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The existing healthcare system based on traditional management involves the storage and processing of large quantities of medical
data. The incorporation of the Internet of Things (IoT) and its gradual maturation has led to the evolution of IoT-enabled
healthcare with extraordinary data processing capability and massive data storage. Due to the advancement in the Industrial
Internet of Things (IIoT), the resulting system is aimed at building an intelligent healthcare system that can monitor the
medical health of the patient by means of a wearable device that is monitored remotely. The data that is gathered by the
wearable IoT module is stored in the cloud server which is subject to privacy leakage and attacks by unauthorized users and
attackers. To address this security issue, an IoT-based deep learning-based privacy preservation and data analytics system is
proposed in this work. Data is collected from the user, and the sensitive information is segregated and separated. Using a
convolutional neural network (CNN), the health-related information is analyzed in the cloud, devoid of users’ privacy
information. Thus, a secure access control module is introduced that works based on the user attributes for the IoT-Healthcare
system. A relationship between the users’ trust and attributes is discovered using the proposed work. The precision, recall, and
F1 score of the proposed CNN classifier are achieved at 95%. With the increase in the size of the training set, higher
performance is attained. When data augmentation is added, the system performs better without data augmentation. Further,
the accuracy of around 98% is achieved with an increased user count. Experimental analysis indicates the robustness and
effectiveness of the proposed system with respect to low privacy leakage and high data integrity.

1. Introduction

In recent years, there has been an unprecedented growth in
Wireless Sensor Networks and their applications, in terms
of data computation, interoperability, scalability, interfacing,
and applications. This advancement in technology along
with the innovations in cellular networks, wireless networks,
and radio frequency identification (RFID) has provided a

strong root for the Internet of Things (IoT). In 1999, Kevin
Ashton introduced the term IoT relating it with supply chain
management. It shows a better world of objects wherein
every object is connected to each other with the help of the
internet [1]. Here, each object is represented as an entity that
holds a digital identity. These entities are organized, con-
trolled, and managed in a remote fashion. Owing to the
tremendous advancement in the IoT [2], smart objects have
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become a common device used with a diverse range of
intelligent, innovative, and novel applications. Some of these
applications include crowdsourcing, crowdsensing, smart
agriculture, smart cities, and smart healthcare.

As a result of these advancements and innovative applica-
tions, there are numerous challenges faced in effectively enfor-
cing IoT. Some challenges are energy management, quality of
service (QoS) [3], interoperability, big data analytics [4], and
security. However big data is a more complex field where there
exists a relationship between several data streams and IoT
objects to generate data. Hence, information is generated using
big data analytics to improve decision-making. In recent years,
there is a phenomenal development in the field of big data on
integrating with IoT to pave the way to an array of opportuni-
ties that result in improved services for several applications
[5]. Large volumes of information gathered from several
resources using IoT are analyzed with the help of big data
technologies. Machine learning is one of the technologies that
is used to perform this analysis to provide an apt solution for
the problem at hand. Based on analysis, it is identified that the
incorporation of ML techniques [6] has led to the economic
growth of the country at large.

Due to the recent coronavirus, the healthcare system has
been imposed with a number of challenges for data storage
and processing. In this accord, Internet of Things (IoT) tech-
nology is found to be the most effective method to address
the future of smart healthcare. Using IoT, it is possible to
properly understand data processing, access control, and
intelligent identification with the use of artificial intelligence,
network technology, and sensor technology to the manage-
ment of healthcare to communicate and exchange informa-
tion. This arrangement paves the way to a secure, efficient,
real-time, and reinforced healthcare system. However, data
tampering and leakage problems [7] have been identified
to be the actual issues faced by the IoT healthcare sector.
This is indicative of the importance of secure access control
in the field of medical data. Access control lists and role-
based access control are some of the traditional centralized
computing environments that are used to address these
security issues to an extent.

In [8], a novel model known as InfGCN is incorporated
which integrates Susceptible Infected Recovery (SIR) and
Graph Convolutional Networks (GCNs). The drawback with
this approach is that it does not take into consideration the
structure and working of the social networks about users.
Similarly, this methodology requires an access control
threshold that is built to preserve data integrity and protect
privacy. Thus, taking into consideration these factors, a
secure access control architecture using machine learning
technologies is incorporated in thin IoT healthcare applica-
tions [9]. In particular, the edge access control layer is built
with access control servers and trust generation servers that
are used to grant user-specific authorities and involve data
access requests with the help of machine learning methodol-
ogies that will enable support for several healthcare applica-
tions based on IoT. Accordingly, the proposed architecture
is built with an attribute-based Secure Access Control Mech-
anism (SACM) [10] that uses federated deep learning for
IoT health [11].

The following are the major contributions of this pro-
posed work:

(1) Every user is provided with unique authority to indi-
cate their medical data, thereby enabling secure
access control. Every edge weight is used with social
networks about users, and the edge denotes the
probability of connection of a particular pair of users

(2) A federated deep learning (FDL) methodology [12]
is adopted to improve access control accuracy. In
particular, the deep reinforcement learning method
and federated learning framework are integrated to
observe the threshold of access control to ensure
the integrity of medical data is maintained and the
privacy of the patients is preserved

(3) A real-time dataset is used to validate the experiment.
Based on the experimental results, the efficiency of low
privacy leakage and high data integrity in the IoT-
Healthcare is monitored, recorded, and analyzed

(4) The prototype system is designed to ensure data
analytics [13] and privacy preservation using deep
learning. The nonprivacy data extraction algorithm
is used for separating privacy information, and the
health-related data is analyzed

To avoid overfitting [14], a data augmentation method-
ology is used. The security of the system is enforced with a
customized convolutional neural network, and the experi-
mental analysis is carried out with 100 participants. Differ-
ent scenarios are taken into consideration to determine the
robustness and effectiveness of the proposed system [15].

2. Literature Survey

High data generation speed is one of the instigating factors
which attracts researchers and industrialists to IoT devices.
Moreover, when these devices are interlinked with cloud
computing, the scalability and availability of the system will
be enhanced. A good example is healthcare services that are
improvised using machine learning (ML) algorithms [15]
and virtual machines (VM) [16]. This methodology is aimed
at utilizing the cloud resources to the maximum capacity.
Similarly, several nonparametric models also exist and can
be used when we do not have prior information or enough
data in certain scenarios. Similar IoT devices also make use
of fog computing to delimit the collaboration between the
devices that have good data transmission speed and high
response time [17–19].

In the field of healthcare, deep learning has played a
pivotal role in discovering architectures like Hierarchical
Computing Architecture (HiCH) which when integrated
with algorithms like convolutional neural network (CNN),
and IoT will result in the development of wireless body area
network (WBAN) [20] for wearable devices. EM, KNN,
C4.5, and C5.0 are machine learning algorithms that are
dedicated to determining missing values, decision tree gen-
eration, etc., to create an efficient architecture/module using

2 Journal of Nanomaterials



AI upgrades. To further boost the ML algorithms and their
functionality, several meta-algorithms have also been recently
developed. Several access control issues in the IoT-Healthcare
methodologies exist, and several algorithms have been devel-
oped to address these issues. In [21], Yang et al. have used
break-glass access control policy and attribute-based access
control to tackle the issue of encrypted medical data hacking.
Using break-glass mechanism, timely access of data is ensured
while attribute-based access control will require certain attri-
butes to be met before providing access to medical data.

Liu et al. in [22] introduced the concept of multiauthority-
based access control mechanism that involves multiple
authentications from a specific group of people. This works
well against collision attack and is lightweight to be incorpo-
rated. Similarly, in [23], Roy et al. have enabled healthcare
with cloud computing using a fine-grained access control
methodology. This technique incorporates an authentication
methodology to provide user access control to the requester.
Similarly, author Edemacu et al. in [24] have illustrated the
possibility of collusion-resistant access control that can be
used to share medical data in a secure and safe fashion.

Sun et al. in [25] show that the user attributes and access
control policies are converted into vectors of specific lengths,
thereby decreasing the access protocol for the data in an
encrypted manner. Fan et al. in [26] were able to achieve
data sharing and access control with the help of blockchain
technology for user certification and nonrepudiation. These
words are confined to the access control issue and lead to
two specific problems:

(i) How to attain secure and accurate access control
using the occupation and trust of the user, without
affecting and exposing privacy of the user

(ii) How to user social data of the users to obtain trusts
and influences of the users

(iii) Accordingly, the proposed methodology uses a
secure access control module that works based on
the user attributes for the IoT-Healthcare system

Since the introduction of wearable medical devices in
personalized and pervasive healthcare, there is high demand
for such IoT-enabled healthcare devices. In [27], the authors
have introduced a wearable feedback system that can be used
to observe the physical recovery of swimmers. A smart
indoor anticollision system using RFID is used in [28] to
enable visually challenged people to detect and avoid obsta-
cles. Similarly, facial surface electromyography (sEMG) is
used in real-time biomonitoring representing the intensity
of pain endured by the patients. In [14], the authors have
used an authentication mechanism that used cloud to gener-
ate a secret session key, establishing secure communication
while in [29], an RFID-based privacy protection technique
is used to protect the synchronization and consistency of
the authentication information. Authors in [30] have used
the noise in the ECG signal to identify the identity of the
patient. Finally, in [31], a blockchain-based large-scale pri-
vacy protection scheme is introduced by the authors to store
the data and protect is privacy in cloud or in the hospital

database. The drawback with this methodology is that the
privacy information that is mixed with data is still liable to
be attacked. This gives rise to the proposal of privacy preser-
vation in the IoT-enabled healthcare system.

3. Proposed Architecture

The proposed system architecture is described in detail in
this section. The user, trust generation, and access control
servers are chosen as the three entities that play a major role
in trust-based access control for maintaining data integrity
and preserving user privacy in IoT-based healthcare systems.
At the user level, a privacy-isolation zone is designed which
can filter out the noise and speech-related sounds and can
transmit only the nonspeech body sounds and information.
The gait signal is detected at the user end along with other
medical information based on the acceleration stream by
the privacy-isolation zone. At the cloud end, the security
module and data extraction by a nonprivacy module is
implemented. The medical data is often manipulated by
unauthorized personnel with data tampering and privacy
leakage in IoT-based health systems. Ensuring secure access
control at all levels is crucial when dealing with important
medical data. The trust generation servers estimate the trust
of several users and provide information to the access con-
trol server to provide access. New users are considered
untrusted while the trust generation and access control
server-based data are considered semitrusted. The proposed
system architecture is provided in Figure 1.

3.1. Privacy Isolation. A privacy-isolation zone is created at
the source to receive the nonspeech body sound and data.
This further guarantees the security of data transfer and
cloud-based storage. A modified deep CNN algorithm is
implemented at the cloud end to extract the data along with
a security module with access control and trust generation
servers. This ensures end to end privacy protection for med-
ical data. The system is tested under privacy leakage and
data tampering attack scenarios to estimate the performance.
The user’s identity and associated gait information are often
mixed with the gesture, movement, and other health-related
data that is gathered by the wearable device at the user end.
The data and the gait information can be separated by the
malicious user if the data is stolen from the cloud, leading
to the disclosure of the user’s privacy. Hence, before the
upload of data into the cloud, it is essential to analyze and
segment it in the privacy-isolation zone. The signal is made
0 outside the boundary and retained within the boundary
with the help of a smooth window function. Multiplication
is performed between the gathered signal and the signal
within the boundary.

Based on a set threshold value, the signal can be
extracted within the boundary. Gravity information is also
available along with the gait information in the data that is
collected. 9.8m/s2 is the fixed downward force gravity value.
With the motion of the user, it is challenging to find a fixed
threshold as there will be a change on each axis for the
gravity projection. A low signal-to-noise ratio (SNR) is
achieved due to the interference of the gait signals in the
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obtained data making it challenging to distinguish between
the data. Also, on the basis of the time domain, the data is
aliased. Hence, using a window function directly for separat-
ing the aliased signals is not possible. Different frequency
characteristics are observed from the different behaviour
information. Fourier transform is used for the analysis of
the signals in the frequency domain for separating the data.
In the frequency domain, it is observed that gravity is a DC
component. When compared to gravity, at a relatively high-
frequency band of 1.4 to 2.1Hz, the gait signals occur. The
gait information is filtered using a low-pass filter while the
gravity information is filtered using a high-pass filter. Wave-
let, Elliptic, Chebyshev, and Butterworth filters can be used
for realizing the low-pass and high-pass filtering functions.
Due to the complex wavelet decomposition process, it is
unsuitable to deploy the wavelet filter on the user terminal
with constrained resources. When compared to the elliptic
filter and Chebyshev filter, the amplitude-frequency charac-
teristics of the Butterworth filter are more stable and it has
relatively slow stopband attenuation and the flattest pass-
band frequency response curve. The average SNR value for
these filters is compared and found to be 11.9, 11.5, and 12
for Elliptic, Chebyshev, and Butterworth filters, respectively.
The accuracy of the extracted signal is higher with a higher
SNR value. Hence, Butterworth filter is the optimal choice
of implementation.

3.2. Cloud Security Model. At the cloud end, data extraction
and storage are performed. The filtered signal is processed,
and feature extraction is performed with drift removal, enve-
lope estimation, and feature selection. Further, it is merged
with the raw signal and transferred to the security module.
At the security module, data augmentation and classification
are performed, and then based on the users trying to access
the data, the trust generation server and access control server
provide data access to the user. The collection of all sample
data is limited by cost and time. Hence, to enhance the gen-
eralization of the module, more training samples are gener-
ated using data augmentation. Data collection is performed
at different speeds by transforming the signal’s time-
domain position using the time warping process. Further,
the data collection at multiple forces undergoes an ampli-
tude distortion process where a random change in the data
amplitude is observed. Further, time scaling, permutation,
rotation processing, and random noise addition are per-

formed to represent the signal width, time position, different
wearing angles of the data collection device, and noise envi-
ronments, respectively.

The signal variance is increased with the outliers and
internal sensor noises. This leads to signal drift. The inten-
sity of the drift increases with the amplification of variance.
Through PCA, the largest variance in the orthogonal direc-
tion is obtained when the signal is projected. The linear
regression fitting method is used for removing the drift of
each component. The original and fitted components are
estimated, and the square sum of errors between them is
calculated for each component. The trend term is then
subtracted from the component. The analysis is then focused
on the data fluctuation itself.

At the trust generation server, the construction of a
social graph takes place. Social similarities between the users
based on their social activities are identified. Based on the
social similarity of the users, the connection probability is
determined at the corresponding edge for the user’s social
graph construction. The deep reinforcement learning
(DRL) algorithm helps in achieving the trust-based access
control based on the social data. The Susceptible Infected
Recovered (SIR) and Graph Convolutional Network
(GCN) models integrate the social data for trust evaluation.
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The effect of each user node is measured using the GCN in
conventional models. Here, InfGCN, an influence identifica-
tion model, is used for analyzing the eigenvector, closeness,
betweenness, and degree centrality representing the features
of each node. The centrality of a node in eigenvector central-
ity represents a function of centrality of the adjacent nodes.
If a connection is established between this node and other
influential nodes, then the node is more influential. The
position of the node in the entire structure is considered
while representing the closeness centrality. Here, the node
is closer to the geometric center position. The influence of
the node is high if it is positioned on multiple shortest paths
amongst other nodes. This is represented by the betweenness
centrality. The influence of a node is high when it consists of
more social connections, representing a higher degree
termed as degree centrality. Then, based on the trust estima-
tion, the access control server grants access to the trusted
users and withholds permissions to the malicious or unau-
thorized users.

To achieve maximum data integrity and minimize pri-
vacy leakage, the learning rate, infection rate, and recovery
rate must be adjusted dynamically to the access control
threshold. In existing local access control models, the thresh-
old for construction is learnt using the Twin Delayed Deep
Deterministic policy gradient (TD3) algorithm. The TD3
algorithm is applied with the federated learning framework
to achieve privacy preservation at the user end in the univer-
sal access control model. For each participant of federated
learning, a trained model is required for the unique machine
learning technology termed federated learning. This helps in
building a universal model while serving as an access control
server, thus overcoming the need for a private dataset for the
preservation of the participants’ privacy.

4. Result and Discussion

The recognition performance of the proposed model is
estimated based on the accuracy, F-score, recall, and
precision parameters. Further, True Positive (TP), False

Positive (FP), True Negative (TN), and False Negative
(FN) values are estimated for the confusion probability
matrix. The expressions

Accuracy =
TP + TN

TP + TN + FP + FNð Þ ,

F1 =
2TP

2TP + FP + FNð Þ ,

Recall =
TP

TP + FNð Þ ,

Precision =
TP

TP + FPð Þ ,

MissedDetection Rate = ,

False AlarmRate =
FP

FP + TNð Þ ,

ð1Þ

are used for estimating the accuracy, F-score, recall, and pre-
cision of the samples. The relationship between the actual
results and predicted results is analyzed using the confusion
probability matrix. The true label is represented by each row,
and the predicted label is represented by each column of the
confusion matrix.

Figure 2 represents the impact of the classifier in the pro-
posed model. In order to compare the performance, classi-
fiers like Deep Neural Network (DNN), Long short-term
memory (LSTM), Artificial Neural Network (ANN), convo-
lution Neural Network (CNN), Recurring Neural Network
(RNN), Support Vector Machine (SVM), and Random For-
est (RF) are compared. The testing and training set consists
of data gathered from 100 participants performing 10 differ-
ent gestures and activities over a duration of 60 seconds
each. The accuracy performance of CNN is found to be
superior to that of the other models.

Timely updating of the model is crucial to ensure the
effectiveness of the model performance in the new
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Figure 3: Performance estimation of the proposed model based on (a) training set size and (b) No. of participants.
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environment. Better generalization can be achieved by col-
lecting more training samples. However, it is challenging
and tedious to perform frequent data collection. Data sets
with different training set sizes are used for training the
model in order to estimate a suitable scheme for data collec-
tion. Figure 3 compares the precision, recall, and F1 score
parameters for multiple training set sizes with 10 samples
per class. It is observed that the performance tends to be sta-
ble at around 95% when the training set size exceeds 100.
The model is thus built using the gathered data. The partic-
ipants are chosen between a diverse age group and an equal
gender ratio to compare the impact of the data sample. 10
selected gestures are performed 10 times each by all 100 par-
ticipants during data collection. For a different number of
samples, the precision, recall, and F1 score values are esti-
mated. It is observed that the performance does not show
any significant difference based on gender or age. However,
the number of samples improves the performance in a pro-
portional manner.

The models are trained with and without data augmen-
tation, and the performance is analyzed in terms of preci-
sion, recall, and F1 score. Overfitting may be avoided, and
the uncollected data can be covered using the data augmen-
tation technique even if it is difficult to attain a large number
of training samples. When compared without data augmen-
tation, the model achieves around 8% better performance
with data augmentation as observed in Figure 4.

Data integrity, degree of privacy leakage, and accuracy of
access control are estimated to analyze the access control
module performance. Based on the number of malicious
users, amount of available data, and number of authentic
users, the system performance varies. Missed Detection Rate
(MDR) and False Alarm Rate (FAR) parameters are consid-
ered for the estimation of the accuracy of the access control
module. The amount of private information that is exposed
when compared to the overall data available provides the
degree of privacy leakage. The amount of data that is not

exposed to malicious users or any kind of contamination is
termed data integrity. Figure 5 compares the MDR and
FAR values of the proposed model for a different number
of users. With the increase in the number of users, there is
a proportional raise in the performance of accuracy as
observed from this graph. The DRL algorithm helps in
achieving the trust-based access control based on the social
data from the SIR and GCN models. The DRL algorithm is
used for achieving the trust-based access control by estimat-
ing the user’s trust based on the social data of the user
obtained through GCN. The authorized users are provided
access to the medical data while malicious users are identi-
fied and refused access.

5. Conclusion

For IoT-based healthcare systems, a data analytics and pri-
vacy preservation model using deep learning is presented
in this paper for separating raw health data and analysis
and refusing access to malicious users through a trust-
based and secure access control model. The privacy-
sensitive and nonprivacy information is isolated using filters.
The robustness and effectiveness of the system are evaluated
under various circumstances, and the performance is ana-
lyzed. This model can support the smart healthcare systems
of the future. This system architecture can be expanded for
various wearable IoT healthcare devices. The access control
model uses social graphs to decide between authorized and
malicious users. These graphs, along with CNN, help in pro-
viding authorization to specific users in the IoT healthcare
environment. The future scope involves overcoming the cost
and time constraints of the work by using larger datasets to
further generalize the performance of the system. User
identity protection policies can be strengthened further with
the introduction of a blockchain-based security module.
Real-time sample collection and system updating can also
be enabled so that the performance of the system gets better
with use.
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