
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Date of publication xxxx 00, 0000, date of current version 2019 08, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Design and implementation of a
convolutional neural network on an edge
computing smartphone for human
activity recognition
TAHMINA ZEBIN1, PATRICIA J. SCULLY 2, (Member, IEEE), NIELS PEEK3, ALEXANDER J.
CASSON4, (Senior Member, IEEE), and KRIKOR B. OZANYAN4, (Senior Member, IEEE)
1School of Computing Sciences, University of East Anglia, Norwich, UK (e-mail: t.zebin@uea.ac.uk)
2School of Physics, NUI Galway, Ireland (e-mail: patricia.scully@niugalway.ie)
3 Health eResearch Center, University of Manchester, UK (e-mail:niels.peek@manchester.ac.uk)
4 Department of Electrical and Electronic Engineering, University of Manchester, UK (e-mail:alex.casson, k.ozanyan@manchester.ac.uk)

Corresponding author: Tahmina Zebin (e-mail: t.zebin@ uea.ac.uk).

ABSTRACT Edge computing aims to integrate computing into everyday settings, enabling the system
to be context-aware and private to the user. With the increasing success and popularity of deep learning
methods, there is an increased demand to leverage these techniques in mobile and wearable computing
scenarios. In this paper, we present an assessment of a deep human activity recognition system’s memory
and execution time requirements, when implemented on a mid-range smartphone class hardware and the
memory implications for embedded hardware. This paper presents the design of a convolutional neural
network (CNN) in the context of human activity recognition scenario. Here, layers of CNN automate
the feature learning and the influence of various hyper-parameters such as the number of filters and filter
size on the performance of CNN. The proposed CNN showed increased robustness with better capability
of detecting activities with temporal dependence compared to models using statistical machine learning
techniques. The model obtained an accuracy of 96.4% in a five-class static and dynamic activity recognition
scenario. We calculated the proposed model memory consumption and execution time requirements needed
for using it on a mid-range smartphone. Per-channel quantization of weights and per-layer quantization
of activation to 8-bits of precision post-training produces classification accuracy within 2% of floating-
point networks for dense, convolutional neural network architecture. Almost all the size and execution time
reduction in the optimized model was achieved due to weight quantization. We achieved more than four
times reduction in model size when optimized to 8-bit, which ensured a feasible model capable of fast
on-device inference.

INDEX TERMS Convolutional Neural Networks, Edge Computing, TensorFlow Lite, Activity Recogni-
tion, Deep Learning.

I. INTRODUCTION

DEEP learning techniques have been applied to a va-
riety of fields and proved their usefulness in many

applications such as speech recognition, language modelling
and video processing. Models such as Convolutional Neural
Networks (CNN), and Recurrent Neural Networks (RNN)
employ a data-driven approach to learning discriminating
features from raw sensor data to infer complex, sequential,
and contextual information in a hierarchical manner [1]. They
are highly suited for exploiting temporal correlations in data

sets that makes them suitable for applications such as human
activity recognition (HAR) classification, where potentially
a large amount of data is available; human movements are
encoded in a sequence of successive samples in time; and the
current activity is not defined by one small window of data
alone. In recent years machine learning methods used in the
literature for HAR have effectively analyzed human activities
for domains such as ambient assisted living (AAL), elder
care support, smart rehabilitation in sports, and cognitive
disorder recognition systems in smart healthcare [1], [2].

VOLUME 8, 2019 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

Despite significant research efforts over the past few decades,
activity recognition remains a challenging problem. Sensor
embodiment and low accuracy of activity recognition is one
of the challenges that affect the adoption of these systems
in clinical settings [3]. Other than that, many of the state-
of-the-art learning methods (e.g. support vector machines
(SVM), decision trees, k-nearest neighbour algorithms, and
advanced ensemble classifiers) need extensive pre-processing
and domain knowledge to handcraft and calculate discrim-
inating features to be used by a classifier [4]. However,
deep learning remains under-explored as a research field in
terms of raw time-series processing of inertial sensor data for
activity recognition [5].

In this paper, we devise a feature-less activity recognition
system with a novel multi-channel 1-D convolutional neural
network architecture and substituted the manually designed
feature extraction procedure in HAR by an automated fea-
ture learning engine. Compared to deep architectures such
as recurrent neural networks and long short term memory
networks, CNNs have the most straight-forward training
process. In addition, some of the current edge development
boards such as SparkFun Apollo3 [6] chip has support for
CNN acceleration for edge use. For our design, we exploit
the fact that CNN can discover intricacies in the data char-
acteristics with its convolution (which computes a mixture
of nearby sensor readings), and pooling operation (which
makes the representation invariant to small translations of
the input). The implemented architecture in this paper is
novel in its use for time series data analysis and its use
of batch normalization for HAR with the CNN architecture
when compared to ones reported in the literature. We then
extend the trained models implementation on a smartphone
to provide a proof of concept of transferring the capability of
deep learning models on edge devices. We also consider the
memory footprint optimization for the network to run on a
mobile and embedded wearable device.

The remaining sections of this paper are organized as
follows. In Section II we review current sensor-based activity
recognition using deep learning methods. Design insights are
derived from the review of the related work and we provide
a description of the dataset for the implemented network in
this section. Section III gives details on the proposed CNN
algorithm, and discusses the necessary background concepts
for understanding the design of the CNN model. The in-
fluence of important hyper-parameters such as the number
of convolutional layers, filter size and number of filters are
explored in Section IV using a grid search method. Based on
the performance of the proposed CNN model, the optimal pa-
rameters for the final design are selected. Section V presents
the challenges, model graph analysis for memory require-
ment, and quantization approach applied on the trained deep
model for its implementation on an edge device. Finally, the
quantized model performance is evaluated as a smartphone
app implementation for activity recognition in Section VI.

II. BACKGROUND
In traditional machine learning models based on static and
shallow features, several authors [7], [8] provided a broad
summary of HAR, highlighting the capabilities and limi-
tations of a number of statistical machine learning models
such as Support Vector Machines (SVMs), Gaussian Mixture
Models (GMMs) or Hidden Markov Models (HMMs) [4],
[9]. One of the main shortcomings the developers faced was
that they had to decide adequate features for the task by
trial and error. To overcome this handcrafting, researchers
have moved towards deep learning models where the feature
extraction process is included in its modelling.

A. RELATED DEEP LEARNING WORKS
Convolutional networks comprised of one or more convo-
lutional and pooling layers followed by one or more fully-
connected layers, have gained popularity due to their ability
to learn unique representations from images or speeches, cap-
turing local dependency and distortion invariance [10]. CNN
has recently been applied to the problem of activity recog-
nition in a number of research papers. In order to provide
an automated activity recognition system with a novel multi-
channel 1-D convolutional neural network architecture with
high accuracy; this section reviews a number of recent studies
employing deep learning models such as convolutional and
recurrent neural networks to classify activities using data
from one or more wearable inertial sensors.

Ordonez and Roggen [9] proposed an activity recognition
classifier using Deep CNN and long short-term memory
(LSTM) and two open datasets collected by seven inertial
measurement units and 12 triaxial accelerometer wearable
sensors. The authors classified 27 hand gestures (opening
door, washing dishes, cleaning table etc.), and five move-
ments (standing, walking, sitting, lying, and nulling) using a
combination of CNN and LSTM after converting the sensory
data into sensor signal graphs. Simulation results showed that
F1 score of 0.93 and 0.958 was achieved. F1 score is the
harmonic mean of precision and recall performance (formu-
lation provided in equation (4)). Ronao et al. [10] first at-
tempted the design of CNN with convolutional layers applied
along the time axis and overall the sensors simultaneously,
called temporal convolution layers. They used two or three of
these layers followed by a pooling layer and a softmax classi-
fier. We have previously developed a context-aware algorithm
using multi-layer LSTM [11] which achieved an overall
accuracy of 92% for static and dynamic daily life activities,
however, for edge implementation, the network has quite
high computational cost and memory requirement. Though
the use of batch normalization accelerated the computation
to an extent, it would require further acceleration before it
is used for real-time predictions. Reuda et al. [12] com-
pared several concurrent methods that implemented a CNN
based architecture, showing better performance compared to
shallower or handcrafted methods using Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA),
K-Nearest Neighbor (KNN), SVMs. A detailed review of few

2 VOLUME 8, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

TABLE 1. Division of the dataset.

Data set Description
Raw Data size 10000 activity windows of size 1x128 (Data

Matrix dimension : 10000x128)
Training set size 7500 windows (Training matrix dimension

@ 7500x128)
Validation set size 20% of the training dataset 5-fold cross-

validation)
Training set size 2500 windows (Test matrix dimension :

2500x128)
Training labels Range: 1-5 (Five ambulatory activities)
Test labels Range : 1-5

other deep learning methods are available in [1], [13], [14]. It
is noted that evaluation of most of the architecture described
so far is performed on publicly available datasets such as
the Opportunity [15], Pamap2 [16], and UCI HAR dataset
[17]. One major issue is that some of these datasets contain
too many sensors combined with overtly variant activities,
that lacks a balanced number of support instances in each
category to be efficiently detected by any deep learning
algorithms. Hammarela et al. [18] used CNNs to classify
activities using data from multiple inertial sensors on the
body. This performed well, and was optimized for low-power
devices, but reintroduced the extraction of handcrafted fea-
tures by using a spectrogram of the input data, and it requires
multiple sensor devices (whereas in a real-life scenario, we
base our work on the assumption that people would wear just
one unit at any time).

In this paper, we aim to derive a sensor independent deep
learning method that is highly accurate and fast in its decision
making. For that, we designed and discussed through the
methodological steps for implementing a robust model on a
balanced dataset, and then moved towards the edge imple-
mentation.

B. DATASET DESCRIPTION
As the dataset, we processed the time series data from a waist
mounted inertial sensor containing both accelerometer and
gyroscope measurements. Data from 20 subjects were used,
further details on this can be found in ref [4]. The dataset is
grouped together to classify five everyday activities: 1: walk
on a level surface; 2: walk upstairs; 3: walk downstairs; 4:
sedentary (stand+ sit); 5: sleep (lying). We used a custom
wearable setup with MPU-9150 sensor [19] and captured
3-axial linear acceleration and 3-axial angular velocity at
a constant rate of 50Hz. We sampled the data from 14
volunteers, with approximately 7500 labelled activities as
training data, and data from an additional 6 volunteers, 2500
labelled activities, as a test dataset (summary presented in
Table 1). The test set was separated entirely from the training
dataset during our experiments. In addition, to avoid over-
fitting the model, 20% of the training dataset was held back
for validation.

C. DATA PRE-PROCESSING STAGES
With wearable inertial sensor being our data source, the raw
dataset contains values with different units and ranges with

accelerometer recorded in m/s2 and gyroscope data recorded
in rad/s. The sensor signals (accelerometer and gyroscope)
were pre-processed by applying a Butterworth low-pass fil-
ter with 0.3 Hz cutoff frequency to remove low frequency
gravity component from the acceleration. We performed the
following pre-processing on our training and test datasets:

1) Scaling and Normalization
To avoid any kind of training bias due to the direct use of
large values from any of the six channels, we applied scaling
across the channels. This converted all the channel values
to a range between 0 and 1, by application of a min-max
normalization function from the python sklearn library for
this purpose. To be noted, as we maintained a consistent
location for sensor placement during our data collection, the
model provides accurate prediction for that sensor location
(e.g. wrist or pelvis) only. However, the model is adaptable
to reasonable amount of displacements since the scaling and
normalization stage takes care of the amplitude variation.
Additionally, the algorithm can deal with any change in
sensor orientation due to raw time series processing from
each channel.

2) Segmentation
Once the scaling on the raw data is performed, the six-
channel input time series is segmented as 1x128 windows so
that the convolutional filters could explore any temporal rela-
tionship between the samples within an activity. Our choice
on the optimum window size was made in an adaptive and
empirical manner [20], [21] to produce good segmentation
for all the activities under consideration.

3) Class relabeling and One-Hot encoding
We also converted the output activity labels to One-Hot
encoded labels. We encoded our activity windows to five
unique labels as discussed previously in the dataset descrip-
tion section. These pre-processing stages is also summarized
in the preprocessing stage of Fig. 1.

III. THE PROPOSED HAR CLASSIFICATION MODEL
BASED ON CNN ARCHITECTURE
A schematic diagram of our four-layer stacked CNN archi-
tecture used for multi-class HAR classification is presented
in Fig. 1. We selected the CNN architecture due to its
capability to process raw time-series data, error handling with
backpropagation, and high model accuracy.

A. MODEL IMPLEMENTATION
We stacked a total of four convolution and pooling layers
in the proposed model, to obtain more detailed features than
obtained by a previous layer. In our design, we doubled the
number of filters after each convolution and pooling layer.
The feature map extracted by the filters of the final CNN
layer wass then flattened out to be used as an automatically
extracted feature set by any other classifier. The six-channel
input time-series (segmented as 128 samples/window for

VOLUME 8, 2019 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

FIGURE 1. Layer-wise specification of the CNN architecture used for multi-class HAR classification.

each channel) from 3-axis accelerometer and 3-axis gyro-
scope were processed by a number of convolution filters.
These filters create a non-linear, distributed representation of
the input and are of variable filter size. These are then be
applied over the entire input time series with a specific stride
length. Then a max-pooling layer is used to down-sample the
temporal features (such as slopes/changes in the time series
signal) that the convolution layer has just extracted. For a
given training dataset, our objective is to find the optimal
parameters to minimize the difference between input and
reconstructed output over the whole training set. To apply
CNN to human activity recognition, there is a need for several
design adjustments for 1-D adaptation for processing the

sensor data such as input adaptation, pooling, and weight-
sharing. The subsections below discuss several adaptations
and processing stages of the proposed convolutional neural
networks for the activity classification task in hand.

B. CNN FEATURE EXTRACTION

In the CNN architecture, the internal representation of the
input is implicitly learned by the convolutional kernels. The
convolution and a sub-sampling or pooling operations inher-
ently enable CNN to perform as a good feature predictor.
As mentioned previously section III-A, we have used a four-
layer stacked convolution and pooling for extracting features
from the raw wearable sensor data. In Fig. 2, an elaboration

4 VOLUME 8, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

of the convolution and subsampling (i.e. max-pooling) oper-
ation on the time series data is illustrated. In the convolution
layer, multiple non-linear transformations (n transformations
for n filters) are applied on the input, each one creating a
different output map. In a sub-sampling layer with specific
pool size (e.g, 1x2), each of the outputs of the previous layer
is down-sampled by a procedure of striding over on non-
overlapping regions of the input. This procedure is usually
an averaging or maxing of each region that creates a single
output. Since each point of the output is created by a region
of the input and these regions don’t overlap, a down-sampling
occurs.

Every layer gets an input (1-D array), and all operations
are performed in segments and windows of this input. This
procedure exploits the prior idea that data points that carry
related or similar information will be grouped by a specific
filter or kernel. There are shared weights in each layer, that
are identically applied to all parts of the input. This defines
the functionality of CNN, since the 1-D input is convolved
with a small matrix of weights to produce the output of the
layer, acting as a filter. In this context, convolution extracts
features, while pooling recombines the extracted information
in a more meaningful way. Together they extract specific
features over the whole input window. This operation exploits
the assumption that a filter that is useful in one part of the
signal is probably useful in other parts of it. This design
choice vastly decreases the number of trainable parameters
and contributes to the high accuracy during the training of the
network. Because of the consecutive pooling procedures in
each layer, the output becomes increasingly sensitive to small
variations of the input, which eventually help identify unique
time domain events for activity classification. A further level
of abstraction can be achieved by stacking up a couple of
these layers. To be noted, the model was implemented using
the Keras open source library in Python [22] with tensorflow
back-end. We utilized the sequential model and the dense,
conv1D, maxooling1D, dropout, and batch normalization
layers for our implementation.

IV. ABLATION STUDY: HYPER-PARAMETER TUNING
AND CLASSIFICATION PERFORMANCE
We present the influence of important hyper-parameters such
as the number of convolutional layers, number of convolu-
tional kernels (i.e. filters), and filter size in this section. We
evaluated the model performance by varying a number of
model parameters and observed their effect on the detection
speed and accuracy. Based on this ablation study on the
proposed architecture, the optimal parameters for the final
design are selected.

A. HYPER-PARAMETER TUNING
The hyper-parameters of a convolutional layer are its filter
size, depth, stride, and padding. These parameters must be
chosen carefully in order to generate a highly accurate and
fast output. The hyper-parameters of the pooling layer are
its stride and pooling size. Since they have to be chosen in

FIGURE 2. Elaboration of convolution and sub-sampling (max-pooling) for
time series data in a typical CNN layer.

TABLE 2. Effect of increasing number of convolution and pooling layers.

Model constants CNN
layers

Time to
train (s)

Accuracy on valida-
tion set (%)

Filter size=1x2, 1 47.930 82%
No. of filters=12, 2 74.399 88.1%
Epoch=120. 3 104.021 90%

4 144.733 93%
5 178.790 94.9%

accordance with each other, we systematically presented the
effect of these hyper-parameters in the following sections.

1) Effect of number of layers

In a CNN, the successive layers of convolution and sub-
sampling (e.g. max-pooling) functionality aims to learn pro-
gressively more complex and specific features, with the last
layer representing the output activity classes. An increased
number of layers contributes to the depth of the network.
We varied the number of layers in our proposed model from
1 to 5. With an increasing number of layers, the accuracy
of the model increases beginning with 82% accuracy with a
single layered network and going up to 94.9% with five layers
(shown in Table 2). However, as can be seen in Fig. 3 and
Table 2, the complexity and execution time of the network
increases because of the increasing number of parameters as
the number of layers go higher.

2) Effect of number of filters and kernel size of the filter

The number of filters (i.e. convolutional kernels, n in Fig. 2)
of each successive layer increases due to down-sampling.

FIGURE 3. Change in the number of model parameters and training time with
increased number of layers in the CNN model.

VOLUME 8, 2019 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

FIGURE 4. Effect of convolutional kernel size in CNN activity classification.

TABLE 3. Effect of increasing number of filters on convolution layer.

Model Constants Number
of filters

No. of Fea-
tures

Accuracy(%)

4 Layer CNN, 6 384 89%
filter size=1x2, 12 768 90%
pooling size=1x2 20 1440 92%
(stride=2) 25 1600 95%

50 3200 96.4%

The deeper the layer, the bigger the segment or window of
the original input that affects the value of a data points in
that layer. Table 3 summarizes the model constants with a
varying number of filters and, lists the time needed to train
and the model’s performance accuracy. An increased number
of convolutional filters manifested higher accuracy due to the
added temporal scaling in features obtained by the additional
filters. The size of the filter (expressed as 1 × m in Fig. 2)
captures the temporal correspondence between neighbouring
data points within the filter. The effects of filter size on
models accuracy and execution time has been summarized
in Fig. 4 with model constants provided in the first column.
As can be seen from Fig. 4, our experiments indicate higher
model accuracy with increasing filter size until the filter size
reached (1x12) in a (1x128) activity window. The model
accuracy deteriorates with wider filter size such as (1x15)
and (1x18), since it starts to lose the temporal context of
the activity. To be noted, all the time measurement were
performed on a conventional computer with an Intel core i7
CPU (2.4 GHZ), and 3 GB memory.

3) Effect of dropout and batch normalization

Table 4 shows the effect of Dropout and Batch Normalization
(BN) on models overall performance accuracy. The batch
normalized CNN (CNN + Dropout + BN) consistently
outperforms the generic CNN model an increase 4% from

TABLE 4. Quantitative comparison of SVM, fully connected Dense Neural
Network and Versions of CNN for HAR classifications.

Learning method Input Overall
Accu-
racy(%)

Prediction
time (ms)

SVM (quadratic)
[4]

handcrafted
features

93.4% 10.6

Fully connected
MLP [4]

handcrafted
feature

91% 6.7

Generic CNN raw time series 92 % 12.6
CNN+Dropout raw time series 94 % 6.1
CNN+Dropout+BN raw time series 96.4% 3.53

FIGURE 5. Average training set accuracy over 150 epochs for the proposed
model. The batch normalized CNN is more stable in terms of accuracy than
the generic CNN.

FIGURE 6. Confusion matrix for the proposed CNN on the test dataset.

the generic CNN without BN. In addition, for an increased
number of training epochs, the CNN + Dropout + BN
achieves 95% training set accuracy four times faster (using
15 epochs) than the generic CNN (50 epochs). This is also
true for the validation data set. The reduction in training
epochs required is substantial and will be of vital importance
while dealing with bigger datasets such as [23]. Fig. 5 shows
the training set accuracy over 150 epochs for the proposed
model and the Batch Normalized CNN (seen in purple) is
more stable in terms of accuracy than the generic CNN.

B. TEST SET CLASSIFICATION PERFORMANCE

To evaluate the performance of the model, we inputted the
data from 6 volunteers as the test dataset. The test set was
separated entirely from the training dataset. In addition, to
avoid over-fitting the model with training data, 20% of the
training dataset was held back as a validation set in our
experiments.

To put our model performance in context, we presented
the confusion matrix plot in Fig. 6 for the test data set

6 VOLUME 8, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

when predictions are done with the test dataset. The rows
in the confusion matrix correspond to the predicted class
(Output Class) and the columns correspond to the true class
(Target Class). The rightmost column of the confusion matrix
presented in Fig. 6 corresponds to the class-wise precision
performance and the bottom row correspond to the recall
performance. The diagonal cells in the confusion matrix
correspond to observations that are correctly classified (TP

and TN ’s). For our test dataset, there are 324 instances of
correctly classified as walk level activity. The off-diagonal
cells correspond to incorrectly classified observations (FP

and FN ’s). For instances where the model predicted incor-
rectly, in the first column of the confusion matrix, there
were 9 instances where the model predicted walk level
activity to be walk upstairs, for 9 instances the predicted
class was sedentary and for 21 instances it was classified as
sleep category which contributed to a 10.7% false negative
instances for this class. Similarly, if we go across the row,
there are some instances where the model flagged up the false
positives (4.1%) for this category. We have also shown in
each cell the number of observations for an activity category,
and the percentage in terms of total observations available
in the full test set. From the confusion matrix, the overall
accuracy, precision and recall performance of the model can
be calculated using the following equations:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

Precision =
TP

TP + FP
. (2)

Recall or True positive rate =
TP

TP + FN
. (3)

The class-wise performance when the trained model was
exposed to a test set containing approximately 2500 new
activities and it achieved 96.4% overall accuracy when tested
with the proposed model. To show class-wise precision per-
formance, we presented the ratio of correctly predicted pos-
itive observations to the total predicted positive observations
as high precision relates to the low false positive rate. In our
case, we achieved 95.9%, 96.9% and 98.5% precision perfor-
mance for dynamic ambulatory activities as walk level, walk
upstairs and downstairs respectively. For sedentary (stand and
sit) and sleep activities the precision performance was found
to be 97.3% and 90.4% respectively.

While measuring the recall performance, ratio of correctly
predicted positive observations to all observations in the
actual/true class is calculated and the class-wise recall per-
formances for the five class scenario was 89.3%, 95.2% and
98.8%, 97.3% and 97.5% respectively. The highest precision
and recall score was obtained for the walk downstairs cate-
gory where higher data ratio provided higher confidence in
its decision making. In cases of uneven recall and precision
performance which is the case for some of our classes such
as walk level and sleep activity, an F1 score is usually more

useful indicator of performance than accuracy as this score
takes both false positives and false negatives into account and
is defined as follows:

F1 Score =
2× Precision × Recall

Precision+Recall
(4)

Our reported F1 score for the walk level, walk upstairs, walk
downstairs, sedentary, and sleep activities with the proposed
model are 92.47%, 96.04% and 98.64%, 97.3%, and 93.5%
respectively.

V. PRE-TRAINED MODEL TRANSFER ON EDGE DEVICE
The implementation of pre-trained deep learning models for
mobile computing is of special interest and has enabled
numerous applications such as smart activity tracking, in-
telligent personal assistant, real-time language translation on
smartphones and smartwatches. Recent implementations and
approaches used point-wise group convolution and channel
shuffle to effectively run on resource constrained devices
[24], several authors have proposed and implemented deep
learning models on smartphones for facial expressions de-
tection using camera data [25] or human activity detec-
tion using accelerometers built-in to smartphones [10], [26].
Commercial human activity monitoring devices, relying on
inertial sensors such as Fitbit have gained popularity for daily
activity tracking. However, the accuracy of these devices
was not satisfactory for applications such as gait analysis
or step counting for slow walking [27]. The type of the
activity might affect the accuracy as well [28], [29]. Along
with the accuracy reduction issue, models size would be
another factor to be considered seriously since very large
neural networks can be hundreds of megabytes and would
be difficult to store on device. Thus we need to minimize
the model before considering an edge implementation. In
the following subsection, we discussed the challenges of
implementing deep models on edge devices and presented
our analysis of the neural network after applying quantization
of the trained model to fit it efficiently on a smartphone.

A. CHALLENGES ON EDGE DEVICES
Most wearables have low computation power compared to
a typical smartphone due to their small form factors and
heat dissipation restrictions. Wearables also have very limited
energy constraints due to their limited battery capacity. On
the other hand, deep learning models usually require heavy
computation, regardless of their types (Dense, convolutional,
or recurrent neural networks). As a neural network model
could consist of hundreds of connected layers, each of
which can have a collection of processing elements (i.e.,
neurons) executing a non-trivial function, it requires consid-
erable computation and energy resources in particular during
streamed data processing (e.g., continuous speech translation
or inertial sensor data processing), the implementation steps
need to be re-visited in order to load them on edge devices
[30]. In this section, we aim to find out the computational re-
quirements for it to use resource-heavy modeling techniques
on a smartphone or smartwatch level hardware.

VOLUME 8, 2019 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

FIGURE 7. Steps for embedded adaptation of TensroFlow based deep learning models.

TABLE 5. Memory consumption and execution time summary by node type.

Node type Count Memory
(KB)

Avg. execution time (ms)

Conv1D weights 72 5869.953 244.813
BiasAdd 73 5869.953 244.813
ReLU 72 5869.953 5.700
MaxPool 18 358.848 5.700
Concat 1 892.096 1.081
MatMul 1 4.032 0.660
Softmax 1 4.032 0.660
Reshape 1 0 1.081

B. TOOLBOX REQUIREMENT FOR PROOF OF
CONCEPT
In our work, we have successfully enabled the inference
stage of a four layer CNN model using pre-trained and
optimized deep learning models on mobile devices using the
TensorFlow lite (TFlite) [31] library. TFlite is an advanced
and lightweight version of the TensorFlow library including
the basic operations and functionality necessary in layer-wise
neural network based computation and is made use of here as
the base deep learning library. Currently, TFlite supports a set
of core operations in both floating-point (float32) and quan-
tized (uint8) precisions, for which the latter has been tuned
for mobile platforms. Since the set of operations supported
in TFlite is limited, not every model that is trained using
TensorFlow is convertible to TFlite [32]. TFlite works on
flat buffers, where TensorFlow uses protocol buffers which
are efficient for a cross-platform serialization library but not
suitable for embedded implementations [33], [34].

We presented the required stages in the workflow in Fig. 7
where the first block corresponds to training stage of the
deep learning model on TensorFlow and the second block
encompasses the steps required to get the graph representa-
tion inference ready on an embedded platform. The rest of
the stages are required for optimization before the model can
be deployed on an edge device.

VI. MODEL ANALYSIS FOR OPTIMIZATION
A. MODEL SIZE AND SPEED OF OPERATIONS
For edge computing, only the inference stage of a complex
deep learning model needs to be performed on devices with
with limited on-board memory, computational power and
battery run time. For this reason, we conducted an investi-
gation on whether our models could be contained in an edge

computing device’s memory and the total number of floating
point operations that are required to execute the frozen graph
of the model. Table 5 lists the memory allocation analysis
based on the number of node types available on the imple-
mented model. The CNN model consumed about 16 MB
of memory when transformed and saved in TensorFlow’s
protocol buffer (.pb) format. The memory consumption anal-
ysis presented in Table 5, indicates the number of operations
(ops), and the time consumed to complete these ops. These
values provide a decision point at which we can optimize the
architecture or select for alternative models to reduce these
numbers according to the resource availability on an edge
device. The trained models were then optimized and made
graph ready to convert to TFlite. We have used TensorFlow’s
graph_transforms and summarize_graph to freeze the model
and conduct the analysis on the model’s profile and types
of operation necessary for inference. Additionally, we have
utilized tensorboard’s visualization to evaluate the graph after
each step and to identify any unsupported layer that needs
custom implementation.

B. MODEL TESTING ON SMARTPHONE

Fig. 8(a) shows ascreenshot of the implemented Android
app driven by the optimized deep model on the back-end.
Fig. 8(b) shows the absolute power consumption of the
implementation. We used Trepn Profiler [35] for these mea-
surements. The average absolute power consumption when
the app is running in the inference mode is approximately 40
mW. In comparison, the same value measured for YouTube
is around 116 mW, which suggests that our HAR android app
is relatively low power and computationally effective. For
implementing model inference stage on device, we further
reduced the model size by compressing weights and/or quan-
tize both weights and activations for faster inference, without
re-training the model.

C. OPTIMIZATION THROUGH QUANTIZATION

In this section, multiple approaches for model quantization
are discussed to demonstrate the performance impact for each
of these approaches. All these experimental scenarios were
simulated on a conventional computer with a 2.4GHZ CPU
and 32GB memory and the quantized model were tested fur-
ther on a Samsung A5 2017 smartphone (1.2 GHz quad-core

8 VOLUME 8, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

FIGURE 8. (a) Screen-shot and (b) power profile of the HAR Android app running on a Samsung A5 smartphone.

FIGURE 9. (a) Weight and activation quantization scheme, (b) Memory footprint of various deep learning models in terms of weight and activation.

TABLE 6. Change of model accuracy due to quantization, 32-bit floating point model accuracy and 8-bit quantized model accuracy.

Network Type 32-bit floating point (float32) model 8-bit fixed point (unit8) quantized model
Memory
footprint (MB)

Training
(%)

Validation
(%)

Test
(%)

Test (%) Memory
footprint
(MB)

Size
ratio

Dense Neural Network (DNN) 8.2 97.99 89.04 86.55 87.6 1.37 5.98
Long-Short Term Memory Network
(LSTM) [11]

17.4 98.38 96.69 92.2 93.51 4.1 4.24

Convolutional Neural Network (CNN) 16 99.23 95.92 96.4 93.6 2.1 7.62

CPU with 3GB memory) for its functionality on an activity
recognition app using the TFlite library. In a conventional
neural network layer implemented in TensorFlow or keras
with a floating-point representation, there are a number of
weight tensors that are constant and variable input tensors
stored as floating point numbers. The forward pass function
which operates on the weights and inputs, using floating point
arithmetic, storing the output in output tensors as a float.
Post-training quantization techniques are simpler to use and
allow for quantization with limited data [32], [36]. In this
work, we explore the impact of quantizing the weights and
activation functions separately. The results for the weight and
activation quantization experiments are shown in Fig. 9(b)
and Table 6. Moving from 32-bits float to fixed-point 8-
bits leads to 4× reduction in memory. Fig. 9(b) shows the
actual memory footprint of various learning models such as
the dense neural network (DNN), CNN and an LSTM model
built using the same dataset. As can be seen from the bar

diagram in Fig. 9(a) and from the memory footprint column
in Table 6, the CNN model was 7.62 times smaller in size
when post training quantization is applied on the weights and
activation of the model. This version would also be more
suitable for low-end microprocessors that do not support
floating-point arithmetic. Our experiments suggested that
we can variably quantize (i.e. discretize) the range to only
record some values with float32 that have more significant
contribution on the model accuracy and round off the rest to
unit8 values to still take advantage of the optimized model.
In Table 6, we also observed a slight increase in prediction
accuracy for the test dataset for DNN and LSTM models
because of the salient and less noisy weight values available
in the saved model for activity prediction. The inference time
for the optimized and fine-tuned CNN was 0.23 seconds on
an average for the detection of a typical activity window. The
table also suggests that the minimization of model parameters
may not necessarily lead to the optimal network in terms of

VOLUME 8, 2019 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

performance. This means a selective quantization approach
(e.g. using k-means clustering) can make the process more
efficient than straight linear quantization.

VII. CONCLUSION
We have presented a deep convolutional neural network
model for the classification of five daily-life activities us-
ing raw accelerometer and gyroscope data of a wearable
sensor as the input. Our experimental results demonstrate
how these characteristics can be efficiently extracted by auto-
mated feature engine in CNNs. The presented model obtained
an accuracy of 96.4% in a five-class static and dynamic
activity recognition scenario with a 20 volunteer custom
dataset available at the GitHub repository for this research
[37]. The proposed model showed increased robustness and
has a better capability of detecting activities with temporal
dependence compared to models using statistical machine
learning techniques. Additionally, the batch normalized im-
plementation made the network achieve stable training per-
formance in almost four times fewer iterations. The proposed
model has further been empirically analyzed for the memory
requirement and execution time for its operations with the
objective of deploying the model in edge devices such as
smartphones and wearables. We observed that most of the
size and execution time reduction in the optimized model are
due to weight quantization, potentially allowing them to be
quantized differently to the activations and allowing further
optimizations. In future, we would like to amend and develop
time-series counterpart of models with new and efficient
architecture similar to shufflenet [24] facilitating pointwise
group convolution and channel shuffle, to further reduce
computation cost while maintaining accuracy. The proposed
model has been validated and successfully implemented on
a smartphone. The implementation on the smartphone is
utilizing the real-time sensor data to predict the activity,
a current limitation of this pre-trained model is that the
classification accuracy decreases during activity transition
and in case of sensor displacement. In the future, we will
drive this implementation on programmable devices such as
an ARM Cortex M-series [38] systems and Sparkfun apollo3
edge platforms [6], with further development of the C++ API
in TensorFlow Lite framework [31]. The smartphone imple-
mentation presented this study could be useful for making
smart wearables and devices that are stand alone from the
cloud, potentially improving the user privacy.

ACKNOWLEDGMENT
This work was carried out at the University of Manchester
and was supported by the UK Engineering and Physical
Sciences Research Council grant number EP/P010148/1.

REFERENCES
[1] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-

based activity recognition: A survey,” arXiv preprint, 2017, 1707.03502.
[2] F. Gu, K. Khoshelham, S. Valaee, J. Shang, and R. Zhang, “Locomotion

activity recognition using stacked denoising autoencoders,” IEEE Internet
of Things Journal, pp. 1–9, 2018.

[3] C. A. Ronao and S.-B. Cho, “Deep convolutional neural networks for
human activity recognition with smartphone sensors,” in International
Conference on Neural Information Processing. Springer, 2015, pp. 46–
53.

[4] T. Zebin, P. J. Scully, and K. B. Ozanyan, “Evaluation of supervised clas-
sification algorithms for human activity recognition with inertial sensors,”
in IEEE Sensors conf., Glasgow, November 2017.

[5] N. Twomey, T. Diethe, I. Craddock, and P. Flach, “Unsupervised learning
of sensor topologies for improving activity recognition in smart environ-
ments,” Neurocomputing, vol. 234, pp. 93–106, 2017.

[6] “Sparkfun edge development board-apollo3 blue,” 2019. [On-
line]. Available: https://learn.sparkfun.com/tutorials/using-sparkfun-edge-
board-with-ambiq-apollo3-sdk/all

[7] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and
J. Zhang, “Convolutional neural networks for human activity recognition
using mobile sensors,” in Mobile Computing, Applications and Services
(MobiCASE), 2014 6th International Conference on. IEEE, 2014, pp.
197–205.

[8] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recog-
nition using body-worn inertial sensors,” ACM Comput. Surv., vol. 46,
no. 3, pp. 1–33, 2014.

[9] F. J. Ordonez and D. Roggen, “Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[10] C. A. Ronao and S.-B. Cho, “Human activity recognition with smartphone
sensors using deep learning neural networks,” Expert Systems with Appli-
cations, vol. 59, pp. 235 – 244, 2016.

[11] T. Zebin, M. Sperrin, N. Peek, and A. J. Casson, “Human activity recog-
nition from inertial sensor time-series using batch normalized deep lstm
recurrent networks,” in 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). IEEE,
2018, pp. 1–4.

[12] F. Moya Rueda, R. Grzeszick, G. A. Fink, S. Feldhorst, and M. ten
Hompel, “Convolutional neural networks for human activity recognition
using body-worn sensors,” Informatics, vol. 5, no. 2, 2018.

[13] M. Gochoo, T. H. Tan, S. H. Liu, F. R. Jean, F. Alnajjar, and S. C. Huang,
“Unobtrusive activity recognition of elderly people living alone using
anonymous binary sensors and dcnn,” IEEE J Biomed Health Inform,
2018.

[14] D. Ravi, C. Wong, B. Lo, G. Z. Yang, and Ieee, Deep Learning for Hu-
man Activity Recognition: A Resource Efficient Implementation on Low-
Power Devices, ser. International Conference on Wearable and Implantable
Body Sensor Networks, 2016, pp. 71–76.

[15] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Troster, J. del
R. Millan, and D. Roggen, “The opportunity challenge: A benchmark
database for on-body sensor-based activity recognition,” Pattern Recognit.
Lett., vol. 34, no. 15, pp. 2033–2042, 2013.

[16] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in 2012 16th International Symposium on Wearable
Computers, June 2012, pp. 108–109.

[17] M. Lichman et al., “Uci har machine learning repository,” 2013.
[Online]. Available: https://archive.ics.uci.edu/ml/machine-learning-
databases/00240/

[18] N. Y. Hammerla, S. Halloran, and T. Plotz, “Deep, convolutional, and
recurrent models for human activity recognition using wearables,” in ACM
IJCAI, New York, July 2016.

[19] “MPU-9150 product specification, Invensence Inc, CA, USA,” 2012.
[20] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, “Window

size impact in human activity recognition,” Sensors, vol. 14, no. 4, pp.
6474–6499, 2014.

[21] J. Liono, A. K. Qin, and F. D. Salim, “Optimal time window for temporal
segmentation of sensor streams in multi-activity recognition,” in Pro-
ceedings of the 13th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services. ACM, 2016, pp. 10–19.

[22] F. Chollet. (2013) Keras: The python deep learning library. [Online].
Available: https://keras.io/

[23] A. Doherty, D. Jackson, N. Hammerla, T. Plotz, P. Olivier, M. H. Granat,
T. White, V. T. van Hees, M. I. Trenell, C. G. Owen, S. J. Preece,
R. Gillions, S. Sheard, T. Peakman, S. Brage, and N. J. Wareham,
“Large scale population assessment of physical activity using wrist worn
accelerometers: The UK biobank study,” PLoS One, vol. 12, no. 2, 2017.

[24] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.

10 VOLUME 8, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2941836, IEEE Access

Zebin et al.: Design and implementation of a convolutional neural network on an edge computing smartphone

6848–6856.
[25] I. Song, H. Kim, and P. B. Jeon, “Deep learning for real-time robust

facial expression recognition on a smartphone,” in 2014 IEEE International
Conference on Consumer Electronics (ICCE), 2014, pp. 564–567.

[26] A. Ignatov, “Real-time human activity recognition from accelerometer
data using convolutional neural networks,” Applied Soft Computing,
vol. 62, pp. 915 – 922, 2018.

[27] C. K. Wong, H. M. Mentis, and R. Kuber, “The bit doesnt fit: Evaluation
of a commercial activity-tracker at slower walking speeds,” Gait Posture,
vol. 59, pp. 177 – 181, 2018.

[28] Y. Huang, J. Xu, B. Yu, and P. B. Shull, “Validity of fitbit, jawbone
up, nike+ and other wearable devices for level and stair walking,” Gait
Posture, vol. 48, pp. 36 – 41, 2016.

[29] J. Huang, S. Lin, N. Wang, G. Dai, Y. Xie, and J. Zhou, “TSE-CNN: A
two-stage end-to-end cnn for human activity recognition,” IEEE Journal
of Biomedical and Health Informatics, 2019.

[30] E. Grolman, A. Finkelshtein, R. Puzis, A. Shabtai, G. Celniker, Z. Katzir,
and L. Rosenfeld, “Transfer learning for user action identication in mobile
apps via encrypted traffic analysis,” IEEE Intelligent Systems, vol. 33,
no. 2, pp. 40–53, Mar 2018.

[31] “Tensorflow lite for mobile and embedded learning,” 2019. [Online].
Available: https://www.tensorflow.org/lite/microcontrollers/overview

[32] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient
inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[33] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” CoRR, vol. abs/1803.09492,
2018.

[34] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, “Ai benchmark: Running deep neural networks on android
smartphones,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[35] “Trepn power profiler, qualcomm developer network,” 2019. [Online].
Available: https://developer.qualcomm.com/software/trepn-power-profiler

[36] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst, “Mini-
mum energy quantized neural networks,” in 51st Asilomar Conference on
Signals, Systems, and Computers, 2017. IEEE, 2017, pp. 1921–1925.

[37] T. Zebin, “Deep learning demo,” https://github.com/TZebin/Thesis-
Supporting-Files/tree/master/Deep Learning Demo, 2018.

[38] “ARM cortex-m series processors,” 2019. [Online]. Available:
https://developer.arm.com/ip-products/processors/cortex-m

TAHMINA ZEBIN received her first degree and a
MS in Applied Physics, Electronics and Commu-
nication Engineering from University of Dhaka,
Bangladesh. She also completed a M.Sc. in Digital
Image and Signal Processing from the Univer-
sity of Manchester in 2012 and she has been the
recipient of the Presidents Doctoral Scholarship
(2013-2016) for conducting her PhD in Electrical
and Electronic Engineering. Before Joining as a
Lecturer at the University of East Anglia, Tahmina

was employed as a postdoctoral research associate on the EPSRC funded
project Wearable Clinic: Self, Help and Care at the University of Manchester
and was a Research Fellow in Health Innovation Ecosystem at the University
of Westminster. Her current research interests include Advanced image and
signal processing, Human Activity Recognition, Risk prediction modelling
from Electronic Health Records using various statistical and deep learning
techniques.

PATRICIA J. SCULLY received her PhD degree
in Engineering from the University of Liverpool,
Liverpool, U.K., in 1992, and reached Reader po-
sition with Liverpool John Moores University in
2000. She moved to the University of Manchester
as a Senior Lecturer/Associate Professor in Sensor
Instrumentation with the University of Manchester
in 2002 before moving to NUI Galway, Ireland
in 2018. She is experienced in leading industrial
and research council/government funded research

projects at national and international levels, and has research interests in
sensors and monitoring for industrial processes, including optical fibre
technology and photonic materials for sensors and devices, ranging from
functional chemically sensitive optical coatings, to laser inscribed photonic
and conducting structures in transparent materials that affect the properties
of light.

NIELS PEEK received MSc degrees in Com-
puter Science and Artificial Intelligence in 1994,
and a PhD in Computer Science in 2000, from
Utrecht University. He is currently Professor of
Health Informatics at the University of Manch-
ester. His research focuses on data-driven methods
for health research, healthcare quality improve-
ment, and computerised decision support. He has
co-authored more than 200 peer-reviewed scien-
tific publications. From 2013 to 2017 he was the

President of the Society for Artificial Intelligence in Medicine. In 2018 he
was elected fellow of the American College of Medical Informatics and
memory consumption and execution time fellow of the Alan Turing Institute,
the UK’s National institute for Data Science and Artificial Intelligence.

ALEXANDER J. CASSON received the masters
degree in engineering science from the Univer-
sity of Oxford, Oxford, U.K., in 2006, and the
Ph.D. degree in electronic engineering from Im-
perial College London, London, U.K., in 2010.
Since 2013, he has been a Faculty Member with
The University of Manchester, Manchester, U.K.,
where he leads a research team focusing on next
generation wearable devices and their integration
and use in the healthcare system. He has published

over 100 papers on these topics. He is the Vice-Chair of the IET Healthcare
Technologies Network, and a Lead of the Manchester Bioelectronics Net-
work.

KRIKOR B. OZANYAN received the M.Sc. de-
gree in engineering physics (semiconductors) and
the PhD degree in solid-state physics in 1980
and 1989, respectively. He has more than 300
publications in the areas of devices, materials and
systems for sensing and imaging. He is currently
Director of Research at the School of EEE, at the
University of Manchester, U.K. He is a Fellow
of the Institute of Engineering and Technology,
U.K, and the Institute of Physics, U.K. He was

a Distinguished Lecturer of the IEEE Sensors Council and was Editor-in-
Chief of the IEEE SENSORS Journal and General Co-Chair of the IEEE
SENSORS Conferences in the last few years.

VOLUME 8, 2019 11

