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A B S T R A C T   

This study aims to improve the management efficiency of e-commerce platform and assists merchants on the e- 
commerce platforms in formulating a suitable sales plan urgently. Online sales forecasting analysis needs to be 
studied and shows that the management efficiency and operating income on an e-commerce platform is improved 
through accurate commodity sales forecasting. A novel online clothing sales forecasting model is proposed based 
on data mining technique. This study contributes to presenting the model references for e-commerce platform to 
make decisions on future sales and directions. (1) The gray correlation model was employed to mine the cor
relation degree between each feature and the clothing sales to select the features that have a great impact on 
clothing sales. (2) A sailfish optimization algorithm (SFO) algorithm with random disturbance strategy (SFOR) 
was proposed based on the SFO to improve the prediction effect of clothing sales. The benchmark function test 
results showed that the SFOR algorithm effectively avoided local extreme points. (3) The SFOR algorithm was 
used to solve the extreme learning machine (ELM) random parameter problem, and the SFOR-ELM-based online 
sales prediction model of clothing products suitable for multiple scenarios was constructed. In addition, three 
cases are applied to verify the SFOR-ELM-based online clothing sales forecast model. The verification results 
proved that SFOR-ELM achieved satisfactory prediction results, with its mean absolute percentage error values 
controlled below 5.1% and root mean square error values controlled below 16.2%.   

1. Introduction 

The global economy has entered the era of internet information 
techniques with the rapid popularization of internet information tech
niques, accelerating the transformation of the traditional economic 
development mode based on material production and material services 
to the new economic development mode based on information pro
duction and information services (Okpoti et al., 2019; Bag et al., 2021; 
Tseng et al., 2021). Driven by internet information techniques, e-com
merce, as a brand-new business mode, has developed into a new eco
nomic growth point in countries all over the world (Boysen et al., 2019). 
Like offline sales, online sales based on e-commerce platforms are also 
highly competitive. Hence, the online platform needs to improve effi
ciency and provide customers with the most competitive price in a 
relatively short time to win customers in the current fierce competition, 
which requires the e-commerce platform to make an accurate prediction 

of future sales (Gautam and Singh, 2020; Tsoumakas, 2019; Zhang et al., 
2021). The data mining technique must be applied in a mass online 
platform database. 

At present, the literature has developed a variety of approaches to 
predict the sales of different commodities, including electricity, metals, 
clothing, agricultural products, etc. (Sano and Yamada, 2021; Giri et al., 
2019). The forecasting methods are summarized into two categories: 
qualitative and quantitative forecasting (Marathe et al., 2019; Islam 
et al., 2020). The qualitative forecasting method is used to analyse 
various information obtained from market surveys, determine the price 
influencing factors, and make estimates and judgment on prices ac
cording to the development trend of the market. The advantages of 
qualitative forecasting methods include their simplicity and speed, but 
the disadvantage is that qualitative forecasting is affected by subjective 
factors and cannot provide an accurate numerical description of the 
development of price trends. Quantitative forecasting methods, which 
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are not affected by subjective factors and focus on the analysis of the 
number of things in development, use statistical models to give a 
quantitative description of price trends based on historical statistical 
data (Choi and Lee, 2018). 

In addition, quantitative forecasting methods are based on mathe
matical statistical models, deep learning algorithms, machine learning 
models and other methods to construct prediction models. Machine 
learning models have strong generalization and mapping capabilities. 
Several kinds of machine learning models have been devised, namely 
long-short term memory (LSTM) neural network, extreme learning 
machine, support vector machine, etc. (Lai et al., 2022; El Ouadi et al., 
2022). The LSTM model is employed to predict commodity sales due to 
its powerful mapping ability. For instance, Weng et al. (2020) proposed 
a new supply chain sales forecasting method based on the LSTM model, 
which used LSTM to mine the time characteristics of supply chain sales 
data. However, Weng et al. (2020) ignored addressing the influence of 
random parameters on the forecast stability of the LSTM model. To this 
end, Shao et al. (2019) proposed an improved particle swarm optimi
zation algorithm (IPSO) that was used to reduce the volatility of random 
parameters of the LSTM to improve the prediction performance, and 
then the optimized LSTM model was applied to predict nickel prices. The 
data mining technique is used for forecasting and improves the 
performance. 

To accurately predict the sales of liquified natural gas (LNG) cylin
ders, Correia et al. (2020) constructed a combined model, which com
bined the time series model and the artificial neural network. The final 
prediction result was obtained through the Monte Carlo method. Addi
tionally, Ji et al. (2019) combined the extreme gradient boosting 
(XGboost) and the autoregressive integrated moving average (ARIMA) 
to present a hybrid model to forecast the sales of cross-border e-com
merce companies, using ARIMA to forecast the linear part and XGBoost 
to forecast the nonlinear part. Hybrid forecast models achieve a better 
fitting effect than single forecast models, however, Correia et al. (2020) 
and Ji et al. (2019) lacked to reduce the high computational cost of the 
combined model, which limits its application. To reduce the volatility of 
carbon prices, Sun et al. (2021) employed a decomposition-based 
approach to decompose the carbon price series, and the decomposed 
series were forecasted separately using the optimized neural network. 
The decomposition-based method reduces the volatility of the time se
ries to a certain extent, but the complexity of the model is increased at 
the same time. However, Sun et al. (2021) ignored addressing the 
increased complexity of the decomposition-based method. In addition, 
Zhang et al. (2021) employed a two-layer decomposition method to 
decompose the crude oil price series, which greatly reduces the 
randomness of the crude oil price series. Meanwhile, a kernel extreme 
learning machine (KELM) was used to predict the decomposed crude oil 
price series, and a PSO-based optimization strategy was applied to 
improve the predictive accuracy of the KELM. However, Zhang et al. 
(2021) did not address the computational cost of two-order decompo
sition and the limitation of PSO algorithm which easily falls into local 
extremum. Karasu et al. (2020) developed a new crude oil price fore
casting model using support vector regression (SVR), which combined 
feature extraction and multiobjective optimization techniques. Howev
er, Karasu et al. (2020) lacked to discuss the influence of super param
eters on the forecast results of crude oil prices. 

LSTM suffers from gradient disappearance in the training process, 
and the training time is too long because LSTM has a memory function. 
In addition, traditional single-hidden layer feed forward neural net
works, such as artificial neural networks, use the gradient descent 
method to correct the threshold and weight of the network in the 
training process. The gradient descent method takes multiple iterations 
to correct the parameters, resulting in a long training time and sensi
tivity to the selection of the learning rate. The network may not 
converge when the learning rate is large; conversely, the convergence 
speed of the learning algorithm becomes slow and the training time of 
the network increases when the learning rate is small. In summary, to 

overcome the shortcomings of feedforward neural networks such as slow 
learning speed and long training time, Huang et al. (2006) proposed the 
extreme learning machine model (ELM). Due to its excellent predictive 
performance, the ELM model and its variants have been used in various 
fields (Silitonga et al., 2020; Tutuncu et al., 2021; Larrea et al., 2021). 
For instance, Kardani et al. (2021) combined the ELM model and arti
ficial neural network model to forecast the permeability of tight car
bonates, however, Kardani et al. (2021) failed to consider the 
disturbance of parameter randomness on the predictive effects. There
fore, Shariati et al. (2020) applied a novel heuristic algorithm to reduce 
the randomness of parameters of the ELM model to enhance the pre
dictive stability, and employed the improved ELM model to forecast the 
compressive strength. 

To improve the predictive accuracy, Tan and Zhang (2020) adopted a 
salp swarm algorithm-based optimization strategy to reduce the influ
ence of parameter randomness. Although the model achieved accurate 
prediction, Tan and Zhang (2020) ignored that the salp swarm algorithm 
tends to fall into local solutions when solving high-dimensional prob
lems. ELM models are used not only in the field of prediction, but also in 
classification. For instance, Yahia et al. (2020) presented a hybrid 
classification approach combining wave neural network and the ELM 
model, and proved the classification approach through simulation ex
periments. In addition, Albadr and Tiun (2020) combined ELM model 
with PSO-based optimization strategy for spoken language identifica
tion. In addition, ELM is widely used in the field of commodity price and 
sales forecasting. For instance, Chai et al. (2021) proposed an ELM- 
based carbon trading price prediction model, and used the PSO algo
rithm to optimize the model’s parameters. To accurately predict stock 
market sales, Das et al. (2022) et al. proposed a combined model that 
integrates the improved crow search algorithm and ELM. Wu et al. 
(2021) used wave transform to reduce the noise signal in the stock price 
series, and used ELM to predict the denoised stock price. To improve the 
adaptability of the model to the nonlinearity of commodity price series, 
Mohanty et al. (2021) proposed a hybrid model that combines an 
autoencoder and ELM. 

The input features have a direct impact on the prediction effect of the 
model. The stronger the correlation between input features and output 
features is, the higher the prediction accuracy of the model is. Common 
input feature selection methods include Pearson coefficient, correlation 
coefficient (Silva et al., 2022), gray correlation model (Wang et al., 
2021) and so on. For instance, Chen et al. (2022) selected the input 
features of the temperature prediction model through the Pearson co
efficient. In the process of building the battery capacity prediction 
model, Xu et al. (2021) determined the characteristics with the strongest 
correlation with the battery capacity through the gray correlation 
model. The gray correlation model is not sensitive to the number of 
samples and does not require the distribution of data. In addition, the 
gray correlation model has a small amount of calculation and a strong 
reliability. Therefore, gray correlation model has advantages in mining 
data information. 

This study proposes a novel online sales forecast model of clothing 
products based on a data mining technique to realize the accurate pre
diction of multiscene and multicommodity sales. First, to mine the 
feature factors with the highest correlation degree with clothing sales, 
the grey correlation model was applied to calculate the correlation be
tween clothing sales and each feature, and then the required feature 
factors were selected by the average correlation value. Second, an SFO- 
based improvement algorithm with stronger convergence performance 
was developed, called the SFOR algorithm. Several benchmark functions 
are employed to prove the convergence performance of the SFOR 
algorithm. 

The statistical results show that the convergence performance of the 
SFOR algorithm outperforms the state-of-the-art heuristic algorithms. 
Additionally, the SFOR algorithm is employed to solve the problem that 
the random parameters disturb ELM forecasting results, and the SFOR- 
ELM is constructed for forecasting online sales of clothing products. 
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Finally, three cases are applied to prove the SFOR-ELM model. For the 
three cases, the SFOR-ELM model obtains satisfactory results, which 
verifies the feasibility of the proposed approach. The contributions of 
this study are as follows: 

• An SFOR algorithm with strong convergence performance is pro
posed and applied to the field of commodity sales forecasting.  

• Combined with the data mining technique, the SFOR-ELM model is 
constructed to predict clothing sales. 

• The obtained outcomes contribute to providing data and model ref
erences for e-commerce platforms to make decisions about future 
sales and improving economic efficiency. 

The remaining chapters of this study are organized as follows. Sec
tion 2 mines and analyses the experimental data. Section 3 introduces 
the modelling approaches. Section 4 proves the proposed online clothing 
sales forecast method through three cases. Section 5 presents the con
tributions and limitations. 

2. Acquisition and mining of experimental data 

2.1. Experimental data acquisition 

The statistical data set used in this study comes from an e-commerce 
platform in China, which counts the sales data of various clothing 
products from May 1, 2016 to April 1, 2019. The statistical data set 
includes sales and different features that can reflect sales. The detailed 
sale data of various clothing products are shown in appendix. Among 
them, ten features that best reflect sales (S; unit: billion Yuan) are 
counted: search popularity (X1; unit: million), search heat (X2; unit: 
million), number of visitors (X3; unit: 100 million), pageviews (X4; unit: 
billion), number of favorites (X5; unit: 10 million), collection times (X6; 
unit: 10 million), number of additional buyers (X7; unit: 10 million), 
number of additional purchases (X8; unit: 10 million), customer group 
index (X9; unit: 100 thousand), transaction index (X10; unit: million). 
Features X1 and X2 refer to the number of search times of the com
modity. The higher the values of X1 and X2 are, the greater the likeli
hood that the commodity is purchased. Features X3 and X4 reflect the 
number of times of the commodity website has been visited or viewed. 
However, there is a difference in definition between X3 and X4. X3 refers 
to the number of visitors to a single IP. X4 is the number of times each 
page of the store was viewed. The indicator value of X4 is accumulated 
when a user opens or refreshes the same page multiple times. The higher 
values of the X5 and X6 are, the higher the popularity and traffic of the 
store is, and the higher the sales are. Features X7 and X8 reflect the 
number of times the commodity has been placed in the shopping cart. 

The higher values of X7 and X8 are, the more likely the commodity is 
purchased. Feature X9 helps stores locate the gap between commodities 
and the market, and analyzes the pros and cons of different industries. 
Generally, the higher the X9 is, the higher the number of buyers is. 
Feature X10 reflects the popularity of the commodity. Generally, the 
higher the X10 is, the higher the sales are. 

Additionally, this study counted the sales data of a variety of clothing 
products on the e-commerce platform, such as sweaters, pants, dresses, 
down jackets, shirts, etc. This study selected representative sweaters, 
trousers, and dresses as the research objects, and analyzed the influence 
of different features on clothing sales. The sales curves of sweaters, 
pants, and dresses from May 1, 2016 to April 1, 2019 are depicted in 
Fig. 1. 

Fig. 1 showed that the sales curve of the three clothing commodities 
shows a certain periodicity. For dresses, sales peak in May and June 
every year. For pants, sales peak in April or November each year. For 
sweaters, sales peak in November each year. To consider the periodic 
characteristics of clothing commodity sales, the annual commodity sales 
are predicted when building the forecasting model. 

2.2. Experimental data mining 

Data mining is based on interdisciplinary intersection and fusion, 
covering intelligent algorithms, machine learning models, mathematical 
statistics and other fields. The intrinsic laws in the data set can be mined 
through the analysis of massive data, fuzzy data and random data. 
Common data mining types include cluster analysis, classification and 
regression, correlation rule analysis and time series analysis. Cluster 
analysis is to gather similar data together to achieve the purpose of 
classification. Classification and regression are based on predictive ap
proaches to model unknown data. The obtained results of classification 
are discrete, while the results of regression are continuous. Correlation 
rule analysis is to study the correlation degree between items in data set. 
Time series analysis aims to study the relationship between time series. 
This research is mainly based on classification and regression in data 
mining, and correlation rule analysis to study the correlation degree 
each feature variable to sales, and to predict the sales of different 
commodities. 

Common feature extraction methods are mutual information and 
fisher score, furthermore, gray correlation model are used for input 
feature selection. In addition, gray correlation model has the advantages 
of low sensitivity to sample size and low requirement for regularity of 
data. Therefore, this study employed the gray correlation model to 
quantitatively analyze the influence of different features on sales. 

The dimensions of features and sales are different, and the quantity 
values differ greatly. Therefore, the data needs to be processed to 

Fig. 1. Sales for three commodities.  
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eliminate the differences between the data. At present, different 
dimensionless processing methods have been developed, such as initial 
value method, the extreme value method and the mean value method. In 
this study, the initial value method is applied to eliminate the differ
ences between the data, that is, the first value in the same sequence is 
divided by the subsequent data, and the values of the new sequence 
obtained are all bigger than 0. The parent sequence after data trans
formation is denoted as {S0}, and the subsequence is {Si}, then the 
correlation coefficient Ct

0 between the parent sequence and the subse
quence at time t is calculated as follows: 
⎧
⎪⎨

⎪⎩

Ct
0 =

Δmin + νΔmax
Δt

0 + νΔmax

Δt
0 =

⃒
⃒st0 − sti

⃒
⃒, (1⩽i⩽m)

(1) 

where △t
0 represents the absolute difference between the parent 

sequence and the subsequence at time t; △max is the maximum value of 
the absolute difference; v(v = 0.1) is the resolution coefficient to avoid 
distortion caused by excessive difference; △min is the minimum value 
of the absolute difference; m is the number of subsequences. 

Then the correlation degree r0 between the parent sequence S0 and 
the subsequence Si is obtained: 

r0 =
1
Nm

∑Nm

i=1
Ct

0i (2) 

where Nm is the number of data in the sequence. 
Finally, the correlation sequence of m subsequences to the same 

parent sequence can be obtained. Based on the gray correlation model, 
the calculated correlation degree is listed in Table 1. 

The selection of model input features is directly related to the pre
diction effect of the model. The prediction effect of the model will not be 
improved if the correlation between the selected input features and 
output features is poor, and the calculation cost of the model is 
increased. Through the gray correlation model, the characteristic factors 
with strong correlation with commodity sales are selected and used as 
the input characteristics of the prediction model, which can not only 
reduce the calculation cost of the model and reduce the difficulty of 
model regression, but also improve the prediction performance of the 
model. 

Table 1 showed the correlation degree values between different 
features and clothing sales. The results revealed that the correlation 
degree between X8 and sales was the highest. For three different 
clothing products, the correlation degree values between X8 and sales 
reached 0.9. Additionally, features and sales exhibited a strong corre
lation, the values of GC of X4 and X10 reached more than 0.8. The values 
of GC of X1-X2 and X5-X7 all reached 0.7. However, feature X3 exhibited 
the lowest correlation with clothing sales, and the average value of r0 
was smaller than 0.7. The information contained in X3 and X4 is 
different. The number of visitors refers to recording the number of 
unique visitors who visit the website in one day. If the same visitors visit 
the same website in one day, the number of unique visitors will not 
increase cumulatively. Pageviews refers to the number of times a visitor 
visits a page of a website in a day. If the same visitor visits the same page 
of the website multiple times in one day, the number of page views will 
increase cumulatively. When consumers browse the same website 
repeatedly, it indicates that consumers have a higher desire to buy this 

product. Therefore, X4 has the highest correlation with commodity sales 
compared with X3. To simplify the calculation of the prediction model, 
the four features most related to sales are selected as the input features of 
the model. Fig. 2 presents the relationship curve between features X4, 
X8, X9, X10 and clothing sales. 

Fig. 2 revealed that the fluctuation trend of the curves of features X4, 
X8, X9, X10 reflects the fluctuation trend of the clothing sales curve. 
Among them, the feature X8 curve has the highest fitting degree to the 
sales curve, and the fluctuation of the feature X8 curve is basically 
consistent with the fluctuation of the sales curve. 

The input features of the predictive model have a direct impact on 
the predictive effects. If the correlation degree between the input fea
tures and the output features is not enough, the predictive effect of the 
model will deteriorate; if the number of input features is too large, not 
only will it not improve the predictive effect, but also it will increase the 
amount of calculation of the model. It is necessary to mine the impact of 
different features on sales, quantitatively analyze the degree of corre
lation between input features and output features, and select the input 
features with the highest correlation degree with output features. The 
analysis results of the correlation model in Table 1 proved that the 
features X4, X8, X9, and X10 had the highest correlation degree with 
clothing sales. Hence, this study selected the features X4, X8, X9, and 
X10 as the input features of the clothing sales forecasting model. 

3. Model construction 

The online clothing sales forecasting process based on data mining 
technique is depicted in Fig. 3. 

3.1. Extreme learning machine 

Huang et al. (2006) proposed an advanced feedforward neural 
network model, namely extreme learning machine. The learning effi
ciency of the ELM model is higher compared with the traditional neural 
network model. In addition, the weights and thresholds do not need to 
be updated during the model training process, which makes the ELM 
model has the characteristics of fast training speed, simple structure, and 
strong generalization ability. On the basis of the above advantages, ELM 
model is widely used in various fields, such as fault classification, image 
recognition, life prediction, etc. The structure of the ELM model is 
presented in Fig. 4. 

Given M random samples {xi, ti}, where the input vector xi = [xi1, xi2, 
…, xiM]T ∈ Rn and the output vector ti = [ti1, ti2, …, tiM]T ∈ Rm, then the 
output function of the feedforward neural network is obtained as follows 
(Silitonga et al., 2020): 

∑Nh

i=1
ρig(wi⋅xj + βi) = oj (j = 1, 2,…M) (3) 

where Nh is the number of hidden layer neurons; βi is the bias value of 
the i-th hidden layer neuron; o is the output vector of the feedforward 
neural network; g is the activation function; ρi = [ρi1, ρi2, …, ρim]T is the 
weight vector connecting the output layer neuron and the hidden layer 
neuron; wi = [wi1, wi2, …, win]T is the weight vector connecting the input 
layer neuron and the hidden layer neuron. 

The weight vector and threshold vector are randomly initialized 

Table 1 
The results of grey correlation calculation.  

r0 

Features X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Sweaters  0.73  0.79  0.70  0.86  0.74  0.79  0.79  0.90  0.72  0.77 
Pants  0.73  0.78  0.67  0.84  0.67  0.72  0.74  0.90  0.78  0.86 
Dresses  0.74  0.70  0.65  0.84  0.70  0.76  0.72  0.90  0.81  0.82 
Average Gc  0.73  0.76  0.67  0.85  0.70  0.76  0.75  0.90  0.77  0.82  
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when the number of hidden layer neurons is equal to the number of 
training set, and the feedforward neural network can approximate the 
training output vector with 0 error, namely: 

∑Nh

i=1

⃦
⃦oj − tj

⃦
⃦ = 0 (j = 1, 2,…M) (4) 

Thus, the ELM output function of M random samples is obtained: 

∑Nh

i=1
ρig(wi⋅xj + βi) = tj (j = 1, 2,…M) (5) 

The matrix form of Equation (5) is as follows: 

Hρ = T (6) 

where H is the hidden layer output matrix as follows: 

H =

⎡

⎢
⎢
⎣

g(w1⋅x1 + β1) g(w2⋅x1 + β2) ⋯ g(wl⋅x1 + βl)

g(w1⋅x2 + β1) g(w2⋅x2 + β2) ⋯ g(wl⋅x2 + βl)

⋮ ⋮ ⋮ ⋮
g(w1⋅xM + β1) g(w2⋅xM + β2) ⋯ g(wl⋅xM + βl)

⎤

⎥
⎥
⎦ (7) 

where l is the number of neurons in the hidden layer. 
The weight vector of output layer and hidden layer is obtained by the 

least square solution of the equations (Tutuncu et al., 2021): 

min
ρ
‖Hρ − T‖ (8) 

The solution of Equation (8) is as follows: 

ρ̂ = H+T (9) 

where H+ is the generalized inverse of H. 
ELM model does not need to update the weight vector and the 

threshold vector in the iterative process, which speeds up the training of 
the ELM model. However, the random initialization of the weight vector 
and the threshold vector has an impact on the predictive effects of the 
ELM model. The number of nodes in the hidden layer of the ELM will 
increase and the prediction performance will decrease when the random 
weight vector and the random threshold vector are set incorrectly. 
Therefore, how to select the appropriate weight vector and threshold 
vector of ELM so as to give play to the best prediction performance is the 
key to achieving good predictive results. At present, most researches 
employ meta-heuristic algorithm to optimize ELM model’s random 
parameter vector. However, the convergence performance of different 
heuristic algorithms is different, so developing a novel heuristic algo
rithm suitable for forecasting the online clothing sales is necessary. This 
research uses SFOR algorithm to solve this limitation of ELM model. 

3.2. SFOR algorithm 

Sailfish is the fastest fish in the ocean, and its maximum speed can 
reach 100 km/h. In the process of foraging, the individuals of the sailfish 
school cooperate with each other to achieve the purpose of prey hunting 
by surrounding, hunting, and attacking the prey. For example, the 
sailfish school uses rostrum to alternately attack the sardine school when 
the sailfish school is preying on sardines. During this period, the sardines 
are constantly injured. The injured sardines will leave the fish school 
and be preyed by the sailfishes. Shadravan et al. (2019) proposed the 
sailfish optimization algorithm (SFO) by modeling the predation 
behavior of sailfish school and the escape behavior of sardine school. 
SFO algorithm includes initialization, elite strategy, alternate attack 
strategy, and predation strategy. 

In the SFO algorithm, the sailfish school represents the candidate 
solution set, and the variable of the problem represents the search space. 
The SFO algorithm can address optimization problems of different di
mensions, such as one-dimensional, two-dimensional, and high- 
dimensional problems. Assuming that the search space of sailfish 
school is Dim dimension, the position of the i-th sailfish when searching 

Fig. 2. Feature variables and sales.  
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in the j-th dimension space is SFi,j(i = 1,2,…,NSF), where NSF represents 
the number of sailfishes. Therefore, the position matrix of the sailfish 
school is expressed as follows (Nassef et al., 2021): 

SF =

⎡

⎢
⎢
⎣

SF1,1 SF1,2 ⋯ SF1,Dim
SF2,1 SF2,2 ⋯ SF2,Dim

⋮ ⋮ ⋮ ⋮
SFNSF ,1 SFNSF ,2 ⋯ SFNSF ,Dim

⎤

⎥
⎥
⎦ (10) 

where Dim represents the number of variables to be solved. 
The fitness value of the sailfish school is calculated using the fitness 

function as follows: 

Fit(SF) = Fit(SF1, SF2,…, SFNSF ) (11) 

where SFi represents the position matrix of the i-th sailfish. 
Then the fitness value matrix SFFit corresponding to the position 

matrix of sailfish school is obtained as follows (El Hammouti et al., 
2019): 

SFFit =

⎡

⎢
⎢
⎣

Fit(SF1,1, SF1,2,…, SF1,Dim)

Fit(SF2,1, SF2,2,…, SF2,Dim)

⋮
Fit(SFNSF ,1, SFNSF ,2,…, SFNSF ,Dim)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

FitSF1

FitSF2

⋮
FitSFNSF

⎤

⎥
⎥
⎦ (12) 

where FitSFi represents the target value of the i-th sailfish. 
The sardine school in the SFO algorithm is another important 

candidate solution set, which converges to the optimal solution through 
the cooperation of the sardines and the sailfishes. The sailfish school is 
distributed in the search space and is the key search force in the opti
mization process of the SFO algorithm, meanwhile, the sardine school 
assists the sailfish school in searching for the optimal solution. Assuming 
that sardine school is also searching in the Dim-dimensional space, the 
position of the i-th sardine in the j-dimensional space is expressed as 
SDi,j. The position matrix SD of the sardine school is as follows: 

SD =

⎡

⎢
⎢
⎣

SD1,1 SD1,2 ⋯ SD1,Dim
SD2,1 SD2,2 ⋯ SD2,Dim

⋮ ⋮ ⋮ ⋮
SDNSF ,1 SDNSF ,2 ⋯ SDNSF ,Dim

⎤

⎥
⎥
⎦ (13) 

where NSD represents the number of sardines, and the position matrix 
SD is used to store the position of each sardine. 

Similarly, the fitness value matrix SDFit is obtained through calcu
lating the fitness value of sardine school: 

SDFit =

⎡

⎢
⎢
⎣

Fit(SD1,1, SD1,2,…, SD1,Dim)

Fit(SD2,1, SD2,2,…, SD2,Dim)

⋮
Fit(SDNSD ,1, SDNSD ,2,…, SDNSD ,Dim)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

FitSD1

FitSD2

⋮
FitSDNSD

⎤

⎥
⎥
⎦ (14) 

where FitSDi represents the fitness value of the i-th sardine. 
The elite selection strategy in the SFO algorithm is used to avoid 

losing the best solution, and the best sailfish position is used as an elite 
solution in the iterative process of the SFO algorithm. During the tth 
iteration, the elite sailfish SFt

elite affects the maneuverability of the sar
dines during the predation process, thereby catching the sardines. In 
addition, the sardines will be injured during the hunting process of the 
sailfish school, and the position of the injured sardine is selected as the 
best target position. Therefore, in the elite strategy, the elite sailfish 
SFt

elite and the injured sardine SDt
injury are selected as two elite solutions to 

update the positions of the remaining sailfishes and sardines (Wankhede 
et al., 2020). 

Fig. 3. Flow chart of clothing sales forecast.  

Fig. 4. ELM model topology.  
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The sailfish suddenly attacked during the hunting process, and then 
adopted the strategy of alternate attack. Meanwhile, the sailfish update 
its position based on partner’s position, elite swordfish and injured 
sardine. At this time, the position of sailfish is as follows: 

Pt
SF = Pt

elite − θt × ((
SFt

elite + SDt
injury

2
) × rand − Pt

SFcurrent
) (15) 

where Pt
SFcurrent represents the current position of the sailfish and rand 

represents the random number between 0 and 1. θt is calculated as 
follows: 

θt = (2 × rand − 1) × dSD (16) 

where dSD represents sardine density. 
The number of sardines and the density decrease during the preda

tion process of the sailfish. The parameter dSD is calculated according to 
the number of sardines and sailfishes. 

dSD =
NSD

NSD + NSF
(17) 

The energy of the sardines is continuously reduced when the sail
fishes prey on the sardines, which weakens the sardines’ mobility and 
direction discrimination ability, thus causing the sardines to escape from 
the group and be preyed by the sailfishes. During the escape process of 
the sardines, the position of the sardine Pt

SD is updated according to the 
position of the elite sailfish and the current position, as follows: 

Pt
SD = rand × (Pt

elite − Pt
SDcurrent

+ AP) (18)  

AP = A× (1 − 2 × t × e) (19) 

where Pt
SDcurrent represents the current position of the sailfish; the 

coefficient Ap is used to represent the attack power of the sailfish; and t is 
the current iteration number. The coefficients A and e are employed to 
simulate the process of Ap linearly decreasing. 

Additionally, parameters are used to determine the number of sar
dines that need to be replaced during the iteration processes of the SFO 
algorithm. The number of replaced sardines Na and the number of var
iables Nb are calculated as follows: 
{

Na = Ap × NSD
Nb = Ap × dt

(20) 

where dt represents the number of variables in the t-th iteration. 
The attack power of the sailfish is relatively weak when Ap < 0.5, 

only the Nb variable of Na sardines needs to be updated with the new 
position; the attack power of the sailfish is relatively strong when Ap ≥
0.5, at this time, all the positions of sardines need to be updated. 

Finally, the position of the sailfish is replaced with the position of the 
sardine when the fitness value of the sardine outperforms the fitness 
value of the sailfish, as follows: 

Pt
NF = Pt

ND (if FitSDt < FitSFt) (21) 

where FitSDt and FitSFt respectively represent the fitness values of 
sardines and sailfish at the t-th iteration. 

Shadravan et al. (2019) compared the SFO algorithm with the state- 
of-the-art heuristic algorithms and proved the superiority of the SFO 
algorithm. However, the convergence result of the SFO algorithm has 
not reached the best state in the validation process of using the bench
mark functions, and its convergence ability needs to be further 
improved. 

The positions of sailfishes and sardines in the SFO algorithm repre
sent candidate solutions. The convergence range of the SFO algorithm 
becomes smaller in the later iteration, and the diversity of the solution 
becomes worse. This makes the algorithm’s ability to jump out of local 
extremes worse, causing the population to fail to converge to global 
optimal solution. To solve this limitation, this study proposed the SFO 
algorithm based on random disturbance strategy. In the iteration pro
cesses of the SFOR algorithm, the positions of the sailfishes and sardines 

are disturbed to improve the ability of the SFO algorithm to get rid of 
local extremes. The specific steps are as follows: 

(1) Set the disturbance coefficient dc that is a random number be
tween 0 and 1;  

(2) Determine whether to disturb the positions of sailfishes and 
sardines;  

(3) Update the positions of sailfishes and sardines when dc < 0.4 
using Eqs. (15) and (18);  

(4) Disturb the positions of sailfishes and sardines when dc ≥ 0.4 
using Equation (22), as follows: 

⎧
⎪⎨

⎪⎩

Pt
SF = Pt

SFcurrent + rand × (Pbest − Pt
SFcurrent

) × exp(Fit(Pbest) − Fit(Pt
SFcurrent

))

Pt
SD = Pt

SDcurrent + rand × (Pbest − Pt
SDcurrent

) × exp(Fit(Pbest) − Fit(Pt
SDcurrent

))

(22) 

where Pbest represents the global best position, Fit(Pbest) represents 
the fitness value of Pbest, Fit(Pt

SFcurrent) represents the current fitness value 
of the sailfish, and Fit(Pt

SDcurrent) represents the current fitness value of 
the sardine. 

The disturbance frequency is related to the threshold of the distur
bance coefficient. If the threshold is set too large, the influence of the 
disturbance coefficient on the algorithm will be small, resulting in poor 
diversity of the population; if the threshold is set too small, the 
computational cost of the model will increase. To balance the global and 
local convergence ability of the SFOR algorithm, the threshold of 
disturbance coefficient is set to 0.4 in this study.  

(5) Calculate the fitness values of sailfishes and sardines. 

The problem that the population diversity becomes worse in the later 
stage of the SFO algorithm is addressed through the random disturbance 
strategy. In addition, the global optimization ability and the ability to 
jump out of local extreme solutions are enhanced. 

The injured sardine SDt
injury as an elite solution in the SFO algorithm 

has a greater impact on the convergence performance. However, the 
influence of the current position of the elite sailfish and sardine is 
considered only in Equation (18). The influence of the elite solution 
SDt

injury is not considered, which affects the convergence performance of 
the SFO algorithm. Therefore, this research has improved the location 

Table 2 
Pseudocode of the SFOR algorithm.  

Initialize the positions of the sailfish school and the sardine school in the SFOR 
algorithm using equations (10) and (13). 

Calculate the fitness values of sailfish and sardines using equations (12) and (14). 
Select SFt

elite and SDt
injury. 

Start iteration 
for 1: The maximum number of iterations 
if dc < 0.4 
for 1:NSF 

Calculate θt using Equation (16). 
Update sailfish position by Equation (15). 
end 
Calculate Ap using Equation (19). 
If Ap < 0.5 
Calculate Na and Nb using Equation (20). 
Update sardines position based on Na and Nb using Equation (23). 
else 
Update the positions of all the sardines using Equation (23). 
end 
else 
Update the positions of sailfish and sardines using Equation (22). 
Calculate the fitness values of sailfish and sardines. 
Compare the best positions of sailfish and sardines using Equation (21). 
end 
end 
Output the optimal solution of the problem to be optimized.  
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update strategy of sardines to further explore the convergence ability of 
the SFO algorithm, as follows: 

Pt
SD = rand × (

SFt
elite + SDt

injury

2
× r − Pt

SDcurrent
+ AP) (23) 

where r represents a random number between 0 and 1. 
The pseudo code of the SFOR algorithm is listed in Table 2. 

3.3. SFOR-ELM model 

The analysis in Section 3.1 presented that the predictive effect of the 
ELM model was affected by the random weight vector and the random 
threshold vector. Therefore, a novel online sales forecast approach of 
clothing products was constructed using the ELM optimized by the 
SFOR-based strategy (SFOR-ELM). Data mining technique in Section 2 
was applied to select the four features that affected the clothing sales, 
and selected four features were taken as the input features of the SFOR- 
ELM model. Online sales forecast of clothing products is summarized as 
the following steps:  

(1) Count data set from e-commerce platform. The data set contains 
clothing sales and different feature factors.  

(2) Employ data mining technique to determine the features that 
have the greatest impact on clothing sales, and take the selected 
features as the input features of the SFOR-ELM model.  

(3) Divide the data set into the training set and test set of the SFOR- 
ELM model.  

(4) Set the parameters of the SFOR-ELM model.  
(5) Take mean square error (MSE) as the objective function of the 

SFOR algorithm: 

MSE =
1
ns

×
∑ns

i=1
(pi − ai)

2 (24) 

where pi is the predicted value of clothing sales; ai is the actual value 
of clothing sales; and ns is the number of samples.  

(6) Use the training set to train the online clothing sales forecast 
model.  

(7) Use the testing set to test the online clothing sales forecast model.  
(8) Analyze the predictive performance of the SFOR-ELM model 

using evaluation indicators. This study employed three evalua
tion indicators to evaluate the prediction results, as follows: 

MAPE =
1
ns

×
∑ns

i=1

⃒
⃒
⃒
⃒
pi − ai

ai

⃒
⃒
⃒
⃒× 100\% (25)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
ns

×
∑ns

i=1
(pi − ai)

2

√

(26)  

R2 = 1 −
∑ns

i=1(pi − ai)
2

∑ns
i=1(ai − pm)

2 (27) 

where pm is the predicted mean value of online clothing sales. 

4. Case studies 

4.1. SFOR algorithm convergence performance test and significance test 

A set of benchmark functions that include unimodal and multimodal 
benchmark functions are applied to prove the convergence performance 
of the SFOR algorithm, as listed in Tables 3 and 4 (Liu et al., 2021; Li 
et al., 2021). 

Table 3 presented four unimodal benchmark functions. Dim was 30, 
and the optimal value was 0. The unimodal benchmark functions do not 
have local extreme points, and only have a global optimal solution, 
which is suitable for testing the global convergence ability of the opti
mization algorithms. Table 4 showed three multimodal benchmark 
functions. The multimodal benchmark functions have more local 
extreme points compared with the unimodal benchmark functions, 
which brings challenges to the optimization algorithms. Meanwhile, 
multimodal benchmark functions are suitable for testing the ability of 
the optimization algorithm to jump out of the local extremum. 

In addition, to test the convergence effect of the proposed SFOR al
gorithm, the salp swarm algorithm (SSA) (Mirjalili et al., 2017), SFO, 
crow search algorithm (CSA) (Askarzadeh, 2016), multi-verse optimizer 
(MVO) (Mirjalili et al., 2016) proposed in recent years were selected as 
the comparison algorithms. The selected comparison algorithms are 
representative and have been applied in various fields, such as param
eter optimization and pattern recognition. 

To make the statistical results more objective, a unified platform is 
used to test the algorithms, and each algorithm is run 30 times for each 
benchmark function. The optimal value, worst value, average value, 
standard deviation (std), average value, and average running time (T) of 
the 30 running results are counted. The higher the complexity of the 
algorithm is, the longer the running time is. To this end, the complexity 
of the SFOR algorithm is analyzed by comparing the average running 
time of each algorithm. For the selected optimization algorithms, the 
maximum number of iterations and the initial population size are set to 
1000 and 30, respectively, and the remaining adjustable parameters of 
the algorithms maintain the initial values. Tables 5 and 6 list the sta
tistical results. 

Table 5 and Table 6 presented the statistical values of the unimodal 
and multimodal benchmark functions. Table 5 revealed that the SFOR 
algorithm obtained more satisfactory statistical results than the state-of- 
the-art algorithms for the unimodal benchmark functions. For f1-f4, the 
SFOR algorithm exhibited strong convergence ability, and the conver
gence values were closest to the global optimal value 0. The position 
update strategy in the SFOR algorithm of the sardine considers not only 
the influence of the elite sailfish, but also the influence of the injured 
sardine, which strengthens the search ability of the sardine. 

For multimodal benchmark functions, the statistical results of the 

Table 3 
Unimodal benchmark functions.  

Benchmark functions Optima Range Dim 

f1(u) =
∑n

j=1u2
j 0 [-100, 100] 30 

f2(u) =
∑n

j=1
⃒
⃒uj

⃒
⃒ +

∏n
j=1

⃒
⃒uj

⃒
⃒ 0 [-10, 10] 30 

f3(u) = max
⃒
⃒uj

⃒
⃒ (1⩽j⩽u) 0 [-100, 100] 30 

f4(u) =
∑n− 1

j=1 [(uj − 1)2
+ 100(uj+1 − u2

j )]
0 [-30, 30] 30  

Table 4 
Multimodal benchmark functions.  

Benchmark functions Optimal solution Range Dim 

f5(u) =
∑n

j=1[u2
j − 10cos(2πuj) + 10] 0 [-5.12, 5.12] 30 

f6(u) = − 20
∑n

j=1exp(− 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

j=1
u2

j

√

) − exp(
1
n
∑n

j=1
cos(2πuj))+ 20+ e 

0 [–32, 32] 30 

f7(u) =
1

4000
∑n

j=1
u2

j −
∏n

j=1
cos(

uj
̅̅
j

√ ) + 1 0 [-600, 600] 30  
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SFOR algorithm were more accurate than the statistical results of the 
SSA, CSA, SFO, and MVO algorithms. The SFOR algorithm converged to 
0 for f5 and f7. Although the SFOR algorithm did not converge to the 
optimal value 0 for f6, the convergence values were the most competi
tive. For the three multimodal benchmark functions, the SFOR algo
rithm obtained more accurate convergence values, indicating that the 
SFOR algorithm effectively jumped out of the local extremum solution 
during the solution process, thereby converging to an accurate result. 
The statistical results proved that the SFOR algorithm exhibited a strong 
ability to avoid local extreme points. This is because the random 
disturbance strategy enables the SFOR algorithm to ensure the diversity 
of the sailfish school and the sardine school in the iterative process, 
which improves the ability of the SFOR algorithm to jump out of the 
local extreme points. 

For the average running time, compared with the existing algo
rithms, the results of SFOR algorithm are still competitive. Whether for 
unimodal test function or multi-modal test function, the running time 
consumed by SFOR algorithm is significantly smaller than that of SFO 
algorithm, which indicates that SFOR algorithm can effectively solve 
various optimization problems and has higher efficiency. In addition, 
compared with SFO algorithm, SFOR algorithm does not increase the 
complexity of the algorithm while improving the solution effect. This is 
because the disturb strategy improves the diversity of the population 

and accelerates the convergence speed, so that SFOR algorithm can 
converge to the optimal solution at a faster speed. 

The effectiveness of the SFOR algorithm was proven by a set of 
benchmark functions, so this study employed the SFOR-based optimi
zation strategy to address the random disturbance problem of ELM pa
rameters on forecasting results. 

In this study, the widely used Wilcoxon rank-sum test was used, and 
the results obtained by each algorithm independently solving 7 test 
functions for 30 times are used as samples to judge the significant dif
ference between the results of the other four comparison algorithms and 
the results obtained by SFOR. The test P value is set to 0.05. When the 

Table 5 
The statistical results for unimodal benchmark functions.  

f Algorithm Statistical results 

Optimal convergence Worst convergence Mean convergence std T(s) 

f1 SSA 8.71E-09 1.81E-08 1.16E-08 2.22E-09  0.30 
CSA 3.45E-02 3.09E-01 8.80E-02 5.23E-02  0.12 
MVO 1.42E-01 5.11E-01 3.25E-01 1.09E-01  0.51 
SFO 2.16E-13 7.07E-10 1.41E-10 2.11E-10  1.01 
SFOR 8.89E-128 6.55E-64 2.19E-65 1.19E-64  0.18 

f2 SSA 6.12E-01 4.27 1.27 1.21  0.32 
CSA 6.90E-01 4.30 2.05 0.97  0.14 
MVO 2.21E-01 8.36E-01 4.42E-01 1.47E-01  0.41 
SFO 6.07E-06 8.59E-05 3.36E-05 2.09E-05  1.01 
SFOR 9.62E-65 1.26E-31 2.31E-32 4.22E-33  0.24 

f3 SSA 1.61 13.69 8.25 3.09  0.27 
CSA 2.42 6.53 4.22 1.06  0.11 
MVO 3.55E-01 1.65 9.13E-01 2.80E-01  0.43 
SFO 6.09E-08 8.52E-06 1.65E-06 1.23E-06  0.97 
SFOR 4.98E-62 1.91E-32 9.90E-34 3.63E-33  0.18 

f4 SSA 9.45 327.97 61.25 76.96  0.34 
CSA 25.98 610.45 106.23 119.59  0.14 
MVO 29.48 2.61E + 03 383.92 683.49  0.46 
SFO 4.50E-04 1.00E-01 2.58E-02 2.91E-02  1.01 
SFOR 7.53E-05 4.89E-01 1.47E-01 1.36E-01  0.26  

Table 6 
The statistical results for multimodal benchmark functions.  

f Algorithm Statistical results 

Optimal convergence Worst convergence Mean convergence std T(s) 

f5 SSA 18.90 114.41 59.53 20.95  0.29 
CSA 13.94 47.05 27.50 9.09  0.13 
MVO 54.89 176.25 108.25 27.87  0.46 
SFO 8.59E-11 3.22E-06 3.89E-07 7.77E-07  0.97 
SFOR 0 0 0 0  0.21 

f6 SSA 2.60E-05 3.09 1.98 0.81  0.36 
CSA 2.58 5.79 3.66 0.86  0.17 
MVO 1.46E-01 4.39 1.30 8.85E-01  0.49 
SFO 5.94E-08 1.91E-05 6.06E-06 5.37E-06  1.06 
SFOR 8.88E-16 8.88E-16 8.88E-16 0  0.26 

f7 SSA 4.34E-08 6.59E-02 1.28E-02 1.40E-02  0.37 
CSA 1.29E-01 4.79E-01 2.39E-01 8.58E-02  0.20 
MVO 3.36E-01 7.11E-01 5.60E-01 9.62E-02  0.52 
SFO 0 6.92E-11 7.99E-12 1.65E-11  1.07 
SFOR 0 0 0 0  0.32  

Table 7 
Results of Wilcoxon rank-sum.  

f SSA CSA MVO SFO 

P R P R P R P R 

f1 3.01E-11 + 3.01E-11 + 3.01E-11 + 3.01E-11 +

f2 3.01E-11 + 3.01E-11 + 3.01E-11 + 3.01E-11 +

f3 3.01E-11 + 3.01E-11 + 3.01E-11 + 3.01E-11 +

f4 3.01E-11 + 3.01E-11 + 3.01E-11 + 1.24E-04 +

f5 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +

f6 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +

f7 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +
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test value is<0.05, the hypothesis is rejected, indicating that the com
parison algorithm has a significant difference. Otherwise, the hypothesis 
is accepted, indicating that the overall optimization ability of the com
parison algorithm is the same. The test results of Wilcoxon rank-sum test 
results are shown in Table 7. 

As shown in Table 7, R is “+”, which means that the performance of 
the SFOR algorithm is better than that of the comparison algorithm. 
There are many cases where the P value is much<0.05, indicating that 
there is a statistically significant difference between the performance of 
the SFOR algorithm and other comparison algorithms. The results 
showed that the SFOR algorithm converged better than the comparison 
algorithms. 

4.2. Case 1: Pants sales forest 

On the basis of measured datasets, the feasibility and effectiveness of 
the SFOR-ELM model were proved through predicting the online sales of 
clothing products on an e-commerce platform, including pants sales data 
set, dress sales data set, and sweater sales data set. Appendix A lists the 
detailed statistical data. The statistical data from 1/5/2016 to 1/12/ 
2017 was used as the training set, and the statistical data from 1/1/2018 
to 1/4/2019 was used as the testing set. Both training data and test data 
include sales and features X4, X8, X9, X10. To verify the SFOR-ELM 
model, the predictive results of the SFOR-ELM model were compared 
with those of the ELM, LSTM, SSA-ELM, and SFO-ELM models. 

First, the SFOR-ELM model was validated using the pants sales data 
set. The pants sales data set from 1/5/2016 to 1/12/2017 was used as 
the training set, and the pants sales data set from 1/1/2018 to 1/4/2019 
was used as the test set. In the LSTM prediction process, the pants sales 

in the current month are predicted based on the pants sales in the first 
five months of the current month. From 1/1/2018 to 1/4/2019, the 
pants sales forecasting results of ELM, LSTM, SFOR-ELM, SSA-ELM, and 
SFO-ELM models are presented in Table 8 and Fig. 5. 

Table 8 presented the actual values of pants sales in different periods 
and the predictive values of ELM, LSTM, SFOR-ELM, SSA-ELM, and SFO- 
ELM models. Fig. 5 showed the predictive curves of the ELM, LSTM, 
SFOR-ELM, SSA-ELM, and SFO-ELM models. The predictive sales value 
of each model fitted well with the actual value of pants sales. In addition, 
the SFOR-ELM, SSA-ELM, and SFO-ELM models exhibited the highest 
degree of approximation to the actual value curve compared with ELM 
model’s forecasting curve. Fig. 5 indicated the sales of pants peaked in 
May and November. Businesses can set reasonable sales targets ac
cording to the sales trend of pants and guide the operation background 
to make reasonable resource allocation in advance, so as to reduce 
operation costs and improve competitiveness. 

For the forecasting effect of pants sales, the relative error values of 
pants sales forecasting results are revealed in Table 9 and Fig. 6. 

Table 9 presented the relative error values, and Fig. 6 revealed the 
relative error curve of each model. Fig. 6 presented that the fluctuation 
ranges of the error curves of the SSA-ELM, LSTM, SFO-ELM, and SFOR- 
ELM models were controlled within [-15 %, 15 %] and relatively stable. 
However, ELM model’s error curve fluctuated greatly, with the 
maximum relative error exceeding 20 %. This is because volatility of 
random parameters reduces the predictive stability of the ELM model, 
resulting in poor predictive effect of the ELM model. 

The evaluation index is calculated using Eqs. (24)-(26), and the 
calculated results are presented in Table 10 and Fig. 7. 

Table 10 presented the calculation results of the evaluation 

Table 8 
Pants sales forest results (billion Yuan).  

Date REAL ELM LSTM SSA-ELM SFO-ELM SFOR-ELM 

1/1/2018  2.53  2.56  2.48  2.62  2.68  2.66 
1/2/2018  0.96  1.22  0.85  0.94  0.94  0.96 
1/3/2018  2.52  2.53  2.59  2.42  2.55  2.57 
1/3/2018  2.63  2.64  2.69  2.58  2.69  2.66 
1/3/2018  3.32  3.35  3.26  3.61  3.70  3.55 
1/4/2018  3.26  3.24  3.18  3.36  3.29  3.25 
1/7/2018  2.72  2.73  2.72  2.51  2.61  2.58 
1/8/2018  2.33  2.34  2.34  2.28  2.19  2.35 
1/9/2018  2.62  2.63  2.62  2.59  2.64  2.59 
1/10/2018  3.71  3.66  3.58  3.87  3.89  3.81 
1/11/2018  5.26  4.71  4.49  5.06  5.14  5.25 
1/12/2018  4.77  4.38  4.21  4.70  4.62  4.65 
1/1/2019  3.14  3.12  3.04  3.13  2.95  2.98 
1/2/2019  1.50  1.66  1.46  1.56  1.57  1.49 
1/3/2019  3.05  3.02  3.03  3.03  2.88  2.97 
1/4/2019  3.12  3.10  3.10  3.17  3.09  3.10  

Fig. 5. Pants sales forecast results.  

Table 9 
Relative error of pants sales forest (%).  

Date ELM LSTM SSA-ELM SFO-ELM SFOR-ELM 

1/1/2018  1.43  2.48  3.69  6.13  5.34 
1/2/2018  26.57  0.85  − 1.59  − 2.22  0.23 
1/3/2018  0.30  2.59  − 4.15  0.91  1.91 
1/3/2018  0.69  2.69  − 1.86  2.28  1.22 
1/3/2018  0.88  3.26  8.64  11.35  6.97 
1/4/2018  − 0.60  3.18  3.17  0.90  − 0.31 
1/7/2018  0.50  2.72  − 7.69  − 3.98  − 5.09 
1/8/2018  0.39  2.34  − 2.42  − 5.97  0.92 
1/9/2018  0.43  2.62  − 1.08  0.74  − 1.02 
1/10/2018  − 1.22  3.58  4.32  4.95  2.81 
1/11/2018  − 10.45  4.49  − 3.64  − 2.16  − 0.22 
1/12/2018  − 8.11  4.21  − 1.37  − 3.06  − 2.40 
1/1/2019  − 0.54  3.04  − 0.41  − 6.05  − 5.18 
1/2/2019  10.53  1.46  3.86  4.40  − 1.17 
1/3/2019  − 1.12  3.03  − 0.76  − 5.48  − 2.63 
1/4/2019  − 0.63  3.10  1.75  − 0.89  − 0.40  
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indicators of the ELM, SSA-ELM, SFO-ELM, and SFOR-ELM models. 
Fig. 7 presented the comparison between RMSE and MAPE of each 
model. The evaluation result of the ELM model was the worst, which 
could also be seen in the forecasting curves in Figs. 5 and 6. The RMSE 
value of the ELM model exceeded 15 %, but the R2 value was the 
highest, reaching 99.43 %, indicating that ELM model’s forecast curve 
fitted the actual value curve to a high degree, but the prediction error 
was relatively large. The SFOR-ELM model achieved satisfactory pre
dictive results. Compare with the ELM, LSTM, SFO-ELM, and SFO-ELM 
models, the MAPE of the SFOR-ELM model was reduced by 1.66 %, 
1.4 %, 0.79 %, and 1.48 %. The RMSE value was reduced by 8.74 %, 
14.65 %, 2.28 %, and 4.8 %, respectively. 

4.3. Case 2: Dress sales forest 

Second, the SFOR-ELM model was validated using the dress sales 
data set. The dress sales data set from 1/5/2016 to 1/12/2017 was used 
as the training set, and the dress sales data set from 1/1/2018 to 1/4/ 
2019 was used as the test set. In the LSTM prediction process, the dress 
sales in the current month are predicted based on the dress sales in the 

first five months of the current month. From 1/1/2018 to 1/4/2019, the 
dress sales forecast results of ELM, LSTM, SFOR-ELM, SSA-ELM, and 
SFO-ELM models are shown in Table 11 and Fig. 8. 

Table 11 presented the actual values of dress sales in different pe
riods and the predicted values of ELM, LSTM, SFOR-ELM, SSA-ELM, and 
SFO-ELM models. Fig. 8 showed the prediction curves of the ELM, LSTM, 
SFOR-ELM, SSA-ELM, and SFO-ELM models. In most periods, the fit 
degree between the predicted value of the dress sales of each model and 
the actual value of the dress sales was high. However, in the period of 1/ 
6/2018, the fitting effect was poor. Additionally, similar to the fore
casting results in Fig. 5, although the dress sales forecast curve of the 
ELM model fitted the changing trend of the actual dress sales, there was 
a large deviation between the forecasting value and the actual value. 
Fig. 8 showed the sales of dresses peaked in June. Fig. 8 showed the sales 
of dresses peaked in June. Merchants can formulate corresponding sales 
strategies according to the sales trend of dresses. The operating costs are 
reduced and the competitiveness of goods is improved through rational 
allocation of sales resources. The relative error values of dress fore
casting results in Table 12 and Fig. 9. 

Table 12 presented the relative error values of dress sales foresting 
results. Fig. 9 showed the relative error curve of each model. The error 
curve fluctuation ranges of the SSA-ELM, SFO-ELM, and SFOR-ELM 
models were stable and controlled within [-10 %, 10 %]. Similar to 
the prediction results in Fig. 6, ELM model’s error curve fluctuated 
greatly due to the influence of random parameters, with the relative 
errors exceeding 5 % in most periods and the maximum relative error 
exceeding 20 %. In contrast, the prediction error fluctuations of SSA- 
ELM, SFO-ELM, and SFOR-ELM models were smaller by optimizing 
the parameters. In addition, the prediction errors of LSTM model are 

Fig. 6. Relative error curves of pants sales forest.  

Table 10 
Evaluation results for pants sales forecast.  

Approach Evaluation indicators/ % 

MAPE RMSE R2 

ELM  4.02  18.55  99.43 
LSTM  3.76  24.46  97.26 
SSA-ELM  3.15  12.19  98.56 
SFO-ELM  3.84  14.61  97.94 
SFOR-ELM  2.36  9.81  99.07  

Fig. 7. Comparison of evaluation results.  

Table 11 
Dress sales forest results (billion Yuan).  

Date Real ELM LSTM SSA-ELM SFO-ELM SFOR-ELM 

1/1/2018  2.20  2.29  2.25  2.21  2.23  2.18 
1/2/2018  1.14  1.40  1.26  1.14  1.14  1.14 
1/3/2018  3.87  4.27  4.32  3.73  3.85  3.72 
1/3/2018  4.71  5.07  5.24  4.93  5.00  4.86 
1/3/2018  6.96  6.99  7.37  7.15  7.19  7.16 
1/4/2018  7.82  7.47  7.79  7.36  7.31  7.38 
1/7/2018  6.37  6.34  6.57  6.75  6.66  6.66 
1/8/2018  4.57  4.68  4.71  4.56  4.30  4.43 
1/9/2018  3.64  3.76  3.69  3.64  3.63  3.70 
1/10/2018  3.18  3.35  3.34  3.37  3.44  3.24 
1/11/2018  3.77  3.95  3.87  3.79  3.79  3.77 
1/12/2018  3.30  3.50  3.45  3.31  3.29  3.28 
1/1/2019  3.28  3.45  3.41  3.18  3.15  3.30 
1/2/2019  2.37  2.73  2.70  2.34  2.31  2.37 
1/3/2019  5.21  5.52  5.66  5.01  5.07  5.14 
1/4/2019  6.28  6.41  6.71  6.22  6.32  6.33  
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large, which indicates that the prediction stability of the model is poor. 
The calculated results of evaluation indexes are shown in Table 13 

and Fig. 10. 
Table 13 presented the evaluation results of ELM, LSTM, SSA-ELM, 

SFO-ELM, and SFOR-ELM models for predicting dress sales. Fig. 10 
presented the comparison between RMSE and MAPE of each model. The 
evaluation results revealed that the ELM model did not get satisfactory 
evaluation results due to the influence of random parameters. The pre
dictive curves in Figs. 8 and 9 also showed a large deviation between the 
predicted and the actual values. However, the fitting effect of the ELM 

model was better, and its R2 value was the most competitive, reaching 
99.31 %. The evaluation results of the SFOR-ELM model were the most 
competitive. Compared with the ELM, LSTM, SFO-ELM, and SFO-ELM 
models, the MAPE of the SFOR-ELM model was reduced by 4.29 %, 
3.93 %, 1 %, and 0.51 %, in addition, the RMSE value was reduced by 
7.8 %, 12.65 %, 4.62 %, 2.81 %. Meanwhile, the fitting effect of the 
SFOR-ELM model was competitive, and its R2 reached 99.22 %. 

4.4. Case 3: Sweater sales forest 

Finally, the SFOR-ELM model was validated using the sweater sales 
data set. The sweater sales data set from 1/5/2016 to 1/12/2017 was 
used as the training set, and the sweater sales data set from 1/1/2018 to 
1/4/2019 was used as the test set. In the LSTM prediction process, the 
sweater sales in the current month are predicted based on the sweater 
sales in the first five months of the current month. The sweater sales 
forecast results of ELM, LSTM, SFOR-ELM, SSA-ELM, and SFO-ELM 
models from 1/1/2018 to 1/4/2019 were shown in Table 14 and Fig. 11. 

Fig. 8. Dress sales forecast results.  

Table 12 
Relative error of dress sales forest (%).  

Date ELM LSTM SSA-ELM SFO-ELM SFOR-ELM 

1/1/2018  3.77  2.01  0.24  1.15  − 1.07 
1/2/2018  22.42  10.17  0.02  − 0.20  0.18 
1/3/2018  10.42  11.72  − 3.74  − 0.62  − 3.95 
1/3/2018  7.53  11.20  4.61  6.18  3.18 
1/3/2018  0.42  5.84  2.73  3.26  2.77 
1/4/2018  − 4.50  − 0.43  − 5.86  − 6.52  − 5.66 
1/7/2018  − 0.51  3.06  6.01  4.59  4.56 
1/8/2018  2.39  2.99  − 0.28  − 5.85  − 3.02 
1/9/2018  3.26  1.55  0.04  − 0.30  1.76 
1/10/2018  5.46  4.91  5.86  8.26  1.94 
1/11/2018  4.62  2.58  0.55  0.42  − 0.01 
1/12/2018  6.02  4.64  0.31  − 0.23  − 0.35 
1/1/2019  5.26  3.89  − 3.20  − 4.10  0.64 
1/2/2019  15.29  13.89  − 1.23  − 2.37  0.16 
1/3/2019  6.01  8.63  − 3.89  − 2.68  − 1.32 
1/4/2019  2.04  6.79  − 0.99  0.60  0.82  

Fig. 9. Relative error curves of dress sales forest.  

Table 13 
Evaluation results for dress sales forecast.  

Approach Evaluation indicators/ % 

MAPE RMSE R2 

ELM  6.25  23.62  99.31 
LSTM  5.89  28.47  99.18 
SSA-ELM  2.96  20.44  98.69 
SFO-ELM  2.47  18.63  98.91 
SFOR-ELM  1.96  15.82  99.22  
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Table 14 presented the actual values of sweater sales in different 
periods and the predicted values of ELM, LSTM, SFOR-ELM, SSA-ELM, 
and SFO-ELM models. Fig. 11 presented the predictive results of sweater 
sales. For most of the time periods, the predicted value and actual value 
of each model exhibited a better fitting effect, however, in the 1/11/ 
2018 time period, the fitting effect was poor. From an overall point of 
view, the prediction curves of the ELM, LSTM, SFOR-ELM, SSA-ELM, and 
SFO-ELM models well reflected the fluctuation trend of the actual 
sweater sales curve. In addition, the predictive curve of the SFOR-ELM 
model fitted well with the true value curve of sweater sales. Fig. 11 
indicated the sales of sweaters peaked in November. Merchants can set 
corresponding sales targets according to the sales trend of sweaters. By 

mining a large amount of information contained in sweater sales his
torical data, we can make favorable decisions to deal with the fierce 
competition. 

The relative error values of online clothing sales forecasting methods 
were presented in Table 15 and Fig. 12. 

Table 15 presented the relative error values of the four online 
clothing sales forecasting approaches. Fig. 12 revealed the relative error 
curve of each model. The relative error of the SSA-ELM and SFO-ELM 
models was basically controlled in the interval [-20 %, 20 %]. The 
error curve of the SFOR-ELM model exhibited the smallest fluctuation 
range, the relative error value was basically controlled within [-10 %, 
10 %], and the curve fluctuation range was relatively stable. The relative 
error of the ELM model fluctuated greatly, and most of the relative error 
values were in the interval [-10 %, 30 %]. For the LSTM model, the 
maximum relative error exceeds 60 %, indicating that the model can not 
accurately reflect the fluctuation trend of sweater sales series. 

According to equations (24), (25) and (26), the sweater sales forecast 
results were evaluated. The calculated evaluation results of each model 
are shown in Table 16 and Fig. 13. 

Table 16 showed the evaluation results of the ELM, LSTM, SSA-ELM, 
SFO-ELM, and SFOR-ELM models for predicting sweater sales. Fig. 13 
presented the comparison results of RMSE and MAPE for each model. 
The RMSE and MAPE of the ELM model were the highest, reaching 
30.21 % and 12.37 % respectively. Figs. 11 and 12 showed a large error 
between the forecast curve of sweater sales and the true value curve. The 
SFOR-ELM model obtained the smallest MAPE and RMSE values, which 
were 5.03 % and 16.19 %, respectively. Compared with the ELM, LSTM, 
SFO-ELM, and SFO-ELM models, the MAPE of the SFOR-ELM model was 
reduced by 7.34 %, 12.59 %, 0.43 %, and 2.21 %. Additionally, the 

Fig. 10. Comparison of evaluation results for dress sales.  

Table 14 
Sweater sales forest results (billion Yuan).  

Date Real ELM LSTM SSA-ELM SFO-ELM SFOR-ELM 

1/1/2018  1.43  1.21  1.53  1.32  1.41  1.38 
1/2/2018  0.63  0.57  1.01  0.63  0.62  0.68 
1/3/2018  1.32  1.11  1.46  1.30  1.51  1.35 
1/3/2018  0.80  0.69  0.93  0.79  0.77  0.82 
1/3/2018  0.67  0.63  0.76  0.69  0.70  0.68 
1/4/2018  0.64  0.60  0.80  0.64  0.64  0.62 
1/7/2018  0.63  0.58  0.87  0.60  0.61  0.64 
1/8/2018  1.29  0.99  1.66  1.20  1.08  1.41 
1/9/2018  2.34  2.30  2.57  2.83  2.76  2.41 
1/10/2018  3.28  2.87  3.69  3.32  3.39  3.09 
1/11/2018  3.89  2.95  3.80  3.36  3.39  3.37 
1/12/2018  2.93  2.73  2.86  3.02  2.92  2.71 
1/1/2019  2.16  1.98  2.15  2.19  2.21  1.98 
1/2/2019  1.00  0.77  1.38  1.10  1.16  1.04 
1/3/2019  1.90  1.70  1.97  1.97  1.92  1.82 
1/4/2019  1.15  0.95  1.27  1.07  0.94  1.14  

Fig. 11. Sweater sales forecast results.  

Table 15 
Relative error of sweater sales forest (%).  

Date ELM LSTM SSA-ELM SFO-ELM SFOR-ELM 

1/1/2018  − 15.14  6.77  − 7.62  − 1.13  − 3.56 
1/2/2018  − 8.59  60.80  0.03  − 1.14  8.89 
1/3/2018  − 15.23  11.02  − 1.33  14.92  2.36 
1/3/2018  − 12.93  16.86  − 1.38  − 3.00  2.82 
1/3/2018  − 6.47  13.55  2.96  4.38  1.48 
1/4/2018  − 5.44  25.31  1.02  0.25  − 3.28 
1/7/2018  − 6.71  38.98  − 3.45  − 2.40  2.15 
1/8/2018  –23.30  28.92  − 7.21  − 16.50  9.65 
1/9/2018  − 1.61  9.70  20.90  17.69  3.08 
1/10/2018  − 12.37  12.58  1.28  3.49  − 5.66 
1/11/2018  − 24.21  − 2.45  − 13.70  − 13.00  − 13.32 
1/12/2018  − 6.71  − 2.31  3.37  − 0.15  − 7.45 
1/1/2019  − 8.12  − 0.26  1.74  2.69  − 8.16 
1/2/2019  –23.07  37.89  10.32  15.52  3.63 
1/3/2019  − 10.54  3.95  3.77  1.36  − 3.93 
1/4/2019  − 17.49  10.52  − 7.27  − 18.21  − 1.06  
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RMSE value of the SFOR-ELM model was reduced by 14.02 %, 6.65 %, 
2.92 %, and 3.21 %, respectively. At the same time, the R2 of the SFOR- 
ELM model was the highest, reaching 98.98 %, indicating that the pre
diction curve of the SFOR-ELM model accurately reflected the changing 
trend of the actual curve of sweater sales. 

In this section, three different cases were applied to verify the SFOR- 
ELM model. The test results proved that the SFOR-ELM model proposed 
in this research was suitable for multi-scenario and multi-product sales 
forecasts. The accurate forecast of online clothing sales plays an 
important role in updating the sales strategy of e-commerce platform 
and improving the management efficiency and economic benefits of e- 
commerce platform. 

5. Concluding remarks 

At present, information technology has penetrated into all fields of 
economic life, and has promoted the transformation of the traditional 
economic development mode based on material production and material 
services to the new economic development mode based on information 
production and information services. The rapid development of the e- 
commerce economy based on information technology has become the 
driving force promoting economic growth. Commodity sales forecasts 
affect the sales plan and inventory stability of e-commerce platforms. 
Therefore, accurate commodity sales forecasting is critical to improve 
the management efficiency and economic benefits of e-commerce plat
forms. To this end, this research proposed a novel online sales forecast 
approach for clothing products based on a data mining technique, and 
proved the proposed method using the statistical data of an e-commerce 
platform. The contributions and conclusions of this research are as 
follows:  

• To improve the convergence performance of the SFO algorithm, an 
SFO algorithm based on a random disturbance strategy is proposed, 
and the convergence effect of the SFOR algorithm is analysed using a 
set of benchmark functions. The test results reveal that the SFOR 
algorithm exhibits the highest convergence accuracy compared to 
the state-of-the-art heuristic optimization algorithms for the unim
odal benchmark function. In addition, the SFOR algorithm 

Fig. 12. Relative error curves of sweater sales forest.  

Table 16 
Evaluation results for sweater sales forecast.  

Approach Evaluation indicators/ % 
MAPE RMSE R2 

ELM  12.37  30.21  97.09 
LSTM  17.62  22.84  97.71 
SSA-ELM  5.46  19.11  96.32 
SFO-ELM  7.24  19.40  96.20 
SFOR-ELM  5.03  16.19  98.98  
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Fig. 13. Comparison of evaluation results for sweater sales.  
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Table A1 
Statistical data for pants sales.  

Date S/ billion 
Yuan 

X4/ 
billion 

X8/ 10 
million 

X9/ 100 
thousand 

X10/ 
million 

1/5/ 
2016  

2.23  3.84  1.48  1.12  1.19 

1/6/ 
2016  

2.14  3.85  1.44  1.09  1.16 

1/7/ 
2016  

1.72  3.30  1.19  0.97  1.03 

1/8/ 
2016  

1.46  2.81  1.00  0.87  0.93 

1/9/ 
2016  

1.86  3.05  1.17  1.02  1.07 

1/10/ 
2016  

2.47  4.20  1.71  1.25  1.26 

1/11/ 
2016  

3.80  5.62  2.44  1.49  1.63 

1/12/ 
2016  

3.03  5.75  1.80  1.29  1.42 

1/1/ 
2017  

1.77  3.59  0.98  0.92  1.04 

1/2/ 
2017  

1.46  3.34  1.00  0.82  0.93 

1/3/ 
2017  

2.26  4.78  1.45  1.05  1.20 

1/4/ 
2017  

2.42  5.53  1.68  1.14  1.25 

1/5/ 
2017  

2.81  6.84  2.02  1.24  1.36 

1/6/ 
2017  

2.78  6.62  1.92  1.18  1.35 

1/7/ 
2017  

2.26  5.71  1.64  1.08  1.20 

1/8/ 
2017  

1.98  4.73  1.42  0.98  1.11 

1/9/ 
2017  

2.34  4.62  1.49  1.07  1.23 

1/10/ 
2017  

3.31  6.44  2.27  1.34  1.50 

1/11/ 
2017  

3.50  5.70  2.12  1.19  1.55 

1/12/ 
2017  

2.95  4.80  1.65  1.07  1.40 

1/1/ 
2018  

2.53  4.17  1.33  0.98  1.28 

1/2/ 
2018  

0.96  1.99  0.69  0.58  0.74 

1/3/ 
2018  

2.52  4.49  1.68  0.97  1.28 

1/4/ 
2018  

2.63  5.12  1.84  1.00  1.31 

1/5/ 
2018  

3.32  6.66  2.35  1.13  1.50 

1/6/ 
2018  

3.26  6.31  2.10  1.09  1.49 

1/7/ 
2018  

2.72  5.72  1.83  1.01  1.34 

1/8/ 
2018  

2.33  4.50  1.48  0.90  1.22 

1/9/ 
2018  

2.62  4.25  1.52  0.99  1.31 

1/10/ 
2018  

3.71  6.16  2.29  1.17  1.60 

1/11/ 
2018  

5.26  7.63  3.00  1.37  1.97 

1/12/ 
2018  

4.77  6.97  2.58  1.29  1.86 

1/1/ 
2019  

3.14  4.86  1.61  1.05  1.45 

1/2/ 
2019  

1.50  2.95  1.04  0.69  0.95 

1/3/ 
2019  

3.05  5.06  1.81  1.01  1.43 

1/4/ 
2019  

3.12  5.45  1.95  1.04  1.45  

Table A2 
Statistical data for dress sales.  

Date S/ billion 
Yuan 

X4/ 
billion 

X8/ 10 
million 

X9/ 100 
thousand 

X10/ 
million 

1/5/ 
2016  

5.29  11.38  3.03  1.21  1.98 

1/6/ 
2016  

5.66  12.45  3.21  1.24  2.06 

1/7/ 
2016  

4.87  11.70  2.89  1.18  1.88 

1/8/ 
2016  

3.66  8.41  2.06  0.97  1.59 

1/9/ 
2016  

3.35  7.24  1.87  0.92  1.51 

1/10/ 
2016  

2.67  6.42  1.70  0.84  1.32 

1/11/ 
2016  

2.82  5.61  1.65  0.81  1.36 

1/12/ 
2016  

2.56  6.85  1.59  0.77  1.29 

1/1/ 
2017  

1.98  6.12  1.28  0.63  1.11 

1/2/ 
2017  

2.35  7.49  1.68  0.72  1.23 

1/3/ 
2017  

3.70  10.24  2.32  0.94  1.60 

1/4/ 
2017  

4.33  13.09  2.90  1.06  1.76 

1/5/ 
2017  

6.42  19.23  4.07  1.31  2.22 

1/6/ 
2017  

6.85  19.10  4.01  1.31  2.31 

1/7/ 
2017  

5.57  16.64  3.44  1.20  2.04 

1/8/ 
2017  

3.86  10.83  2.31  0.94  1.64 

1/9/ 
2017  

3.41  8.45  1.93  0.86  1.52 

1/10/ 
2017  

2.62  6.78  1.64  0.75  1.31 

1/11/ 
2017  

2.33  4.16  1.07  0.58  1.22 

1/12/ 
2017  

1.81  3.94  0.95  0.50  1.06 

1/1/ 
2018  

2.20  5.07  1.20  0.56  1.18 

1/2/ 
2018  

1.14  3.60  0.94  0.38  0.81 

1/3/ 
2018  

3.87  8.80  2.39  0.77  1.64 

1/4/ 
2018  

4.71  11.27  2.93  0.88  1.85 

1/5/ 
2018  

6.96  16.61  4.19  1.08  2.33 

1/6/ 
2018  

7.82  17.18  4.10  1.11  2.50 

1/7/ 
2018  

6.37  15.59  3.55  1.04  2.21 

1/8/ 
2018  

4.57  10.37  2.40  0.85  1.81 

1/9/ 
2018  

3.64  7.22  1.78  0.75  1.58 

1/10/ 
2018  

3.18  7.21  1.82  0.73  1.46 

1/11/ 
2018  

3.77  6.71  1.81  0.76  1.62 

1/12/ 
2018  

3.30  6.40  1.71  0.70  1.50 

1/1/ 
2019  

3.28  6.83  1.70  0.69  1.49 

1/2/ 
2019  

2.37  5.91  1.64  0.57  1.23 

1/3/ 
2019  

5.21  10.70  2.90  0.88  1.96 

1/4/ 
2019  

6.28  13.45  3.54  1.00  2.19  
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effectively avoids local extremum solutions for the multimodal 
benchmark functions.  

• The constructed SFOR-ELM model was employed to forecast the 
online sales of clothing products. For three different cases, the SFOR- 
ELM model achieves satisfactory predictive results. For Case 1, the 
MAPE of the SFOR-ELM model is 1.66 %, 1.4 %, 0.79 %, and 1.48 % 
smaller than those of the ELM, SFO-ELM, and SFO-ELM models, 
respectively. Meanwhile, the RMSE value of the SFOR-ELM model is 
8.74 %, 14.65 %, 2.28 %, and 4.8 % smaller than the RMSE of the 
ELM, SFO-ELM, and SFO-ELM models, respectively.  

• The presented online sales forecast approach of clothing products 
based on data mining technique provides a new idea for the accurate 
forecasting of multiscene and multicommodity sales, and provides a 
theoretical basis for improving the management efficiency and eco
nomic benefits of e-commerce platforms. 

Although the proposed online sales forecast approach achieves 
competitive results, this study still has the following limitations. First, 
the SFOR algorithm needs to further develop the solving ability. Second, 
the generalization ability and scalability of the online sales forecast 
approach need to be further enhanced. We will focus on solving the 
abovementioned limitations in future research. 
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