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Abstract: According to the most recent estimates from global cancer statistics for 2020, liver cancer
is the ninth most common cancer in women. Segmenting the liver is difficult, and segmenting the
tumor from the liver adds some difficulty. After a sample of liver tissue is taken, imaging tests, such
as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US), are used to
segment the liver and liver tumor. Due to overlapping intensity and variability in the position and
shape of soft tissues, segmentation of the liver and tumor from computed abdominal tomography
images based on shade gray or shapes is undesirable. This study proposed a more efficient method
for segmenting liver and tumors from CT image volumes using a hybrid ResUNet model, combining
the ResNet and UNet models to address this gap. The two overlapping models were primarily used
in this study to segment the liver and for region of interest (ROI) assessment. Segmentation of the
liver is done to examine the liver with an abdominal CT image volume. The proposed model is
based on CT volume slices of patients with liver tumors and evaluated on the public 3D dataset
IRCADB01. Based on the experimental analysis, the true value accuracy for liver segmentation was
found to be approximately 99.55%, 97.85%, and 98.16%. The authentication rate of the dice coefficient
also increased, indicating that the experiment went well and that the model is ready to use for the
detection of liver tumors.

Keywords: computed tomography; deep learning; liver segmentation; medical imaging; residual
network; tumor segmentation

1. Introduction

The liver is the second largest organ in the body, located on the right side of the abdomen,
and weighs about three pounds. The liver has two lobes, right and left, and is in contact with
the gallbladder, pancreas, and intestines. Several organs are involved with the liver. Cancer in
the liver may be primary (originating from various cells that compose the liver), secondary, or
metastatic (caused by cancerous cells from other organs). Malignant hepatocellular carcinoma
(HCC) is the most typical primary liver disease among all liver cancers.

The second most common global disease is liver cancer. According to data from the
World Health Organization (WHO), it accounted for 8.8 million deaths in 2015, out of
which 788,000 deaths were caused by carcinoma [1]. The American Cancer Society (ACS)
predicted that around 20,710 new cases in the USA would be diagnosed in the year (29,200
in men and 11,510 in women). Out of these, 28,920 people (19,610 men and 9310 women)
died because of primary carcinoma and intrahepatic epithelial canal cancer in 2017 [2].
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Carcinoma is more common in the geographical regions of Africa and accounts for more
than 600,000 deaths every year [2].

To identify the formation and texture of the liver, radiologists and oncologists use
a computed tomography (CT) or magnetic resonance imaging (MRI). In both primary
and secondary hepatic tumor cancer, these abnormalities are significant biomarkers for
early disease diagnosis, and progression [3]. Usually, the CT volume scan of the liver
is understood using semi-manual or manual techniques, but these techniques are costly,
time-consuming, subjective, and prone to error. Several calculation methods have been
developed to address these issues and improve liver cancer’s diagnostic performance.
However, these systems were deficient in segmentation and detection of liver lesions due
to several challenges: low contrast between the liver and the neighboring organs, such as
liver and tumors of different contrast values; changes in the number of tumors; the size of
the tumor being too small; tissue abnormalities; and irregular tumor growth [4]. A new
approach is therefore needed to overcome these obstacles.

Earlier studies have had drawbacks, as they employed images from improved mag-
netic resonance imaging and computed tomography. Furthermore, the CNN technique
was only used to assess a few types of liver tumors. In recent years, research has centered
on creating a fully automated system for accurate and timely liver tumor prediction while
conserving time and energy. The advantage of automatic techniques is that they develop
over time as an outcome of their performance and through the integration of various
conditions and contributions. Various studies have recently emerged that back up this
argument [5,6]. We should try new technologies that have shown promising results in object
recognition, image classification, obstacle avoidance, facial recognition, natural language
processing, material inspection, and many other applications. These include convolutional
neural networks (CNNs). A deep network learns to recognize more complex features
by categorizing and combining features from previous layers. This function is known as
feature tier, allowing deep learning networks to manage extremely large high-dimensional
data, with millions of inputs passing the nonlinear function [7].

Most significantly, the CNN model has been verified to be extremely strong in assessing
fluctuating image appearance, which inspires us to apply them to fully automatic liver and
tumor segmentation in CT volumes. This study aims to fill a void in the previous research
by evaluating the results of a deep learning framework model on a broad dataset of tumor
volumes from 3DIRCAD1. We should try a new approach to overcome the above obstacles.
Our goal is to create a powerful and robust deep learning model that can perform the
task and locate the region of interest (ROI). Each node level in deep learning is trained
in a combination of features different from the last layer of the results. Deep learning
frameworks can be used for feature classification as well as automated feature extraction.

In conclusion, this study has the following main contributions:

1. We develop a fully automated system for segmenting liver and tumors from CT scan
images in a single run.

2. Based on prior studies and their shortcomings, the researchers in this study attempt to
achieve 95% mIOU on HCC tumors using VGG and Inception V4 based on the deep
learning models. The research technique is intended to improve accuracy and fulfill
expectations in the segmentation of liver tumors.

3. We propose a viable method for classifying liver and tumor cells after failing to
achieve the desired results with the UNet model. Then, we develop a model that
combines both ResNet and UNet, named ResUNet. This deep neural network model
utilizes leftover patterns that use escape rather than simple convolutions, resulting in
faster testing with few details.

4. We provide a high-level overview of this technology’s results.
5. We provide a general performance summary of this technique, with comparison to a

few other fully automated techniques and define a scope for development based on
new data and other features.
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The rest of the paper is organized as follows. Section 2 presents the literature with
regard to existing datasets. The proposed approach is described in Section 3. Section 4
provides an evaluation of ResUNeT. Finally, the limitation of the proposed approach is
given in Section 5 followed by conclusion and future work in Section 6.

2. Literature Review

Liver segmentation from medical imaging has progressed significantly in medical
practice. The objective is to extract knowledge about the human body that has a broad
range of applications, including early disease detection and identification of the direction
for a proper cure [8]. There are many techniques for processing medical images, which have
their advantages and disadvantages. X-ray, molecular imaging, ultrasound, MRI, positron
emission tomography, computed tomography, PET-CT, and ultrasonic images are com-
monly used imaging modalities [9,10]. Hemangioma, focal nodular hyperplasia, adenoma,
hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and hepatic metastasis are all
diagnosed with CT, US, and MRI [11]. Contrast-enhanced CT imaging is commonly used
for survey examinations to rule out the existence of hepatic and extrahepatic metastases
and assess the local involvement level since it has a high sensitivity (93%) and specificity
(100%). CT scans are widely used to detect liver cancer. Rex and Cantlie first proposed
hemilivers and serge as features for manual liver segmentation [12].

However, automated liver and its lesion segmentation remain challenging due to the
inconsistent variations between liver and lesion tissue caused by various acquisition meth-
ods, contrast agents, contrast enhancement levels, and scanner resolutions [13]. Compared
to previous examinations, convolution neural networks (CNN) can help in deep learning
with regard to liver lesions [7]. CNN’s performance is the best and, in some cases, has
surpassed the knowledge of human radiology. In the medical domain, CNNs have been
widely used to detect various tumor forms over the last few years.

The researchers used convolutional neural networks and other deep learning systems
to incorporate ideas about liver tumor diagnosis. Both supervised and unsupervised classi-
fication is possible. The feature sets are grouped into predefined groups in a supervised
system, while they are allocated to undefined classes in the unsupervised method. To
train and evaluate the output of a classifier always requires training and testing data [14].
The data for medical image training is normally collected from one or more experts who
have assigned labels to a set of objects. They distinguished between regular and abnormal
liver cells in a dataset that included 79 H&E-stained liver tissue WSIs of hepatocellular
carcinoma (HCC), 48 of which were HCC tissue and 31 of which were normal tissue [15].
The authors suggest a mechanism for detecting differences in normal neural networks and
in CNN, using a high and low enlargement in the cell map and surface structure. The
results showed a 91% probability of correct liver HCC tumor detection using CNN [15].

Deep learning (DL) techniques have excellent learning abilities [16]. Deep learning
models such as the convolutional neural networks (CNNs), stacked automatic encoder
(SAE), deep belief network (DBN), and deep Boltzmann machine (DBM) have been imple-
mented [3,17]. Deep learning models are superior in terms of accuracy. After all, finding a
suitable training dataset, which ought to be large and constructed by specialists, remains a
significant challenge. The literature revealed that DL-based models for liver tumor detec-
tion have attained 94% accuracy.The CNN model comes in a variety of architectures [18,19],
including AlexNet, VGGNet, ResNet, and others. While [12,20] used the VGG16 architec-
ture in their research, other research [3,12,21–23] has employed the two-dimensional (2D)
UNet, which is primarily used for splitting up medical images [24].

On the other side, one research report classified benign and malignant tumors. They
used an enhanced contrast ultrasound (ECUS) dataset in video form, separated into two
subgroups: 20% test data and 80% training data. Another study [15] suggested using CNN
to minimize the number of liver tomography images required while reducing the time and
money spent on maintenance. The model has been improved, and the potential has been
developed to distinguish between benign and malignant tumors using a combination of
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deep learning and CNN. The researchers used a training dataset of 55,536 photos from the
2013 database and 100 liver images from the 2016 data for testing [7]. The experiments
were repeated five times, and the results showed an accuracy of 92%.

In a similar study [12], researchers used computed tomography images and a convolu-
tional neural network to compare various types of liver tumors. The researchers calculated
the probability by segmenting each pixel using special segmentation algorithms and a deep
convolutional neural network. They used layer wrap to minimize functions and eliminated
three-dimensional variation by grouping layers into characteristics and classifying tumors
based on a fully connected layer. Another study [13] was performed with 2.5D computed
tomography images to segment liver lesions using a deep convolutional neural network
using Res-Net and virtual UNet. The scholar used a working model design created in 2.5D
instead of 3D. An NVIDIA (Santa Clara, CA, USA) Titan XGPU with 12 GB of memory and
3584 cores were used for training and testing for four days in a row.

Rectified linear units (ReLU) have become one of the most important actuation func-
tions in deep learning and machine learning. The rectified linear activation function is a
piece-wise linear function that outputs the input directly if it is positive. Otherwise, it out-
puts null or 0. It has become the norm trigger function for many types of neural networks
because a model that uses it is easier to train and often performs better.

Much research has been performed on liver and liver tumor segmentation using
semi-automatic, automatic, and manual techniques. Although manual segmentation varies
in different segments or parts of the liver, hemi-liver, or vessels, automatic and semi-
automatic methods focus on different algorithms to enable tumor or liver segmentation
from medical images with more, less, or no user intervention [25]. This section provides a
comprehensive literature review of liver and tumor segmentation based on state-of-the-art
deep learning techniques.

3. Method

This section focuses on the steps used in implementing the liver and tumor seg-
mentation using the hybrid deep learning network ResUNet. The preprocessing, feature
extraction, classification, and segmentation are all part of the proposed method’s pattern in
the deep learning network scheme. Figure 1 shows the overall framework of the proposed
model for liver and tumor segmentation.

Figure 1. Overview of our proposed workflow.
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3.1. Dataset

The 3D-IRCADb-1 (http://www.ircad.fr/research/3dircadb, accessed on: 25 January
2022) dataset consists of three-dimensional (3D) CT images of patients, which are well
ordered and made publicly available by the IRCAD. Each image has a width and height of
512 × 512 pixels. The depth of each patient’s slice, or the number of slices, varies between
74 and 260 for overall 2800 slices. These self-contained 3D CT scans of ten men and women
each represent 75% positive cases. DICOM-formatted patient images, labeled images, and
mask images are provided as data for the segmentation process in the preprocessing section.
Couinaud segmentation [26] reveals the location of tumor volumes, highlighting the key
challenges of using software to segment the liver [27].

3.2. CT and MRI Images Preprocessing

The proposed method is employed to extract useful segments from liver tumor images.
Data augmentation, preprocessing, and CNN is used to diagnose the liver and identify
tumors in the surrounding organs. In the preprocessing phase of CT images, Hounsfield
unit values in the range of −100 to 400 are passed on, neglecting the adjacent organs. Then,
histogram equalization is applied to the image to increase the contrast. Finally, some data
from the magnification steps are used to increase the data and teach the desired invariant
properties, such as translation, rotation, deformation, elasticity, and the addition of the
Gaussian noise standard deviation, as shown in Figure 2.

(a) (b)

Figure 2. Preprocessing state of CT image (a) before Hounsfield unit windowing and (b) after HU
windowing.

Every medical image analysis system uses image preprocessing to enhance the quality
of the raw input image. This entails noise reduction, enhancement, normalization, and
standardization techniques, along with other things. As defining blocks and feature
extraction depend on image quality, preprocessing is important to achieve the other steps
involved. The normalization and distributing procedures adjust the image’s values and
reduce the spectrum, making it easier to improve the classifier. Noise reduction improves
image screen resolution and eliminates unnecessary qualities in the image, making other
processing tasks, including edge detection, segmentation, and compression, more efficient.
Two approaches for eliminating noise from current medical images are the spatial domain
approach and the spectral domain approach. Examples of spatial domain approaches are
mean filtering, adaptive mean filtering, order-statistic filtering, adaptive weighted median
filtering, maximum a posteriori filtering, nonlinear diffusion, geometric filtering, and so
on [28]. The mean value of its neighbors replaces each pixel in mean filtering. It gives the
picture a smoothing and blurring effect. The adaptive mean filtering technique uses local
image statistics such as mean, variance, and correlation to detect and maintain edges and
features [29]. Noise is reduced by using a local mean value to replace the original value.

#
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This filter adapts to the image’s properties locally, and aids in the selective removal of noise
from various areas of the image [25]. Compared to the mean filter, the median filter is an
order-statistic filter that creates less blur and preserves edge sharpness. By maximizing
the Bayes theorem, an unobserved signal and a maximum a posteriori filter are used to
estimate the values [30]. Curvelets may also be used to eliminate noise in medical images.
Curvelet transform is a multi-scale conversion with scale and position parameters and
indexed frame elements [31]. The results obtained after HU windowing and ResUNet
segmentation are illustrated in Figure 3.

(a) (b)

Figure 3. Prepocessing state of CT image (a) after HU windowing and (b) using ResUNet Segmentation.

Histogram equalization is one of the image processing techniques used to enhance the
contrast between the liver and its neighboring organs for more visibility or understanding.
This made it easier to define the segmentation of the liver tumor. Histogram equalization is
illustrated with before and after CT images in Figure 4. Each CT image slice dataset has its
own tumor volumes and liver masks collection.

Figure 4. Preprocessing state of CT image by applying histogram equalization.

3.3. Data Augmentation

Data augmentation is mainly used to augment data size by performing various steps
such as rotating, shifting, skewing, zooming, merging, and so on. This study primarily
focused on image, mask reflection, and rotation. Figure 3 depicts the mask image for tumor
detection, while Figure 4 shows tumor detection from the mask. Figure 5 explores the
merger of final masks from both tumors.
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Figure 5. Mask image for tumor detection.

3.3.1. Feature Extraction and Selection

Several features can be derived from medical images, but texture-based features are
used for training a classifier or automatic liver or tumor segmentation. Texture analysis
provides a wealth of visual data and is an essential part of image analysis [32]. One of the
most commonly used statistics is the gray level co-occurrence matrix (GLCM), which is
based on second-order statistics of grayscale image histograms [33].

3.3.2. Feature Selection and Merging

All the different masks were combined to improve training and data augmentation.
Since the IRCADB01 3D dataset comprises tumor masks for each tumor alone, we had to
combine all the masks into one mask to make it easier to train and expand the data.

3.3.3. Reflection Image and Mask

Other researchers have performed liver masks, tumor mask reflections, and adjustment
of the Y-axis motion of each slice to improve the dataset’s training efficiency. Figure 6
demonstrates the slice reflection before and after, while Figure 7 depicts the mask before
and after reflection.

(a) (b)

Figure 6. Image mask samples: both (a,b) show the detected tumors from the mask.
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Figure 7. Final mask merged from both tumors.

3.3.4. Rotation image and mask

We rotate each slice containing a tumor along with the tumor mask and liver mask to
raise the number of slices, as shown in Figures 8 and 9.

(a) (b)

Figure 8. (Image slices a) before reflection and (b) after reflection.

(a) (b)

Figure 9. Image of mask (a) before reflection and (b) after reflection.

3.4. Defining Region of Interest (ROI)

Usually, simple image segmentation is used to determine ROI in medical images.
Thresholding, region increasing and boundary monitoring, classifier methods, deformable
models, and atlas-guided methods are some popular methods for defining ROI. The method
of separating the target area or object of interest from the entire context in preparation
for feature extraction is known as region of interest (ROI). Manual, semi-automatic, and
automatic processes can be used to define ROI in medical photos. It normally divides pixels
into two groups, one for pixels with a specific range of intensity and the other for a wider
range of intensity. While it is an easy and effective method, it has its drawbacks, including



Bioengineering 2022, 9, 368 9 of 19

the inability to account for spatial image characteristics, noise sensitivity, intensity, and
inhomogeneity [34,35].

Labels are used in classifier methods to divide the feature space into different classes
based on tissue or anatomical area. Supervised classifiers use manual segmentation data
as training data, which are then used as a guide for automated segmentation of new
data. Unsupervised classifiers use clustering methods that perform the same functions
as supervised classifiers without requiring training data. Regions are extracted using
deformable models. Deformable models extract area boundaries using a closed parametric
surface that changes or deforms in response to the model’s internal force and the image’s
external force [36]. There are two types of deformable models: metric deformable models
and geometric deformable models. An atlas of anatomy is used to segment organs using
knowledge about the anatomy of interest. This approach seems sufficient if the structures
are consistent across slices [37].

We used a UNet to segment tumors in the liver, but we obtained poor results, so we
tried to segment tumors with ResUNet. This was trained with CT scans of the liver after
extracting the ROI from the first CNN along with the cancer masks. Examples are included
in Figures 10 and 11.

(a) (b)

Figure 10. Image slices (a) before rotation and (b) after rotation by 90◦.

(a) (b)

Figure 11. Image of mask (a) before rotation by 90◦ and (b) after rotation by 90◦.

4. Evaluation with ResUNeT

ResUNet was equipped to locate the region of interest (ROI) from the nearby organs
using CT scans and liver masks. After separating the ROI and training on CT scans of the
liver, the ResUNet was used to segment tumors in the liver. ResUNet swaps convolutional
patches for remaining sections, combining the advantages of both models. The deep
learning preparation is simple, with residuals in each block, and eliminates relations
between the network’s weak and high levels. It also contributes to having limited trainable
parameters in each remaining unit. Deep learning preparations are simple to use with
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residuals in each block and eliminate the relationship between weak and high levels of
the network. It also contributes to the limited training parameters in each remaining unit.
Figure 12 shows the ResUNet architecture.

(a) (b)

Figure 12. (a) A ground truth tumor image and (b) the resulting tumor segmentation.

A CNN is a feature extractor that performs well in contrast to the other texture
extractor features. Compared to other complex textural approaches, the features of the
model extracted with a convolutional network and CNNs can take time for training.
In classification tasks, CNNs have been shown to be successful [16]. Firstly, the CNN reads
data or performs augmentation of the data to train the algorithm, and then it combines
both. As discussed earlier, deep learning models will encode and decode the CT images for
better segmentation, so the ResUNet comprises three different routes:

• Encoding route: converts the input into an accurate recognition.
• Decoding route: reverses the encoding and categorizes the representation pixel by pixel.
• Bridge processing: joins the two routes.

ResNet, on the other hand, is a simplified version of residual blocks that uses artificial
neural networks [13]. In residual blocks, the skip connections principle simplifies and
accelerates the deep learning process in complex networks [38]. In contrast, the hybrid
ResUNet allows comprehensive standby of convolutional blocks [15].

4.1. Segmentation Process of Liver and Liver Tumor

Liver segmentation is the process of segmenting a medical image (CT, MRI, or US)
into liver parenchyma and non-liver parenchyma regions. Statistical shape models, graph
cuts, clustering, deformable models, area expanding, a level range, thresholding, active
contour, support vector machine (SVM), neural network (NN), and other methods are
used to segment the liver. Many fully connected networks have recently been developed,
and they appear to be promising. Still, they require a large amount of training data and a
high-speed processor, making them computationally costly. By studying the homogeneity
function of the region, Pohle et al. proposed an adaptive region rising method to segment
the liver [39] automatically. Since this approach is based on homogeneity parameters of the
tissue, it performs under-segmentation when the target is non-uniform.

Suzuki et al. used fast-marching level collection and geodesic active contour to create
a completely automatic system for calculating liver volume [40–43] using the segmentation
outcome of one slice as the original segmentation for another slice. Quick marching and
mathematical morphology, as well as static, were used to create a fully automated system
for liver segmentation with graph cut. Quick marching and mathematical morphology,
statistic adaptive threshold initialization, and k-means clustering were used to create a fully
automated system for liver segmentation with graph cut [3,44,45]. Erdt et al. proposed a
new SSM based on local shape priors combined with constraints directly derived from
the model’s current curvature for fully automatic CT liver segmentation [37]. Figure 13
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presents the implementation framework of deep learning neural network on liver and
liver tumor segmentation. It involves image preprocessing steps such as noise reduction,
standardization, and normalization techniques to enhance the image quality. Data aug-
mentation operations (i.e., reflect the image, rotate the image, and mask) are performed to
augment the training samples. ResUNet was prepared to find the region of interest (ROI)
from the nearby organs using CT scans. After separating the ROI and training on CT scans
of the liver, the ResUNet was used to segment tumors in the liver.

(a) (b)

Figure 13. Results of the proposed model (a) liver segmentation and (b) tumor segmentation (without
tumor).

Furthermore, it is important to segment the tumor for any surgical procedure. At vari-
ous stages of liver cancer, accurate and precise location and shape of a tumor are needed
for a better cure plan. Accurate segmentation allows us to monitor the therapy’s progress
over time. Based on deep learning classifiers and models, various semi-automatic and auto-
matic techniques for liver tumor segmentation have been suggested. These characteristics
were then used to train a Hopfield neural network to classify organs. Only one picture
was used for the process, and the result was very disappointing [46] with the suggested
segmentation algorithm for a liver image, which combined multi-layer perceptron NN
and fuzzy-k-means. A few implementations of a fully linked network to segment the liver
and liver tumors have been published recently [47–49]. A detect before extract system
was proposed by Chen et al. to locate the liver boundary [50] automatically. Deep neural
networks (DNNs) are a form of neural network (NN) that have more than one hidden layer
or more than three layers (input and output) [27].

Each layer of nodes in deep learning is trained on a different set of features from the
previous layer’s output [51,52]. The deep network is taught to recognize more complex
features as it goes deeper by aggregating and recombining features from previous layers [53].
This skill is known as feature hierarchy, and it allows deep learning networks to manage
extremely large high-dimensional data with billions of parameters passing the nonlinear
function [7,53]. DNN can be used for feature classification as well as automated feature
extraction. The DNN classifier is trained on labeled data before being applied to unlabeled,
unstructured data, allowing it to process much larger datasets. Aside from that, other
researchers’ approaches addressed here have only used a single-scale high-magnification
patch with a cell-level information-based pattern. The tumor-based cells could not be
detected absolutely. Identifying normal and abnormal cells in the liver was a challenging
chore that necessitated a thorough examination of the layers of 3D images.

These published studies provide several conclusions. First, as opposed to semi-
automatic methods, automatic systems do not degrade segmentation efficiency. In addi-
tion, severity alone does not seem adequate for segmenting lesions other than metastases.
Following this, a liver envelope appears necessary for segmenting liver tumors, particularly
for automatic approaches. Finally, in the case of the liver, deep learning and machine learn-
ing methods work well. Previous research has shown that segmentation is best achieved
when restricted to the liver, particularly for automatic segmentation. Deep learning is im-
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portant in segmenting liver tumors, particularly when texture changes differentiate lesions
and you have perfect knowledge about the types of liver lesions.

Moreover, deep learning techniques are frequently employed to segment liver tumors.
When using texture features, deep learning is particularly useful because the choice and
combination of these features are challenging in supervised data schemes. All methods rely
on texture features and are limited to an ROI based on the use of deep learning techniques.
Deep learning techniques are used in all methods that rely on texture properties but are
limited to an ROI based on the injury the user indicates, as this is the best option.

This article attempts to fill the gaps left by previous research. The convolutional
network architecture has been used in previous studies to facilitate the use of multiple mag-
nifications while providing information about the cellular structure for low-magnification
patches. Based on earlier research, the authors of this study are trying to achieve 91% mIOU
in HCC tumors by using convolutional-network-based VGG and Inception V4. The ResNet
architecture is a categorized step of the encoder-decoder of the layers, which forms a deep
convolution encoder-decoder. The proposed architecture was tested on a typical liver
computed tomography dataset or a tumor volume in the training process. The research
technique aims to improve accuracy and meet expectations in diagnosing liver tumors.
They accompanied another model to get the best results using a UNet model.

To get the best results with a UNet model, the authors created ResUNet, which
uses jumps instead of the traditional turns used by traditional networks, allowing faster
preparation with less data.

4.2. Final Results

All patients were examined with CT images. Diagnostic results are analyzed in terms
of sensitivity, accuracy, error rate, and specificity obtained using the values of true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). The formulation of
these evaluation parameters is shown in the following equations:

Sensitivity =
TP

TP + FN

=
TP

Diseased
(1)

Probability that the test will correctly recognize a patient who has the disease:

Speci f icity =
TN

TN + FP

=
TN

NoDiseased
(2)

Probability that the test will correctly recognize a patient who has the disease:

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
(3)

Accuracy provides general information about how many samples are misclassified:

ErrorRate = 1 − Acc =
FP + FN

TP + TN + FP + FN
(4)

Intersection over junction (IoU) is the amount of classified pixels relative to the junction
of what is expected and the original value from the same class. The mIoU represents the
average between the IoU of fragmented items and the rest of the samples from the test
dataset. It can be written as follows:

IoU =
TP

TP + FP + FN
(5)
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Due to the overfitting of the data, validation loss is high after five intervals, and the
validation dice coefficient decreases. After using the ResUNet model to segment the liver,
the results are shown in Figures 14–19. Finally, Figure 20 represents the confusion matrix
from the predicted value after tumor segmentation.

Figure 14. The proposed ResUNet architecture.

Figure 15. Implementation framework of deep learning neural network on liver and liver tumor seg-
mentation.
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Figure 16. Loss over 20 epochs during the model ResUNet’s training progress for liver segmenta-
tion intervals.

Figure 17. Acc over 20 epochs of the model ResUNet’s training progress for liver segmentation inter-
vals.

Figure 18. Loss over 50 epochs during the model ResUNet’s training progress for tumor segmenta-
tion intervals.
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Figure 19. Acc over 50 epochs during the model ResUNet’s training progress for liver segmenta-
tion intervals.

Figure 20. Confusion matrix from the predicted value after tumor segmentation, achieving an Acc of
99.6% and a Dice coefficient of 99.2%.

Table 1 shows the training progress of the ResUNet model for liver segmentation over
20 epochs. Table 2 shows the results of tumor segmentation and the training progress of the
ResUNet model over 50 epochs. The other assessment measurements, which incorporate
accuracy and SVD, were additionally determined. The SVD shows the contrast between
the real and predicted masks. The proposed model achieved an accuracy of 99% with an
SVD score of 0.22, which was the lowest contrast between the actual and predicted masks,
as displayed in Table 3. The justification for the higher accuracy was class unevenness.
To examine CT images, more pixels have been placed in a foundation class, where the
probability of the presence of a tumor is very low. Consequently, the accuracy esteem is
biased toward the background class since accuracy counts all classes’ complete numbers of
TP, FP, TN, and FN.
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Table 1. Loss and Acc results for function values training and validation data on the ResUNet model
for liver segmentation using a different number of epochs.

Epoch Loss Acc

1 0.3927 0.8608
2 0.4286 0.9696
4 0.4525 0.9867
6 0.5462 0.9593
8 0.4127 0.9794
10 0.2027 0.9673
12 0.6548 0.9632
19 0.3710 0.9776
20 0.4284 0.9923

Table 2. Loss and Acc results for function values training and validation data on the ResUNet model
for Tumor Segmentation using a different number of epochs.

Epoch Loss Acc

1 0.2288 0.9196
2 0.5079 0.9504
4 0.7225 0.9660
6 0.6742 0.9864
8 0.8204 0.9913
10 0.3850 0.9953
12 0.4382 0.9924
49 0.5383 0.9906
50 0.2382 0.9927

Table 3. Segmented results of proposed framework represented as mean ± standard deviations.

Authors Dice Score Acc SVD

[54] 67.5 ± 30.8% 92 ± 3.8% 0.33
[55] 77.11 ± 27.0% 93 ± 3.7% 0.23
[56] 0.58 - -
[46] 0.63 - -
Our 99.2% 99.6 ± 3.4% 0.22

5. Limitations of the Proposed Approach

We acknowledge that the sample dataset size of the present study is an obvious
limitation that prevents us from generalizing results. Despite the Res-UNet producing
very promising results, there are a few limitations. We may get around these limitations
by planning for more epochs, using more data, using different datasets, or using different
preprocessing strategies. The findings will be summarized using some examples first,
followed by a discussion of the general case. A collection of images with various types
of tumors were subjected to straight segmentation using a classification function. Three
slices were chosen to demonstrate segmentation accuracy by contrasting the automatic
segmentation with the ground truth.

In addition, a limited-sample-size neural network is considered a risk. Therefore, the
results presented should be interpreted with caution, and future research should be carried
out to increase the sample size to confirm sufficient support of the results shown. In ad-
dition, deep learning techniques are often used to segment liver tumors. Deep learning
is particularly useful when using texture features because selecting and combining these
features poses a challenge for monitored data schemes. All methods are based on character-
istics of texture. Deep learning techniques are used in all methods based on the properties
of the texture, but are limited to an ROI based on the injury the user indicates, as this is the
best option.
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6. Conclusions and Future Work

This paper presents the use of a deep learning model for tumor and liver segmentation
in CT images. As a result, the hybrid ResUNet is significantly more effective in terms of
training time, memory usage, and accuracy as compared to baseline methods. The binary
segmentation by classification layout was created to make processing medical images easier.
The basic 3D-IRCADB1 dataset was used to train and evaluate the proposed model. The
proposed technique properly identifies maximum tumor areas, with a tumor classification
accuracy of over 98%. However, after reviewing the data, it was discovered that there were
only a small number of false positives, which can be improved by false positive filters and
training the model on a bigger dataset.

ResUNet delivered excellent results in terms of diagnosing quickly and efficiently. As
we can see from the results, deep learning neural networks assisted us in achieving our
goals and are possibly the best tool for dividing liver tumors. They can also be tried with
tumors other than liver tumors, as the ResUNet showed promising results. The ResUNet
model’s performance can be increased by using more datasets and different preprocessing
techniques. It can aid in the diagnosis of liver tumors, with 99.9% precision. The rate of the
authentication of DC also increased, suggesting that the experiment went well and that the
model is ready for use in detecting liver tumors. In future studies, we plan to explore a
new deep learning model at a further level to improve tumor localization accuracy, lower
the FN rate, and increase the IoU metric.

Author Contributions: Conceptualization, H.R. and T.F.N.B.; methodology, T.F.N.B.; investigation,
A.I.; resources S.T., A.A.; data curation, J.T.; writing—original draft preparation, T.F.N.B.; writing—
review and editing, A.I., A.A.; visualization, S.T.; supervision, H.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This work is supported in part by the Beijing Natural Science Foundation (No. 4212015) and
China Ministry of Education—China Mobile Scientific Research Foundation (No. MCM20200102).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The dataset is available at http://www.ircad.fr/research/3dircadb.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. World Health Organization. World Cancer Report. 2021. Available online: https://www.who.int/news-room/fact-sheets/

detail/cancer (accessed on 25 January 2022).
2. Key Statistics about Liver Cancer. 2022. Available online: https://www.cancer.org/cancer/liver-cancer/about/what-is-key-

statistics.html#:~:text=The%20American%20Cancer%20Society’s%20estimates,will%20die%20of%20these%20cancers (accessed
on 29 January 2022).

3. Christ, P.F.; Elshaer, M.E.A.; Ettlinger, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Armbruster, M.; Hofmann, F.; D’Anastasi,
M.; et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional
random fields. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016), Athens,
Greece, 17–21 October 2016; pp. 415–423. [CrossRef]

4. Soler, L.; Delingette, H.; Malandain, G.; Montagnat, J.; Ayache, N.; Koehl, C.; Dourthe, O.; Malassagne, B.; Smith, M.; Mutter, D.;
et al. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput. Aided
Surg. 2001, 6, 131–142. [CrossRef] [PubMed]

5. Son, J.; Park, S.J.; Jung, K.H. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv
2017, arXiv:1706.09318.

6. Mharib, A.M.; Ramli, A.R.; Mashohor, S.; Mahmood, R.B. Survey on liver CT image segmentation methods. Artif. Intell. Rev.
2012, 37, 83–95. [CrossRef]

7. Luo, S. Review on the methods of automatic liver segmentation from abdominal images. J. Comput. Commun. 2014, 2, 1.
[CrossRef]

8. Tariq, T.; Hassan, M.; Rahman, H.; Shah, A. Predictive Model for Lung Cancer Detection. LC Int. J. STEM 2020, 1, 61–74.

#
#
#
#
#
#
#
#
#
#


Bioengineering 2022, 9, 368 18 of 19

9. Latif, J.; Xiao, C.; Imran, A.; Tu, S. Medical imaging using machine learning and deep learning algorithms: A review. In
Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),
Sukkur, Pakistan, 30–31 January 2019; pp. 1–5.

10. Imran, A.; Li, J.; Pei, Y.; Yang, J.J.; Wang, Q. Comparative analysis of vessel segmentation techniques in retinal images. IEEE
Access 2019, 7, 114862–114887. [CrossRef]

11. Tiferes, D.A.; D’Ippolito, G. Liver neoplasms: Imaging characterization. Radiol. Bras. 2008, 41, 119–127. [CrossRef]
12. Bellver, M.; Maninis, K.K.; Pont-Tuset, J.; Giró-i Nieto, X.; Torres, J.; Van Gool, L. Detection-aided liver lesion segmentation using

deep learning. arXiv 2017, arXiv:1711.11069.
13. Kaluva, K.C.; Khened, M.; Kori, A.; Krishnamurthi, G. 2D-densely connected convolution neural networks for automatic liver

and tumor segmentation. arXiv 2018, arXiv:1802.02182.
14. Wen, Y.; Chen, L.; Deng, Y.; Zhou, C. Rethinking pre-training on medical imaging. J. Vis. Commun. Image Represent. 2021,

78, 103145. [CrossRef]
15. Han, X. Automatic liver lesion segmentation using a deep convolutional neural network method. arXiv 2017, arXiv:1704.07239.
16. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor

segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [CrossRef] [PubMed]
17. Meraj, T.; Rauf, H.T.; Zahoor, S.; Hassan, A.; Lali, M.I.; Ali, L.; Bukhari, S.A.C.; Shoaib, U. Lung nodules detection using semantic

segmentation and classification with optimal features. Neural Comput. Appl. 2021, 33, 10737–10750. [CrossRef]
18. Yang, D.; Xu, D.; Zhou, S.K.; Georgescu, B.; Chen, M.; Grbic, S.; Metaxas, D.; Comaniciu, D. Automatic liver segmentation using

an adversarial image-to-image network. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; pp. 507–515.

19. Shafaey, M.A.; Salem, M.A.M.; Ebied, H.M.; Al-Berry, M.N.; Tolba, M.F. Deep learning for satellite image classification. In
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 1–3 September 2018;
pp. 383–391.

20. Chlebus, G.; Meine, H.; Moltz, J.H.; Schenk, A. Neural network-based automatic liver tumor segmentation with random
forest-based candidate filtering. arXiv 2017, arXiv:1706.00842.
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