep neural network (DNN), convolutional neural network (CNN),

recurrent neural network (RNN), and long short-term memory (LSTM) represent the

most popular DL techniques in HAR [32–34]. In particular, CNN has been widely used65

to address the human pose recognition [28] and the HAR task [35] by using convolu-

tions across two or three dimensions in order to capture an image’s spatial patterns.

Recent research trends in CNN aim to learn the optimal activation functions in a data-
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driven way [36] while learning a Euclidean embedding [37] of the feature’s space.

In this work, we propose a novel application of LSTM networks to improve HAR70

within a sensor-fused AAL scenario. We started from the unidirectional LSTM (Uni-

LSTM), and we explored more complex LSTM architectures, such as the bidirectional

LSTM (Bi-LSTM) and cascade bidirectional and unidirectional LSTM (Casc-LSTM).

Two ensemble LSTM approaches named Ensemble2LSTM (Ens2-LSTM) and Cas-

cadeEnsemble (CascEns-LSTM) are also proposed. Unlike other DL approaches for75

video- [13] and wearable-based HAR [9, 38, 39], this paper contextualizes the problem

in the smart home scenario where a typical home is equipped with several sensors and

the captured data is voluminous and structurally rich [16]. Moreover, the proposed

setting is (i) closest to the real-world situation [3], (ii) privacy compliant [3], and (iii)

based on an HAR task that is much more challenging due to the variability of activities80

and residents [16] (e.g., some residents may be younger adults, healthy older adults,

or older adults with pathological conditions, and some may perform interactions with

pets). Two conditions motivate this particular application of the LSTM network: it

allows (i) extracting highly discriminative non-linear feature representations while (ii)

modelling temporal sequences by learning long-term dependency situations. This is85

often the case with human activities, where the action can be divided into a sequence

of gestures and postures, and each sample can be related to the previous ones [40]. The

reliability of the proposed approach for HAR is investigated in a smart home scenario

using the widely spread Center for Advanced Studies in Adaptive Systems (CASAS)

benchmark datasets [41]. Even though the CASAS datasets are widely used and in-90

vestigated by researchers using supervised ML algorithms, to the best of the authors’

knowledge, there is still a lack of HAR works related to the use of DL approaches

which take into account the temporal information.

The overall performance of the proposed LSTM-based approaches has been com-

pared with one-dimensional CNN [38]) and traditional ML techniques (e.g., NB, HMM,95

CFR) widely used in literature for HAR [16].

Results of this study show that the application of standard LSTM leads to significant

performance improvement with respect to ML approaches (from 10.60% to 16.04% of

accuracy improvement) and with respect to one-dimensional CNN (from 11.03% to
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18.39% of accuracy improvement).100

2. Related Work

Taking all of these facts into account, it may be useful to fill this gap by applying

an adaptive, well-known DL model (i.e., LSTM) on a “rarely been used” dataset in this

context. Likewise, it seems challenging to compare the results obtained with other DL

and traditional ML models largely present and already discussed in the literature.105

2.1. CASAS datasets background

This section focuses on the HAR approaches where the CASAS datasets were em-

ployed. In this context, several ML techniques were applied and tested to solve the

activity recognition task.

The authors in [16] applied three ML algorithms (i.e., NB, CRF, and HMM) for110

HAR in the 11 labelled CASAS datasets. A further comparison with SVM was in-

troduced in [19]. Once the SVM model was determined to perform better than other

traditional ML techniques, it had been applied for recognising activities in the real

world [19].

The reliability of standard, supervised classifiers varies dramatically between datasets115

and within the single activities [16]. In particular, the classification accuracy is influ-

enced by (i) the amount and nature of training data, (ii) the ambiguity of the label,

and (iii) the number of residents investigated at the same time. Different approaches

have tried to overcome these crucial issues. In [42], the authors developed a supervised

behaviour classification model (BCM) derived from an SVM classifier to differentiate120

a person from an inhabitant group. Considering only the early morning routine, the

BCM extracted features and interpreted the temporal sequence of all users’ informa-

tion captured by sensors. The multiple kernel SVM approach was applied in [43] for

the recognition of individual activities. Additionally, the CRF was used to discover

sequential future behaviour patterns. In [18], the authors proposed an activity recog-125

nition approach by clustering-based classification. They combined the k-NN with the

Dempster–Shafer theory of evidence to discriminate and split activity instances of dif-

ferent classes enclosed inside a unique cluster. A Markov logic network was designed

5
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in [44], in order to classify the ongoing activity through probabilistic reasoning. This

hybrid segmentation approach can automatically segment continuous and sparse sensor130

events into discrete sequences, ensuring a correct interpretation of the input raw data

that the sensors generated.

The key finding of several state-of-the-art approaches is to model the action as

a sequence of subsequent gestures/behaviours over time. This leads to recognition

of time-dependent patterns of events, predicting future behaviours starting from the135

current activity or state.

In [45], the authors proposed an activity-prediction model using probabilistic Bayesian

networks and a novel two-step inference process to predict (i) the next activity and (ii)

its related start time. In [46], the authors tried to estimate prior probabilities of an

activity happening at a certain time, in order to reduce the error rate of a given classi-140

fication algorithm. Several temporal models such as frequency map enhancement and

Gaussian mixtures model were evaluated. The time relevance was analysed in [17],

where the authors proposed a time–space feature importance analysis in order to com-

pare the potential relevance of features for activities classification. RF, NB, and SVM

were the adopted techniques used for discriminating the feature relevance. In [47],145

the authors presented an activity forecasting method that can predict the expected time

until an activity occurs. This method generates an activity forecast using a regression

tree classifier and offers an advantage over sequence prediction methods, such as linear

regression and SVM classifiers.

DL algorithms for HAR applied to CASAS datasets have still been scarcely ex-150

plored in the literature. The authors in [48] implemented a deep belief network com-

prising many restricted Boltzmann machines. Then, the performance of the proposed

network was compared with other traditional ML algorithms such as HMM, NB, and

CRF, which were also employed in [16], showing interesting results.

Unlike the above-mentioned work, this paper proposes the application of a sequen-155

tial DL LSTM approach for HAR. This leads to some advantages with respect to tradi-

tional ML models:

• LSTM allows automatic learning of spatio-temporal information from the sensor
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data without the need of handcrafted features [49] or kernel fusion approaches [43];

• LSTM, as a sequential approach, models the temporal evolution of the features,160

using recurrent connections in the hidden layers.

2.2. DL for HAR using time series data

DL approaches were employed to capture the temporal dependency of a human ac-

tion, considering time series data [13]. In particular, CNNs adopt convolutions across

a one-dimensional temporal sequence to capture local dependencies among input data,165

using parameter sharing across time [38]. However, the geometry of convolutional

kernels restricts the captured range of dependencies between data samples; likewise,

local connectivity limits the output to a function of a small number of neighbouring

input samples [39]. As a result, CNNs may be unsuitable to a wide range of HAR con-

figurations and require fixed-length input windows. The use of LSTM may overcome170

these limitations by exploiting their internal memories to capture long-range depen-

dencies in variable-length input sequences. As we shall see in the Results section, our

LSTM-based approaches perform favorably over CNN [38].

Moreover, in accordance with the most recent state-of-the-art contributions [13],

ensemble DL models, RNN, and LSTM have not yet been well investigated for HAR175

using multimodal channels. Specifically, Bi-LSTM and Casc-LSTM models have al-

ready been employed to recognise human activity using wearable and on-body sensor

input data [39]. However, deviating from [39], we aim to explore an LSTM-based

methodology for HAR using only a sequence of data acquired by domotic fused sensors

(e.g., motion sensors, temperature sensors, magnetic door sensors). The proposed mul-180

timodal data configuration is more challenging than wearable sensor data are, because

smart home data do not always display a discriminative pattern, due to the intrinsic

variability of activities and residents [16].

3. Material and Methods

3.1. Smart home datasets185

Several datasets were used by researchers in a smart home scenario for HAR ap-

plications [50–54]. Since the collection of real house data is costly, time consuming,

7
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and difficult to obtain, the publicly available datasets have a crucial importance for the

research community. Additionally, they are useful for testing HAR algorithms and pro-

viding the baseline for comparison. In Table 1, a brief overview of the widely used,190

publicly available smart home datasets is reported.

Table 1: Smart home datasets.

Dataset # Houses Residents # Sensors # Activities

CASAS [41] 7 Multi 20 - 86 11

Kasteren [50] 3 Multi 14 - 21 14 - 16

Domus [51] 1 Single 78 User’s feelings

ARAS [52] 2 Multi 20 27

HIS [53] 1 Multi 20 - 30 7

OPPORTUNITY [54] 1 Multi 72 15 - 20

3.2. CASAS datasets

The CASAS datasets were introduced by Washington State University [41]. The

testbed smart apartment used in the CASAS smart home project comprised three apart-

ments that include three bedrooms, one bathroom, a kitchen, and a living/dining room.195

Each apartment was equipped with different kinds of sensors (e.g., motion sensors,

temperature sensors, door sensors) and actuators for sensing the environment and pro-

viding information to inhabitants. Five annotated datasets, named Milan, Cairo, Ky-

oto2, Kyoto3, and Kyoto4 were selected among all available CASAS datasets [55].

This choice was motivated by the fact that these datasets present the same sensor data200

representation, defined as date-time, sensor, and state/value (see Table 2).

• The Milan dataset contains sensor data collected in the home of a volunteer adult.

The residents were a woman and a dog. The woman’s children visited on several

occasions. The sensor events were generated from motion (M), door closure (D),

and temperature (T) sensors;205

• the Cairo dataset contains sensor data collected in the home of a volunteer adult

couple. The residents were a man, a woman, and a dog. The couple’s children

also visited the home on at least one occasion. The sensor events were generated

from M and T sensors;

8
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Table 2: Example of sensors data representation.

Date-Time Sensor State/Value

02/02/2009 12:18:44 M16 On

02/02/2009 12:18:46 M17 Off

02/02/2009 12:28:50 D12 Open

02/02/2009 12:29:55 I03 Present

05/02/2009 08:05:52 AD1-B 0.0448835

05/02/2009 12:21:51 D09 Closed

10/02/2009 17:03:57 I03 Absent

...
...

...

• the Kyoto datasets contain sensor data collected in an apartment that housed two210

residents, R1 and R2, when they performed normal daily activities. The sensor

layout comprised M, D, and T sensors, a burner sensor (AD1-A), a hot water

sensor (AD1-B), a cold water sensor (AD1-C), an item sensor (I) for selected

items in the kitchen, and an electricity usage sensor (P001).

Table 3 shows the main information of these datasets, including the number of215

activities as well as number of occurrences, the type and the number of sensors, the

number of residents, and the number of monitored days.

Table 3: CASAS datasets.

CASAS Dataset Milan Cairo Kyoto2 Kyoto3 Kyoto4

Residents 1+pet 2+pet 2 3 3

Sensors 32 27 71 86 72

Type of sensor M,T,D M,T
M,T,D,I,P001

AD1-A/B/C

M,T,D,I,P001

AD1-A/B/C

M,T,D,I,P001

AD1-A/B/C

Activities 15 13 13 12 25

Activity occurrences 1513 600 497 1342 844

Days 92 56 46 64 250

9
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The different activities for each dataset are summarized in Table 4. According to

the configuration used in [16], the original activities listed below for each dataset have

been grouped into 11 activities of daily living (ADL) to make a consistent comparison220

of the results. Moreover, this choice is motivated by the fact that the selected activities

occur in the majority of the investigated datasets and are typically used to discriminate

the functional health of an individual within a clinical scenario. Therefore, the cho-

sen activity classes are as follows: Personal hygiene, Sleep, Bed to toilet, Eat, Cook,

Work, Leave home, Enter home, Relax, Take medicine, and Bathing. Activities not rep-225

resented by the previous categories, as well as activities named “None”, in which the

resident performed no activity, was grouped as “Other”.

3.3. Proposed LSTM models

The proposed HAR framework comprised the preprocessing and classification stage

(see Figure 1). The preprocessing stage included the filtering and data aggregation230

from the CASAS datasets. The input features were the raw data collected from differ-

ent smart home sensors (e.g., M, D, T). Considering the time lapse from the beginning

to the end of the human activity, the data aggregation was performed in order to en-

capsulate all changes in sensor status. This processing led to associate an input matrix

of sensor events for each activity. The input data was fed into the LSTM-based model235

in order to predict the class-membership. A brief background of the LSTM model is

provided in Section 3.3.1. Afterwards, we investigated more details of the LSTM

by not only implementing and testing the standard Uni-LSTM (see Section 3.3.2) but

also considering more complex architectures such as Bi-LSTM (see Section 3.3.3) and

Casc-LSTM (see Section 3.3.4). Moreover, we presented two different ensemble strate-240

gies named Ens2-LSTM and CascEns-LSTM. The former combined the output of a Bi-

LSTM and LSTM (see Section 3.3.5), while in the latter, the output of the Ens2-LSTM

was fed into an LSTM (see Section 3.3.6). These ensemble strategies aim to improve

the generalisation performance while learning more complex patterns from data.

10
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Table 4: ADLs of the tested CASAS datasets.

Milan Cairo Kyoto2 Kyoto3 Kyoto4

Bathing
Master Bathroom

Guest Bathroom
- -

R1 Shower

R2 Shower

R1 Bathing

R2 Bathing

Bed to toilet Bed to Toilet Bed to Toilet
R1 Bed to Toilet

R2 Bed to Toilet
Bed to Toilet

R1 Bed to Toilet

R2 Bed to Toilet

Cook Kitchen Activity - Meal Preparation Cooking
R1 Meal Preparation

R2 Meal Preparation

Eat Dining Rm Activity

Breakfast

Dinner

Lunch

- -
R1 Eating

R2 Eating

Enter home - - - -
R1 Enter Home

R2 Enter Home

Leave home Leave Home Leave Home - -
R1 Leave Home

R2 Leave Home

Personal hygiene - -
R1 Personal Hygiene

R2 Personal Hygiene
-

R1 Personal Hygiene

R2 Personal Hygiene

Relax
Read

Watch TV
- Watch TV -

R1 Watch TV

R2 Watch TV

Sleep Sleep
R1 Sleep

R2 Sleep

R1 Sleep

R2 Sleep

R1 Sleep

R2 Sleep

R1 Sleep

R1 Sleeping Not in Bed

R2 Sleep

R2 Sleeping Not in Bed

Take medicine
Morning Meds

Evening Meds
R2 Take medicine - - -

Work
Chores

Desk Activity

R1 Work in Office

Laundry

Clean

R1 Work

R2 Work

Cleaning

R1 Work

R2 Work

R1 Work

R2 Work

R1 Housekeeping

Other
Master Bedroom

Meditate

R1 Wake

Night Wandering

R2 Wake

Study

Wash Bathtub

Grooming

R1 Wake

R2 Wake

R1 Wandering in Room

R2 Wandering in Room

11
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Bathing Other. . .Output
Activities

Input Data
Sensors M T P001. . . I

Figure 1: The proposed HAR approach. Different data modalities acquired by different sensors

are fed into the LSTM-based model in order to predict human activity.

3.3.1. LSTM background245

LSTM networks [56] can be seen as a very successful extension of the RNN, ex-

plicitly designed to avoid the long-term dependency problem associated with RNNs. In

particular, [57] demonstrated that the RNN can model the short time-lags between in-

put and labels. However, this short-term memory can be insufficient when dealing with

real-world time series data [57]. LSTM methodology proposed a special node, called250

the constant error carousel (CEC), that allows constant propagation of the error signal

over time. Additionally, it uses the gating mechanism over an internal memory cell to

control access to the CEC and to learn and represent a more complex representation of

the long-term dependencies. Hence, an LSTM model is well suited to classify, process,

and predict time series with time lags of unknown sizes.255

12
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The LSTM layer’s main component is the memory cell. The cell is responsible

for “remembering” values or states for long or short time periods over arbitrary time

intervals. An LSTM block usually contains input, output, and forget gates, which are

respectively, seen as write, read, and reset operations for the memory cell. Each of

the three gates can be thought of as a “conventional” artificial neuron, as in a multi-260

layer neural network. Thus, using particular activation functions, gates can regulate

the flow of values that go through the connections of the LSTM layer. An LSTM cell

state is the key component which carries the information between each LSTM block.

Modifications to the cell state are controlled with the three gates described above. The

single cell, as well as the gates, are interconnected and connected to the cell state itself.265

3.3.2. Uni-LSTM

In order to classify the action time series, the use of an RNN architecture with one

hidden layer of LSTM cells is proposed. The input layer of this RNN comprises an

embedded vector that contains the sequence of sensor events. Then, n LSTM cells

are fully connected to these inputs and have recurrent connections with all the LSTM270

cells. A dense output layer performs the classification task. The number of cells (n)

and the learning rate are the common hyperparameters for all LSTM-based approaches

selected in the validation procedure. The RMSProp optimiser [58] was used for training

the network and minimising the categorical cross entropy loss function.

Figure 2 shows the LSTM single cells over time. The single cell layer is presented275

at time t, where Xt and Yt are the input and output states, respectively. Data from each

sensor reported in Table 2 represent the input, while the different activities for each

dataset represent the output (see Table 4).

3.3.3. Bi-LSTM

The Bi-LSTM [59] includes two parallel LSTM tracks defined by forward and280

backward loops, which extract patterns from the past and the future, in order to better

model time dependency (see Figure 3). The forward track (green arrow) reads the input

data Xt from left to right, whereas the backward track (red arrow) reads the input data

from right to left. The output prediction is the weighted sum of the prediction score,

13
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LSTM LSTMLSTM

LSTM LSTMLSTM

P(Yt|X)

Xt Xt+1Xt-1

hidden	layer

input	layer

						output	layer

Figure 2: Overview of the unidirectional LSTM (Uni-LSTM) architecture, comprising one input,

hidden, and output layer: X represents the binary vector for sensor inputs, and Y represents the

activity label prediction of the LSTM network.

resulting from the forward and backward tracks [59].285

3.3.4. Casc-LSTM

The cascade architecture is inspired by [60]. The input layer is a Bi-LSTM cas-

caded with the Uni-LSTM. Thus, the output of one-layer Bi-LSTM is considered as

the features vector to feed into the Uni-LSTM (see Figure 4).

3.3.5. Ens2-LSTM290

The Ens2-LSTM aims to combine the output of a Bi-LSTM and Uni-LSTM. In

particular, the softmax function combines the output of the two models in order to

predict human activity (see Figure 5).

14
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LSTM

LSTM

LSTM

LSTM LSTM

LSTM

Xt Xt+1Xt-1

P(Yt|X)

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

+++

hidden	layer
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Figure 3: Bidirectional LSTM-based (Bi-LSTM) architecture [59], comprising one input, hid-

den, and output layer. The forward and backward tracks are defined for each layer.

3.3.6. CascEns-LSTM

The CascEns-LSTM is the cascade of the Ens2-LSTM and Uni-LSTM. In particu-295

lar, the Ens2-LSTM prediction represents the input vector to feed into the Uni-LSTM.

4. Experimental

The same experimental setup employed in [16] was designed (see Figure 7) in order

to perform a fair comparison between our LSTM approach and the HMM, CRF, and NB

approaches. Hence, a stratified (over class) threefold cross-validation procedure was300

performed, and the accuracy result is the average of all folds. The hyperparameters

were optimised with a hold-out procedure. Twenty percent of the training data was

used as validation data and was not considered for training the model. The sparse

categorical cross-entropy loss was evaluated in order to select the best hyperparameters.
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Figure 4: Cascaded bidirectional and unidirectional LSTM-based (Casc-LSTM) architec-

ture [60]. The upper layers are unidirectional, whereas the input layer is bidirectional. We

set one hidden unidirectional layer.

Different configurations in the number of units (i.e., 32, 64, and 128) and the learning305

rate were considered as common hyperparameters of the LSTM-based models. Hence,

a configuration of n = 64 was found to be the optimal compromise to avoid overfitting

and achieving a low generalisation error. Based on the analysis presented by [16], the

Bosch and Kyoto1 datasets were not considered: the Bosch datasets were excluded

because they are not publicly available, while the Kyoto1 dataset has a limited number310

of occurrences/samples.

5. Results

Figure 8 reports the training and validation accuracy of Uni-LSTM for different

numbers of units (i.e., n = 32, n = 64, and n = 128). The lowest generalisation error

in the validation set was achieved with n = 64.315
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Figure 5: Ensemble2LSTM (Ens2-LSTM) architecture. The unidirectional and bidirectional

models comprise of one input, hidden, and output layer.

Figure 9 shows the averaged accuracy of each fold and the related standard devi-

ation for all the LSTM-based models. They achieved an accuracy of above 65% and

significantly higher-than-chance level (i.e., 1/number of classes). Even if each LSTM

model, except Casc-LSTM for Cairo, Kyoto2, and Kyoto3, obtained very similar re-

sults, the Bi-LSTM was the most effective methodology for the Cairo and Kyoto2320

datasets. However, the Ens2-LSTM achieved the best accuracy for the largest datasets,

in terms of number of observations for each class (e.g., Milan, Kyoto3, and Kyoto4).

The overall results of the LSTM approaches are also reported in Table 5, in terms of

averaged precision, recall, and f1-score. Although all datasets are highly unbalanced,

the precision, recall, and f1-score follow the same trend of accuracy.325

Figure 10 shows the confusion matrices for the Milan dataset, obtained by each dif-

ferent LSTM model. Although most of the considered activities were correctly classi-

fied, the most relevant errors can be summarised as follows: (i) Bed to toilet as Bathing

17



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

LSTM LSTMLSTM

LSTM LSTMLSTM

LSTM LSTMLSTM LSTM

LSTM

LSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

LSTM

LSTM

LSTM

LSTM LSTM

LSTM

+++

hidden	layer

						output	layer

input	layer

concconcconc

Xt Xt+1Xt-1

LSTM LSTMLSTM

LSTM LSTMLSTM

LSTM LSTMLSTM

P(Yt|X)

hidden	layer

input	layer

						output	layer

hidden	layer

input	layer

						output	layer

Figure 6: CascadeEnsemble (CascEns-LSTM) architecture. The unidirectional and bidirectional

models comprise one input, hidden, and output layer.

and (ii) Eat as Other. In case (i), the misclassification occurred in a borderline situation

when two similar activities were executed approximately in the same area; in case (ii),330

the misclassification may have been due to the imbalance in the number of occurrences

between the two activities (i.e., generally a higher number of observations of Other

with respect to other classes).
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Figure 9: Averaged accuracy and standard deviation of each dataset over all three folds.
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Table 5: LSTM results: accuracy, precision, recall, and f1-score for each of the five datasets.

Metric Model Dataset

Milan Cairo Kyoto2 Kyoto3 Kyoto4

A
cc

u
ra

cy
(%

)

LSTM 93.42 83.75 69.76 88.71 85.57

Bi-LSTM 94.12 86.90 74.37 93.25 85.82

Casc-LSTM 92.55 79.94 66.92 85.42 83.97

Ens2-LSTM 94.24 86.23 74.22 93.38 86.02

CascEns-LSTM 93.60 83.66 70.06 88.47 85.20

P
re

ci
si

o
n

(%
)

LSTM 93.67 83.33 70.00 88.67 85.67

Bi-LSTM 94.00 86.67 75.00 93.33 86.00

Casc-LSTM 92.00 79.33 68.33 85.67 83.67

Ens2-LSTM 94.33 86.33 74.67 93.67 86.33

CascEns-LSTM 93.33 84.33 70.33 86.67 85.00

R
ec

a
ll

(%
)

LSTM 93.67 82.33 71.00 88.33 85.33

Bi-LSTM 94.00 87.00 74.33 93.33 86.00

Casc-LSTM 92.67 80.00 67.00 85.67 84.00

Ens2-LSTM 94.33 86.33 74.33 93.33 86.00

CascEns-LSTM 93.33 84.00 70.33 88.00 85.33

f1
-s

co
re

(%
)

LSTM 93.33 83.33 69.67 88.33 85.33

Bi-LSTM 94.00 86.67 74.33 93.33 86.00

Casc-LSTM 92.00 78.67 66.00 85.33 83.33

Ens2-LSTM 94.00 86.00 73.67 93.33 86.00

CascEns-LSTM 93.33 83.67 69.67 88.33 85.00
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Figure 10: Confusion matrices of the Milan dataset for Uni-LSTM (Figure 10a), Bi-LSTM (Fig-

ure 10b), Casc-LSTM (Figure 10c), Ens2-LSTM (Figure 10d), and CascEns-LSTM (Figure 10e)

approaches: rows are the true classes; columns are the predicted ones. Below, the percentage

number of occurrences for each class is reported: Bathing = 14.95%, Bed to toilet = 2.09%, Cook

= 13.03%, Eat = 0.52%, Leave home = 5.03%, Relax = 10.06%, Sleep = 2.26%, Take medicine

= 1.41%, Work = 1.81%, and Other = 48.84%.
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Figure 11: Box plot computation time training phase (s x epoch) for all datasets and all LSTM-

based methodologies.

5.1. Computation time

Figure 11 shows the box plot of the computation time, for each epoch, for the335

training stage of all datasets. All the experiments are reproducible, and they were

performed using Intel Core i7-4790 CPU 3.60GHz with 16GB of RAM and NVIDIA

GeForce GTX 970.

The training stage of the Uni-LSTM was faster than that of the other LSTM-based

methodologies. The computation time increases when the complexity of the model340

grows.

Figure 12 shows the computation time for testing the LSTM-based methodologies,

considering the five employed datasets. The testing time was averaged over the three-

fold cross-validation.

5.2. Comparison with other DL approaches345

The proposed LSTM-based methodologies were compared with respect to one-

dimensional CNN, widely employed for HAR, using multimodal time series data [31,

38].
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Figure 12: Computation time testing phase averaged over the threefold cross-validation.

The CNN architecture encapsulates at least one temporal convolution layer, one

pooling layer, and at least one fully connected layer, followed by a top-level softmax350

group [38].

We regularised the CNN to avoid overfitting. In particular, we applied a dropout

strategy after each max-pooling or fully connected layer, according to [38], and a max-

in norm regularisation as suggested in [61]. Thus, we performed three experimental

tests:355

1. CNN1: the dropout probability of the i-th layer pidrop fixed to 0.2 for all layers;

2. CNN2: p1drop = 0.1, p2drop = 0.25, pi>2

drop = 0.5;

3. CNN3: max-in norm regularisation and p1drop = 0.1, p2drop = 0.25, pi>2

drop = 0.5

[38].

Table 6 shows the CNN results for each dataset, as compared with the standard360

Uni-LSTM.

The Uni-LSTM overcomes all the CNN-based models for all the considered datasets.
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Table 6: CNN results: accuracy, precision, recall, and f1-score for each of the five datasets.

Metric Model Dataset

Milan Cairo Kyoto2 Kyoto3 Kyoto4

A
cc

u
ra

cy
(%

) Uni-LSTM 93.42 83.75 69.76 88.71 85.57

CNN1 75.03 70.67 58.56 77.68 69.39

CNN2 68.33 74.16 58.54 73.92 61.82

CNN3 62.50 69.23 49.65 71.93 59.34

P
re

ci
si

o
n

(%
) Uni-LSTM 93.67 83.33 70.00 88.67 85.67

CNN1 73.67 70.00 57.00 76.33 67.00

CNN2 64.33 73.33 59.33 71.66 59.33

CNN3 61.66 66.33 50.33 71.66 58.00

R
ec

a
ll

(%
) Uni-LSTM 93.67 83.67 70.00 88.67 85.67

CNN1 75.00 70.67 58.67 77.67 69.33

CNN2 68.33 74.00 58.67 73.67 62.00

CNN3 62.66 69.33 49.67 72.00 59.33

f1
-s

co
re

(%
) Uni-LSTM 93.33 83.33 69.67 88.33 85.33

CNN1 73.66 69.67 57.33 76.67 67.00

CNN2 65.66 72.66 57.67 72.33 56.67

CNN3 61.66 67.00 49.33 71.33 58.67

This can be explained by the potential of LSTM to capture long-term temporal depen-

dencies of human action, achieving the best human activity prediction.

Figure 13 shows the confusion matrices of the CNN-based models for the Milan365

dataset. It is noted that the misclassified activities increase by employing CNN models.

Generally, the CNN1 model was less affected by class unbalance and performed better

than the CNN2 and CNN3 models for the Milan dataset. In addition to the misclassified

activities in common with LSTM approaches (i.e., Bed to toilet as Bathing, Eat as

Other), CNN models were unable to correctly classify Take medicine and Work, which370
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were always confused with the majority class Other.
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(d) CNN3

Figure 13: Confusion matrices of the Milan dataset for CNN1 (Figure 13b), CNN2 (Figure 13c),

and CNN3 (Figure 13d) approaches: rows are the true classes; columns are the predicted ones.

Below, the percentage number of occurrences for each class is reported: Bathing = 14.95%, Bed

to toilet = 2.09%, Cook = 13.03%, Eat = 0.52%, Leave home = 5.03%, Relax = 10.06%, Sleep =

2.26%, Take medicine = 1.41%, Work = 1.81%, and Other = 48.84%.
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5.3. Comparison with other ML approaches

Table 7 shows the comparison between the proposed LSTM approach and the ML

methods employed in [16].

Table 7: NB, HMM, CRF, and LSTM recognition accuracies for each of the five datasets.

Dataset NB (%) HMM (%) CRF (%) LSTM (%)

Milan 76.65 77.44 61.01 93.42

Cairo 82.79 82.41 68.07 83.75

Kyoto2 63.98 65.79 66.20 69.76

Kyoto3 77.50 81.67 87.33 88.71

Kyoto4 63.27 60.90 58.41 85.57

The LSTM model outperformed ML methods for all considered datasets. For Milan375

and Kyoto4, the LSTM achieved the highest improvement (Milan: 16.77%, 15.98%,

32.41%; Kyoto4: 22.30%, 24.67%, 27.16%) compared to NB, HMM, and CRF.

6. Discussion and Conclusions

The results presented in this paper show that the applied DL approach based on

LSTM can lead to a viable solution to improve significantly the ADLs’ recognition380

task in the smart home scenario.

In particular, after a comprehensive comparison with the best recent literature fo-

cused on HAR techniques, the LSTM methodology applied to the CASAS datasets

evidently outperforms both alternative DL approaches (i.e., DNN, CNN) and existing

traditional ML techniques (i.e., NB, HMM, CRF).385

Starting from the standard LSTM formulation, we explored more complex LSTM-

based models in order to improve the generalisation performance of HAR prediction.

However, the increase in complexity did not always lead to a significant improvement

of performance. Even if the metrics of all proposed LSTM models (excluding Casc-

LSTM for Kyoto2) are very close to each other for every dataset, the best results were390

achieved by Bi-LSTM and Ens2-LSTM models. This result confirms how future input
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information is typically also useful for HAR. The Bi-LSTM exploits all available input

information in the past and future of a specific time frame. Moreover, the Ens2-LSTM

slightly overcomes the Bi-LSTM in all datasets with the higher number of occurrences

(i.e., Milan, Kyoto3, and Kyoto4; see Table 3). However, a unique best performer395

model did not emerge across the different CASAS datasets, which display several real-

life challenges. Even though the nature of the collected data is the same, other factors

may have affected the performance of the LSTM models, such as the number of resi-

dents, the number and type of sensors, the number of different activities, and the dura-

tion of test days. Additionally, the proposed LSTM methodology is consistent with the400

highly unbalanced setting of the smart home dataset, without requiring data augmenta-

tion techniques. Results show that the LSTM approaches are able to better generalise

across different samples of the same user. This is the case of the Milan dataset, where

there was only one inhabitant. Accordingly, the performance of the LSTM models

decreased in the Cairo and Kyoto datasets, where the activities of two/three residents405

were monitored. This suggests that in future works, the proposed approach has consid-

erable opportunities for improvement and could be easily adapted and implemented for

better multi-user activity recognition. Hence, a multi-task approach may be proposed

for discriminating ADLs while learning the subject variability.

The performed comparison with respect to the one-dimensional CNN outlines the410

main advantage of the proposed methodology. The geometry of convolutional kernels

restricts the captured range of dependencies between data samples, while the LSTM

overcomes this limitation by exploiting their internal memories to capture long-range

dependencies in variable-length input sequences.

The comparison with respect to traditional ML literature employed in [16] outlines415

the ability of the LSTM to automatically extract spatio-temporal information while

reducing the time-consuming effort for preprocessing data and handcrafted features

extraction. For instance, considering the same setting (i.e., Kyoto), the most improve-

ment of the LSTM with respect to ML was achieved in Kyoto4, where a higher number

of test days and activities were considered. This is in line with the advantage of DL420

approaches in terms of learning a representation of a huge amount of data with a large

number of classes.
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Future work could also test other similar datasets (e.g., [50]) that have already been

used in literature for the HAR task [31].

In conclusion, given the evidenced, almost-equal HAR task performance, it would425

be advisable to prefer the LSTM-based model that offers fewer parameter complexities

and computational costs.
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