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Optimized scientific workflow scheduling can greatly improve the overall performance of cloud computing. As 
workflow scheduling belongs to NP-complete problem, so, meta-heuristic approaches are more preferred option. Most 
studies on workflow scheduling in cloud mostly consider at most two or three objectives and there is a lack of effective 
studies and approaches on problems with more than three objectives remains; because the efficiency of multi-objective 
evolutionary algorithms (MOEAs) will seriously degrade when the number of objectives is more than three, which 
are often known as many-objective optimization problems (MaOPs). In this paper, an approach to solve workflow 
scheduling problem using Improved Many Objective Particle Swarm Optimization algorithm named I_MaOPSO is 
proposed considering four conflicting objectives namely maximization of reliability and minimization of cost, 
makespan and energy consumption. Specifically, we use four improvements to enhance the ability of MaOPSO to 
converge to the non-dominated solutions that apply a proper equilibrium between exploration and exploitation in 
scheduling process. The experimental results show that the proposed approach can improve up to 71%, 182%, 262% 
the HyperVolume (HV) criterion compared with the LEAF, MaOPSO, and EMS-C algorithms respectively. 
I_MaOPSO opens the way to develop a scheduler to deliver results with improved convergence and uniform spacing 
among the answers in compared with other counterparts and presents results that are more effective closer to non-
dominated solutions.1

Keywords: Cloud computing, Many-objective PSO, Workflow scheduling.

1. Introduction

Cloud computing is a popular computational paradigm for affordable and easy-to-use computations. Virtualization is 

the main empowering technology in cloud computing, that is used to divide a physical machine into several Virtual 

Machines (VMs) in a cost-effective manner [1-3]. Virtualization is based on a market-oriented paradigm where 

customers are charged based on their consumption and can consume these services based on Service Level Agreements 

(SLAs) [4]. A workflow is a set of dependent or independent tasks that is illustrated as a Directed Acyclic Graph 

(DAG) in which the nodes indicate the tasks and a directed edge indicates the dependency among the corresponding 

tasks. To implement such workflow, required user resources are provided as VMs by the Infrastructure as a service 

(IaaS) in cloud [5-7]. The main complexity in this area is deciding the order in which the tasks will be executed and 

the optimum task-to-VM mapping, to achieve specified performance conditions that is known as a workflow-

scheduling problem.

1.1. Motivation

The motivations of this paper are as follows:

 At present, the main challenge is that the existing researches addresses workflow scheduling in cloud  as a 

single-objective [1], bi-objective[8], or three-objective optimization problems[9] by either making unreal 

suppositions that cannot be happened in many application scenarios, or neglecting some significant objectives 

of the service provider or the users [5,10]. Some of the MOEAs such as Non-Dominated Sort Genetic 

Algorithm II (NSGA- II) [11], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [12] and Speed-

Constrained Multi-Objective Particle Swarm Optimization (SMPSO) [13], use the Pareto-dominant 

relationship to determine the quality of the solutions. Hence, they are known as Pareto-based algorithms. 

However, the capabilities of these algorithms are greatly reduced when the number of objectives exceeds 
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three objectives, MOEAs may end up with a set of well-distributed non-dominated solutions, which are 

unfortunately far from non-dominated solutions. Therefore, one of the motivations of this paper is to study 

the problem of scheduling of scientific workflows as a many-objective optimization problem. 

 In cloud workflow scheduling, quality parameters form an important role. Among these parameters 

makespan, cost, energy efficiency and reliability need more attention. Considering makespan ensure that 

workflow is completed within the desired time or the specified deadline [14]. The cost ensures the budget 

determined by the user is not overshot. Energy efficiency is a significant objective for computing 

infrastructure providers due to its environmental and economic implications. The failure rate of a VM during 

the execution of the workflow is the reliability of the VM.  Here might be a state of conflict within these QoS 

requirements/objectives, where there exist no single solution. For example, in order to increase the reliability 

of a VM, you should use a higher-power VM that will naturally cost more. We also need to use faster and 

more expensive resources to reduce the makespan. Therefore, one of the motivations of this paper is to study 

the problem of scheduling of scientific workflows on multiple VMs with considering makespan, cost, energy 

efficiency and reliability in a cloud-computing environment. 

 Considering an appropriate balance between exploration and exploitation. Therefore, how to search in more 

wide space including individual’s selection and dimension’s selection is one of the motivations of this paper.

1.2. Contributions

In this paper, to enhance the ability of MOEAs to converge to the non-dominated solutions, an improved Many-

Objective Particle Swarm Optimization (I_MaOPSO) algorithm is proposed for dynamic workflow scheduling in 

cloud environments. The goal of the proposed approach is to meet the many-objective QoS requirements, in both 

cloud users’ and providers’ context by minimizing makespan, cost and maximization reliability for users, and 

minimizing energy consumption for providers. Addressing more than three objectives simultaneously in workflow 

scheduling is one aspect of innovation in this work, which has not been addressed so far. MaOPSO uses a set of 

reference points dynamically determined according to the search process, allowing the algorithm to converge to the 

non-dominated solutions. The main contributions of the paper to further improve the performance of MaOPSO and 

its use in cloud based workflow scheduling are summarized as follows.

 Proposing four greedy heuristic methods to generate uniformly distributed particles to improve the quality of 

the initial population. 

 Applying an efficient approach to compute the velocity of particles in order to achieve an appropriate balance 

between exploration and exploitation.

 Applying a roulette wheel selection process instead of the tournament selection to enhance the selecting the 

social leader.
 Applying an efficient approach to choose the new cognitive leader in order to achieve a balance between the 

diversification and intensification capabilities of the I_MaOPSO algorithm

 Comparing the performance of the proposed approach with other related approaches, where it is found that 

the proposed approach outperforms its counterparts.

The remaining paper is organized as follow: Section 2 presents the necessary background for this study. The related 

work done on multi-objective and many-objective optimization problems for workflow scheduling is discussed in 

Section 3. Section 4 explains the proposed approach and the details of the I_MaOPSO algorithm are given, Section 5 

presents the simulation strategy and results analysis. Finally, conclusions and future work are provided in Section 6.

2. Background

2.1. Many-objective optimization problems

Multi-objective optimization problems (MOPs) are characterized by multiple objectives which conflict with each 

other. Due to the conflicting nature of the objectives, usually no single optimal solution exists; instead, a set of trade-

off solutions, known as non-dominated solutions can be found for MOPs. Over the past two decades, evolutionary 
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algorithms (EAs) and other population based meta-heuristics have been demonstrated to be a powerful framework for 

solving MOPs, since they can find a set of non-dominated solutions in a single run. 

However, the efficiency of Pareto-based multi-objective evolutionary algorithms (MOEAs) will seriously degrade 

when the number of objectives is more than three, which are often known as many-objective optimization problems 

(MaOPs). The main reason for this performance deterioration is that the selection criterion based on the standard 

dominance relationship fails to distinguish solutions in a population already in the early stage of the search, since most 

of the solutions in the population are non dominated, although some of them may have a better ability to help the 

population to converge to the non-dominated solutions. Once the dominance based selection criterion is not able to 

distinguish solutions, MOEAs may end up with a set of well-distributed non-dominated solutions, which are 

unfortunately far from non-dominated solutions. 

Figueiredo et al. [12] to enhance the ability of MOEAs to converge to the non-dominated solutions proposed Many-
Objective Particle Swarm Optimization (MaOPSO) that uses a set of reference points dynamically determined 
according to the search process, allowing the algorithm to converge to the non-dominated solutions, but maintaining 
the diversity of the non-dominated solutions. MaOPSO started by generating N particles randomly in the decision 
space using a uniform distribution to form the initial swarm S0. Then, the particles are evaluated using a fitness 
assignment method. MaOPSO also has an external archive that is empty at first. Given that social leader selection 
process is used to differentiate between solutions within the external archive a set of well-distributed reference points 
is generated to be used during this process. Then, The algorithm applies iteratively a series of steps that involves: (1) 
Select the cognitive and social leaders for the particles from the external archive (2) Apply polynomial mutation to 
15% of the particle swarm in (3) Update the external archive using the new solutions visited by the particles. (4) Prune 
the external archive when its maximum size excesses. The above steps are repeated until the termination condition is 
reached. 

Chen et al. [15] first defines the no dominated solutions exhibiting evident tendencies toward the Pareto-optimal 
front as prominent solutions, using the hyperplane formed by their neighboring solutions, to further distinguish among 
no dominated solutions. Then, a novel environmental selection strategy is proposed with two criteria in mind: 1) if the 
number of non-dominated solutions is larger than the population size, all the prominent solutions are first identified 
to strengthen the selection pressure. Subsequently, a part of the other non-dominated solutions is selected to balance 
convergence and diversity and 2) otherwise, all the non-dominated solutions are selected; then a part of the dominated 
solutions are selected according to the predefined reference vectors. Moreover, based on the definition of prominent 
solutions and the new selection strategy, they proposed a hyperplane assisted evolutionary algorithm, referred here as 
hpaEA, for solving MaOPs.

He et al. [16]proposed a radial space division based evolutionary algorithm for many-objective optimization, 

where the solutions in high-dimensional objective space are projected into the grid divided 2-dimensional radial space 
for diversity maintenance and convergence enhancement. Specifically, the diversity of the population is emphasized 
by selecting solutions from different grids, where an adaptive penalty based approach is proposed to select a better 
converged solution from the grid with multiple solutions for convergence enhancement.

Sharma et al. [17] proposed an efficient environmental selection and normalization scheme for NSGA-III 
algorithm. The environmental selection operator was developed to equally prioritize solutions associated with different 
lines drawn from the origin and the reference points. Actually, the line-prioritized environmental selection is proposed 
to select at least one solution representing each reference line to the next generation population. A normalization 
scheme was also suggested in which the extreme point is used which gets updated on the designed rules. For future 
studies, their approach can be extended for solving constraint multi-objective optimization problems. The differences 
between the proposed algorithms in the mentioned papers in this subsection and the proposed I_MaOPSO algorithm 
in this paper and the strength of our proposed algorithm are listed and explained in Table 1.

Table 1. The strength and the differences between the proposed algorithm and the many objective algorithms 

Ref Algorithm Differences

The strength of I_MaOPSO algorithm over the 

mentioned algorithm/ the shortcomings of the 

mentioned algorithm

[12]

Many Objective 
Particle Swarm 
Optimization 
(MaOPSO)

1-The initial population generation method.
1- The proposed method leads to generating 
uniformly distributed particles and improving the 
quality of the initial population.
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2-The velocity of particles computing 
approach.

2- An efficient approach is applied in order to 
achieve an appropriate balance between 
exploration and exploitation.

3-The social leader selecting process.

3- The used roulette wheel selection gives a chance 
to all of solutions in the archive to be selected, 
contrary to the truncation selection used in 
MaOPSO.

4-The cognitive leader choosing approach.

4- The main advantage of this approach is that 
during the search process and creating the 
population members, the search is not confined to 
only a reduced number of regions (e.g., around the 
ideal point).

1- hpaEA optimizer is overspecialized for 
addressing several types of benchmark functions 
and end up sacrificing performance on real world 
scenarios [18].

2- hpaEA is specialized for handling large scale 
problems and its performance on small scale 
problems is unsure. Because for small-scale 
problems, this algorithm is trapped at local optima 
and do not converge properly to the true Pareto 
Front [19]. 

[15]

hyperplane 
assisted 
Evolutionary 
Algorithm 
(hpaEA)

hpaEA and I_MaOPSO can deal with the 
balance of convergence and diversity to a 
certain extent. However, the strategy of hpaEA 
to enhance convergence and diversity is 
separate, which may weaken the 
communication of the information. 
However, I_MaOPSO tries at eliminating the 
drawbacks of current approaches in the 
balancing between convergence and diversity.

3- hpaEAt give priority to convergence and then 
consider diversity alone. Convergence and 
diversity are treated separately with different 
strategies, which makes it difficult to make full use 
of current population information to achieve a 
balance of them [20]. 

1- RSEA pays more attention to convergence 
maintenance than diversity maintenance [21]. 

2- In RSEA it is important to decide which 
surrogate model should be used and when to use it 
[22].  [16]

Radial Space 
division based 
Evolutionary 
Algorithm
( RSEA)

Unlike I_MaOPSO, RSEA is a Surrogate-
Assisted Evolutionary Algorithm (SAEAs) 
and its performance highly depends on the 
number of objectives. SAEAs use efficient 
computational models, often known as 
surrogate models, for approximating the fitness 
function in evolutionary algorithms.

3- The surrogate model must be updated during the 
search process to achieve a better approximation 
of the objective functions. However, how to 
perform such an update is not straightforward [22].   

1- I_MaOPSO use both extreme solutions and 
projected points generated by an interesting 
mechanism called ASF. This mechanism impose a 
pressure selection toward the entire Pareto front 
and promote the distribution of the solutions over 
this Pareto front and thanks to this mechanism, the 
I_MaOPSO algorithm obtained simultaneously a 
good convergence and a high diversity in a 
reasonable time.

[17]

Line-Prioritized 
Environmental 
Selection And
Normalization 
Framework
(LEAF)

Both of I_MaOPSO and LEAF algorithms use 
a similar framework of Non-dominated Sort 
Genetic Algorithm III (NSGA-III). In LEAF, 
the non-dominated sorting and association are 
the same as the NSGA-III. However, the 
environmental selection and normalization are 
different.
I_MaOPSO has an external archive in which 
the founded non-dominated solutions during 
the search process are stored whereas NSGA-
III has only a population. In addition, an 
important difference between these algorithms 
is that I_MaOPSO employs Pareto dominance 
and information about density and proximity to 
push the particles towards the PF whereas 
NSGA-III does not use any explicit 
reproduction selection operation as the parents 
are randomly picked of the population. 

2- LEAF is emerged as one of the competitive 
algorithms and can be an alternative for many-
objective optimization. However, in order to 
improve the performance of LEAF, it is better to 
use it with an algorithm in which the diversity is 
preserved first over the dominance (e.g., the 
Strength Pareto Evolutionary Algorithm based on 
Reference direction (SPEA/R) algorithm) [17].   



6

2.2. Workflow model

Workflow scheduling is the process of mapping task to the appropriate resource. Selecting resources and mapping 

tasks should be done in such a way that the quality requirements of the users and providers are met. A popular 

representation of a workflow model is the directed acyclic graph (DAG): G (T, E) as shown in Fig.1, where T is a set 

of n workflow tasks {WT1, WT2, . . .,WTn}, and E is a set of directed edges. {eij| (ti ,tj) ∈ E} representing inter-task 

data dependencies such that the execution of tj∈ T cannot be started before ti∈ T finishes its execution. If there is data 

transmission from WTi to WTj, the WTj can start only after all the data from WTi has been received. 

Fig. 1. An example of directed acyclic graph (DAG)

2.3. Cloud model

The cloud model is a cloud service provider that includes computational resources. VMi is a virtual machine with 

different Pvm i processing power and different costs Cvmi. It is supposed that each VM of the set r can execute all tasks 

of a workflow. The processing power of a resource, Pvmi∈ R, is expressed in millions of instructions per second (MIPS). 

The pricing model used in this paper is based on pay-as-you-go model in which the users are payed based upon the 

number of time intervals that they have used the resources. It is assumed that there is no limitation on the number of 

VMs to lease from the provider. In this study, the VMs provided in the AmazonEC2 and its proposed memory usage 

characteristics are used, in which virtual machines have enough memory to perform the workflow tasks [23, 24]. It is 

also supposed that the VMs are all on a same network with similar bandwidth. The goal is to implement and present 

the proposed scheduling algorithm and to meet the quality requirements of users and cloud providers. The notations 

applied in our approach are tabulated in Table 2.

Table 2.Explanation of symbols used in a cloud workflow scheduling problem������� Duration of execution of task ti on VMj����� The transmission time from task ti to task tj������� Total processing time

Makespan The overall schedule length of the workflow��� Total execution cost��� Total execution time���� Reliability of a VM� Energy consumption�� Convergence criterion

λ A variance factor of the workflow deadline

We target workflow applications such as those presented by Rodriguez et al. [24] and Juve et al. [25]. Based on the 

profiling results obtained in their work for memory consumption and the VM types offered by Amazon EC2, we 

assume that VMs have sufficient memory to execute the workflow tasks. We assume that for every VM type, the 

processing capacity in terms of Floating Point Operations per Second (FLOPS) is available either from the provider 

or can be estimated [26]. This information is used in our algorithm to calculate the execution time of a task on a given 

VM, similar to references [24, 25]. Therefore, the execution time  of task  in a VM of type VMj is estimated  ������� �� 
through Eq. 1 [24].
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=������� ������� ∗ (1 ― ������) (1)

where  is the size of a task in the flop unit and  is the performance degradation percentage of a VM.��� ������
Additionally, the time taken for the data to be transferred from the parent workflow task ti to the child workflow task 

 is indicated by which is calculated through Eq. 2 [24].�� ���������� = ������ /� (2)

where  is the output data size via .������ ��
In this paper, it is assumed that the entire workflow is performed on a data center. So the bandwidth on VMs (β) is 

same, and the transfer time between two workflow tasks that runs on the same VM is zero. Total processing power is 

shown as  [24].�������
������� = ������� +  (

�∑
1

����� ∗ ��) (3)

where k is the number of edges of a task. If both workflow tasks are on a VM, k is zero, otherwise it will be one.

Scheduler S is defined as: S = (R, M, TEC, Makespan, Energy, Reliability), which includes sets of resources (VMs), 

mapping workflow task to resource, total execution costs, makespan, energy consumption and reliability. R = {r1, r2, 

...rn} is the set of VMs that should be leased. Every resource ri has one type of VM assigned along with information 

such as the start time of assigning the workflow task  to resource ri (LSTri ) and the end time of assigning the ��
workflow task  to resource ri (LETri). M presents a collection of mappings, and a combination of multiple set �� ����� = (��.

 that creates for each workflow task in the workflow. The mapping indicates that workflow task  ��.����.����.�����) �����
 is run on the resource rj and it is expected that the start time of the workflow task is ST and its end time is ET and ��

the error rate (reliability) in performing this workflow task by this resource is .�����
2.4. Optimization Objectives

a) Makespan

Makespan is equal to the maximum end time of the operation for the tasks of a workflow, includes the total time that 
the tasks are entered until their actual expiration and completion. In other words, makespan is equal to the time the 
entire DAG graph is executed. The optimum performance of a workflow requires a minimum makespan [24]:

Makespan =max {AFT(texit)} (4)
where AFT denotes the finish time of task ti on resource rp. Furthermore, the makespan for executing a workflow 
determines whether the scheduling of the workflow can satisfy the deadline as defined through Eq.5.

MakeSpan + Arrival time of workflow <= Deadline of workflow (5)

We apply two metrics related to deadline violation shown in Eqs. (6) [22] and (7), respectively.

Time violation = 

∑ ����� ������ �� ���������� = 1

��������� + ������� ���� �� ��������� ― �������� �� ����������������� �� ��������� ― ������� ���� �� �������������� ������ �� ��������� (6)

Count violation = 
������ �� ������ �������� ��������� ������ ���������� ������������� ������ �� ��������� (7)
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To assign a deadline to each workflow, we need to define the makespan for the shortest schedule S, which is gained 
by scheduling each workflow task on a distinct VM with the highest ranking while all data transfer time is regarded 
as zero. Therefore, the deadline of workflow can be calculated through Eq.8.

  + λ * S �������� �� ��������� =  ������� ���� �� ��������� (8)

where λ is a variance factor of the workflow deadline.

b) Cost

Based on utilization of cloud resources in cloud, there are two types of cost, computation cost and communication 

cost. The total cost is the sum of them as defined through Eq.9 [28, 29].������ = ����� + ����� (9)

where  is the computation cost of the workflow from task  to task  that is defined by using server l through ����� �� ��
Eq. 10

 - ����� = ��� ∗ (���� ���� ) (10)

where  is the processing unit price of server l.���
Moreover, the communication cost of the workflow from task  to task  is defined by using server l through Eq. 11�� ��

 * CT( )����� =  ��� ���� (11)

where is the communication unit price of server and = 0.1 $ per Hour. When two task and  excecuted in a ��� ��� �� ��
same VM (l), then CT ( ) =0;����
Otherwise, it is equal to CT ( ) =  in witch, B is the bandwidth between two VM (=20 MBps) and  is the data ���� ����� ����
size (in MB) from task to its successor task .�� ��
c) Reliability

The probability of running all the tasks on a workflow successfully is called reliability, which is a significant criterion 

for evaluating the efficiency of workflow scheduling problem. According to the critical pathway method, if the 

execution time of the tasks in the critical path is postponed, it will delay the completion of the whole workflow sample. 

Whereas the execution time of a task is delayed in an uncritical path, the execution time of the entire workflow will 

not be delayed. Hence, tasks in the critical path must be assigned to high-reliability VMs to avoid overdue missed 

tasks. Thus, loading time slack j from task is defined as follows:�������� = ���― ��� = ���― ��� (12)

where  ,  ,  ,  are the fastest start time, the shortest start time, the fastest finish time, and the shortest ��� ��� ��� ���
completion time of  , respectively. In addition, slack j = 0 indicates that the task lies in the critical path and slack> �� �� 
0 means the task is not in the critical path. Reliability Reljk of the task  on the virtual machine VMk is defined through ��
Eq. 13:

{����� = exp ( ―ƛ�� ∗ ����)   �� ������ = 0;����� = ��� ( ― �� ∗ ����)      ��ℎ������ (13)

where  represents the runtime of the task   in the virtual machine  , is the failure rate  of , and the ���� �� ��� �� ���
multiplication factor  is a real number greater than 1 and its value depends on the problem (in this paper  2). With 

respect to  the tasks in the critical path cannot be assigned to a low-reliability VM. Notice that assigning tasks in the 

critical path (slack j=0) to higher-reliability VMs (low values) can reduce the failure rate of the workflow execution, ��
so the probability of delay in completing the workflow execution is reduced. Eventually, the total reliability of the 

workflow is defined through Eq. 14 [30].
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���� =

�∏� = 1

����� (14)

where m is the tasks’ number of workflow.

d) Energy consumption

Energy consumption is one of the qualitative needs of cloud service providers. The energy model used in this paper is 
based on the introduced approach in [13] witch calculates the energy consumption of an activity ti on a resource VMj 
by increasing its duration of execution by the power consumption of the resource ( ) through Eq. 15. ����

       �(��,��� ) = ������� ∗ ���� (15)

                                                                                                                         
Also, the high-end servers consume energy between [250W, 500W] in fully loaded mode and 100W in idle mode. The 
workflow energy consumption is calculated through Eq. 16. 

E (W) =        (16)∑�� = 1
�(��,��� )

According to the definitions, the research problem can be described as follows:

“Finding scheduler S with the lowest values of TEC, energy consumption, makespan so that the highest reliability and 

minimum failure in scheduling occurs.”

Minimize {TEC, Makespan, Energy consumption, Failure rate}.

3. Related works

Workflow scheduling consists of mapping workflow tasks to computational resources to be executed. Most workflow 

scheduling algorithms are provided to minimize the makespan [7] or the cost [31]. Other objectives are energy 

consumption [32,33], load balancing [34,35] and so on which have been less considered so far. In workflow 

scheduling, reliability, makespan and cost are related to the quality requirements of users, and energy consumption, 

resource utilization and load balancing are related to the provider performance [36]. Generally, workflow scheduling 

problems can be separated into three categories based on the number of objectives as follows:

1) Single-objective workflow scheduling: some studies have focused on the workflow scheduling problem with one 
objective such as minimizing makespan [37,38] or minimizing cost [31]. Kaur et al. [1] presented a workflow 
scheduling approach based on a Shuffled Frog Leaping Algorithm (ASFLA) with considering the execution cost 
optimization. However, in the ASFLA, the cost reducing makes an overhead of increased makespan and ASFLA only 
has better performance when minimizing the cost metric is the major goal. Ding et al. [39] proposed a Q-learning 
based task scheduling framework for energy-efficient cloud computing (QEEC) that has two phases. In the first phase 
a centralized task dispatcher is used to execute the M/M/S queueing model, by which the arriving user requests are 
assigned to each server in a cloud. In the second phase a Q-learning based scheduler uses a continuously-updating 
policy to assign tasks to virtual machines. Zhu et al. [35] introduced a genetic algorithm for load balancing in 
scheduling that considers CPU and memory balances for provider efficiency. Wang et al. [40] presented an energy 
aware scheduling model based on Map Reduce. It divided the tasks into “Map tasks” and “Reduce tasks” that are 
scheduled by a modified genetic algorithm to solve this model. The authors introduced a local search operator to 
improve convergence speed and searching ability of the algorithm. The experiments show that their proposed 
algorithm is efficient to reduce the energy consumption. Chen et al. [41] introduced a set-based discrete PSO to 
minimize cost and makespan and maximize reliability, but only one objective is considered each time.
2) Bi-objective or multi-objective workflow scheduling: some studies have focused on the workflow scheduling 
problem with bi or three objectives such as cost and makespan [11] , makespan and energy consumption [42,43] 
makespan, cost and energy [9], makespan, cost and reliability [44]. The straightest solution for a multi-objective 
optimization problem is transforming into a single objective optimization problem. However, define a suitable 
aggregation weight is difficult in this case. For example, Li et al. [45] presented a cost-conscious weight factor to 
select resources, and then proposed a bi-objective heuristic, derived from HEFT to minimize makespan and minimize 
cost. Jena [46] used a clonal selection algorithm (TSCSA) to reduce the energy consumption and makespan. Verma 
et al. [47] offered a Bi-Criteria Priority based PSO (BPSO) considering execution time and execution cost under the 
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deadline and budget constraints.  In the BPSO, workflow tasks are firstly prioritized using the bottom level and then 
executed according to their priority, which is similar to what is defined in HEFT. Arabnejad et al. [48] suggested a 
workflow-scheduling algorithm named as Deadline-Budget Constrained Scheduling (DBCS) to find an appropriate 
answer with respect to budget and deadline constraints. The results indicate that the suggested algorithms reach lower 
cost and higher success rate compared to its counterparts. Mansouri et al. [49] proposed a hybrid task-scheduling 
algorithm named FMPSO that is based on Fuzzy system and modified particle swarm optimization technique to 
enhance load balancing and cloud throughput. Their proposed algorithm efficiently uses the resources, reduces 
makespan and increases efficiency and degree of imbalance. However, it does not consider the precedence of tasks 
and load balancing. Kaur et al. [44] introduced a workflow scheduling algorithm namely BAT based on the 
echolocation behavior of the virtual bats that minimizes cost and the execution time and maximizes the reliability 
metric. Some specifications of the VM such as processor speed, size of RAM, and failure rate to calculate the reliability 
of a VM are considered. Choudhary et al. [8] proposed a combination of a Gravitational Search Algorithm (GSA) and 
a Heterogeneous Earliest Finish Time (HEFT) for scheduling and tried minimize cost and makespan. Their proposed 
approach outperforms GSA and HEFT algorithms since the number of instructions is used to calculate the task 
execution time but this may not work precisely for the complex tasks. In addition, it has supposed that the bandwidth 
between the virtual machines is fixed and all the workflow tasks contain simple programming instructions. Zhou et 
al. [50] offered a Multi-Objective Evolutionary Algorithm (MOEA) for multi-objective scheduling in grid 
environment. Using MOEA approach, an optimal set of solutions close to the non-dominated solutions is generated. 
A multi-objective workflow-scheduling namely R-NSGA-II is presented by [51] to improve three conflicting 
objectives such as execution time, total cost, and reliability within a short period of time in cloud computing. Chen et 
al. [52] propose a heuristic strategy, which consists of proactive and reactive approaches, to schedule real-time 
multiple workflows with uncertain task execution time. In their strategies, nevertheless, the priority and decision 
parameters of each successor task which will be scheduled are throughout the original setting values during the 
scheduling. Liu et al. [27] proposed an onliNe multi-workflow Scheduling Framework, named NOSF that divides the 
scheduling process of workflows into three phases, and dynamically allocates VM resources for randomly arrived 
workflows to share the billing time of leased VMs as much as possible. The proposed deadline-aware heuristic 
algorithm can adaptively adjust the scheduling priorities and sub-deadlines of successor tasks ready for scheduling 
online to conquer the impacts of VM performance fluctuations. Gill et al. [53] proposed a particle swarm optimization 
based resource scheduling algorithm namely BULLET which is used to execute workloads effectively on available 
resources. At first, it analyzes workloads and does workload clustering. Next, it identifies the required resources. Then, 
based on the user’s requirements, a component maps the user workloads to the proper resources. Finally, a scheduler 
schedules user workloads to the available running resources for guaranteeing near optimal satisfaction of the user’s 
requirements. Their approach provides effective outcomes as compared to existing PSO based scheduling algorithms 
at different levels of cost, time and energy as shown in test cases. All of the mentioned studies have focused on the 
workflow-scheduling problem with bi or three objectives and those articles cannot handle workflow-scheduling 
problems with many objectives.
3) Many objective workflow scheduling: only a limited number of researches have addressed four or more objectives 

in workflow-scheduling problems [54]. Fard et al. [13] applied a list scheduling heuristic for workflow scheduling 

considering four-objective comprising makespan, reliability, energy consumption, and cost in distributed computing 

infrastructures. Ye et al. [54]  proposed an improved knee point driven evolutionary algorithm in a four-objective 

workflow scheduling problem considering improve the makespan, the execution time, the reliability, and the execution 

cost of workflow, but it does not consider the energy consumption reduction. As mentioned above, several heuristics, 

and metaheuristic are proposed for single, bi, and multi-objective scheduling problems. Although heuristics algorithms 

are computationally effective, but they are not able to present global optimal solution for workflow scheduling [13, 

27, 43]. The use of metaheuristic methods leads to improve performance of scheduling problems [1, 9]. In order to 

solve many objective optimization problems, algorithms such as NSGA-III [30], grid-based evolutionary algorithm 

(GrEA) [55], reference vector based evolutionary algorithm (RVEA) [54], and Many Objective Particle Swarm 

Optimization (MaOPSO) [12] have been presented so far. However, until now, the workflow-scheduling problem has 

not been implemented with these algorithms. In this paper, we apply improved MaOPSO algorithm to produce a set 

of non-dominated solutions for cloud workflow scheduling. The details of some related works in scheduling 

algorithms of cloud computing are tabulated in Table 3.

Table 3. Comparison of related works for workflow scheduling

Ref Workload
Algorithm/

policy or strategy
Model Type of achievement Weakness/limitations
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Algorith

m

[1]

Montage,
Cyber 
Shake, 
LIGO 
workflows

Augmented 
Shuffled Frog 
Leaping Algorithm
(ASFLA)

Single 
objectiv
e

Meta-
heuristic

Optimizing the cost 

1- Execution time increased 
due cost reduction.
2- ASFLA only improve 
performance.

[39]
Number of 
independent 
tasks

A Q-learning based 
task scheduling 
framework for 
energy-efficient 
cloud computing 
(QEEC)

Single 
objectiv
e

Heuristic
Optimizing the 
energy 
consumption

QEEC only improve energy 
consumption.

[9]

Montage,
Cyber 
Shake,
Epigenomic
s,
LIGO,
SIPHT 
workflows

Combination 
MOPSO algorithm 
and a list based 
heuristic (HPSO) in 
Cloud

Multi-
objectiv
e

hybrid

Optimize cost, 
makespan  and 
energy 
consumption

Reduce the efficiency of the 
algorithm with increasing the 
number of objectives

[48]

Montage,
Cyber 
Shake, 
Epigenomic
s, LIGO and 
SIPHT 
workflows

Proportional 
deadline 
constrained (PDC) 
and deadline 
constrained
Critical path 
(DCCP) algorithms 

Bi- 
objectiv
e

Heuristic
more cost reduction 
and higher success 
rate

1-It is only effective in data 
intensive workflows.
2- They only work on a limited 
group of resources

[49]
Number of 
independent 
tasks

A hybrid task-
scheduling 
algorithm named 
FMPSO that is 
based on Fuzzy 
system and 
modified particle 
swarm optimization 
technique 

Multi-
objectiv
e

Meta-
Heuristics

Reduce makespan 
and increase the 
efficiency and 
degree of 
imbalance

It does not consider the 
precedence of tasks and load 
balancing 

[8]

Montage,
Cyber 
Shake,
Epigenomic
s and 
SIPHT 
workflows

Combination of a 
Gravitational 
Search Algorithm 
(GSA) and a 
Heterogeneous 
Earliest Finish Time 
(HEFT) for 
scheduling in cloud

Bi-
objectiv
e

hybrid
Optimize cost and 
makespan

1- This may not work precisely 
for the complex tasks.
2- It has supposed that the 
bandwidth between the virtual 
machines is fixed 

[52]

Montage, 
CyberShak, 
SIPHT,
LIGO 

Uncertainty-aware 
online scheduling 
for
real-time workflows 
in cloud service
environment

Multi-
objectiv
e

Heuristic

Optimize cost, 
deviation, resource 
utilization and 
fairness

It does not consider the 
reliability of VMs and energy 
efficiency

[27]

Montage, 
Cyber-
Shak, 
Epigenomic
s, LIGO and 
SIPHT

Online multi 
workflow 
scheduling under 
uncertain task 
execution time in 
IaaS clouds

Multi-
objectiv
e

Heuristic

Reducing the VM 
rental cost and the 
deadline violation 
probability, as well 
as improving the 
resource utilization 
efficiency

The proposed approach does 
not consider  the joint 
optimization of the VM rental 
cost and energy efficiency
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[53]

The
workload is 
modeled as 
processing 
of images to 
convert 
from one 
format to 
another

A PSO based 
resource scheduling 
technique called
BULLET for 
scheduling of 
workloads in cloud 
environment

Multi-
objectiv
e

Meta-
Heuristic

Optimize execution 
time, cost, energy,
availability, 
resource
utilization, latency 
and
reliability

Their framework cannot 
identify relationship between 
workload (patterns) and the 
resource demands in the cloud.

[13]
Synthetic 
workflows

A generic multi-
objective list 
scheduling(MOLS) 
in heterogeneous 
distributed 
computing 
infrastructures

Many 
objectiv
e

Heuristic

Optimize 
makespan, cost, 
average execution 
time and reliability

Results are optimized for 
energy minimization, which 
however, are not optimal for 
users.

P
ro

p
o
se

d
 

ap
p
ro

ac
h

Montage,
Cyber 
Shake, 
Epigenomic
sworkflows

An improved  
many-objective 
particle swarm 
optimization 
algorithm for 
workflow
scheduling in cloud

Many 
objectiv
e

Meta-
Heuristic

Optimize four   
conflicting 
objectives, 
makespan, cost, 
energy 
consumption and 
reliability

The proposed approach does 
not consider data distribution in 
a multi cloud environment

4.  Proposed approach

Scientific workflow scheduling is not only a many-objective optimization problem in nature but also is a NP-hard 
problem in cloud computing. Considering the problem’s properties, we present the improved MaOPSO algorithm to 
produce a collection of the best possible scheduling solutions considering four conflicting objectives namely 
minimization of cost, makespan and energy consumption and maximization of reliability. In this section, firstly, we 
will state the basic background on general PSO, MOPSO and MaOPSO, and then we will describe the proposed 
algorithm of the workflow scheduling in cloud environment. 
 

4.1. Background on general PSO, MOPSO and MaOPSO Optimizations
Particle Swarm Optimization (PSO) is a population based evolutionary computation technique, where a population is 
called a swarm. A swarm has N particles (solutions) and the searching space has D dimensional. Each particle has 
knowledge of its previous personal best solution and knows the global best solution found by the entire swarm. Each 
particle updates its own velocity and calculates its own new position through Eqs. (17) and (18) to determine the speed 
and direction of its fly, respectively.��,�(� + 1) = ���,�(�) + �1�1(�)[��,�― ��,�(�)] + �2�2(�)[��,�― ��,�(�)] (17)

��(� + 1) = ��(�) + ��(� + 1) (18)

where  is known as the inertia weight and is critical for the algorithm’s convergence.  is the recent velocity of the  �  ��,�
particle and v(t+1) represents new particle velocity. X(t) is the current position of the particle i at time t and X(t+1) is 
new position of the particle.  and  are cognitive and social acceleration coefficient, respectively. and are two �1  �2 �1  �2

random numbers with values between 0 and 1. stands for the best position visited by a particle (called pbest) and ��,� 
 indicates the global best found by the neighboring particles (called gbest). ��,�

In general PSO; firstly, the system is randomly initialized with the solutions and each solution is moved around in the 
solution space. Then, for each particle, a fitness value is calculated and Pbest and  Gbest are updated. Next, the velocity 
and position of each particle to specify the speed and its movement direction is updated according to its fitness values. 
Finally, each particle is guided by its own new position and velocity to find a better result in the solution space. The 
process is repeated until the most favorable solution is found or the stopping condition is satisfied. 

PSO has limitation of optimization as single objective, so Multi-Objective PSO (MOPSO) algorithms were 
introduced that are used to improve several conflicting objectives [9]. Approaches based on Pareto are most 
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appropriate for MOPSO, due to their capability to produce several solutions in less computation period. In MOPSO, 
an external archive (At) is added to the general PSO algorithm to store non-dominated solutions found by the algorithm 
during the search process until the iteration t and construct the non-dominated solutions.  The velocity and position 
updates equations are same as equation (14) and (15) in the general PSO but all objectives are used to find Gbest and 
Pbest for each particle. The best detected position of the particle i since the start of the search procedure is called 
particle's cognitive leader. The social leader of the particle i (that is chosen from the external archive according to a 
predefined criterion such as diversity) is the best position detected by its neighborhood (i.e., the set of particles that it 
can interact with) since the start of the search procedure. After allocating a cognitive leader and a social leader for 

each particle, the velocity vi,j of each particle i in the dimension j ∈ { 1 , 2 , . . . , n } at iteration t + 1 is updated. After 
updating the velocity, the position vector xi of each particle is updated. The algorithm store previously generated non-
dominated solutions by recording the Pbest found by a particle during the search process.  The external archive is 
normally pruned if the number of non-dominated solutions surpasses a pre-defined threshold. 

Due to the lack of effective studies and approaches on problems with more than three objectives, Figueiredo et al. 
[12] proposed a reference-based MOPSO for solving many objective problems called MaOPSO. It utilizes the idea of 
reference points in its fitness assignment function to impose the selection pressure required for the algorithm to 
converge into the non-dominated solutions. MaOPSO started by generating N particles randomly in the decision space 
by an even distribution to form the initial swarm S0 . Then, the particles are evaluated by a fitness assignment function. 
Similar to other MOPSOs, MaOPSO has an external archive which is empty at first. Then in order to use during the 
selection process of the social leader aiming to differentiate the solutions in the external archive, a set of evenly 
distributed reference points is generated. Afterwards, the algorithm applies repeatedly a sequence of steps which 
contains mainly in: (1) Choose the cognitive and social leaders for the particles from the external archive and move 
the particles in the decision space; (2) Apply polynomial mutation to 15% of the particles in the swarm to improve the 
diversity and avoid the too early convergence; (3 ) Update the external archive using the new solutions visited by the 
particles so that the new archive  just contains non-dominated solutions; (4) Prune the external archive when its 
maximum size excesses. The above steps are repeated until the termination condition is reached.

 A detailed illustration of the general PSO, MOPSO and MaPSO algorithms is given in Fig. 2, which follows three 
general steps. First, initialize step to generate a set of particles on the swarm; second, evaluate step to find, update and 
select the social leader and the cognitive leader for each particle; third, update step to update the velocity and position 
in each iteration. This paper aims to improve the MaOPSO algorithm to more efficiently solve the many-objective 
workflow scheduling problem in cloud environment such as applies an appropriate balance between exploration and 
exploitation.
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Fig. 2. A detailed illustration of the general PSO, MOPSO and MaOPSO algorithms

4.2. Description of the improved MaOPSO

In this section, we describe our approach detailing the pseudocode of proposed I_MaOPSO, and the differences with 
respect to MaOPSO (the algorithm which I_MaOPSO is based on). 

4.2.1. Pseudocode and flowchart of the proposed algorithm

Algorithm 1 shows the pseudocode of I_MaOPSO. It begins by initializing the N mapping (particle) between workflow 
tasks and available resources (Line 1), which includes the position and velocity of the particles. Subsequently, each 
mapping is evaluated using Eqs. (4), (5), (10), and (12) (Line 2). Similar to other MOPSOs, I_MaOPSO also has an 
external archive (At) which is used to store non-dominated solutions that are generated by the algorithm during the 
search process and is initially empty (Line 4). In the following, a set of extreme points and a set of distributed reference 
points are produced that are used during the selection process of the leader to distinguish between solutions in the 
external archive (Lines 5 and 6). Nex, the primary loop of the algorithm runs until the termination condition is met. 
The external archive, the approximated ideal point, the new extreme points and the hyperplane are computed and 
updated (Lines 8-11) and the social and cognitive leaders are chooses from the external archive to move the particles 
in the decision-making space (Lines 12 and 13). Then a mutation operator is applied with a given probability (Line 
16) to improve the diversity of solutions and prevent premature convergence and the resulting particles are evaluated 
(Line 17). The algorithm returns the external archive as the approximation set found (Line 20). If the external archive 
gets full then we use the crowding distance algorithm to discriminate the solutions and decide which one should be 
eliminated and which should remain in external archive. 
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Algorithm 1: Pseudocode of the proposed workflow scheduling algorithm I_MaOPSO

Input: Workflow tasks, Cloud resources
Output :Non dominated workflow schedule solutions

1. Initialize population of Size N swarm (); 
2. Evaluate the swarm using the Fitness Metrics (cf. Eq. (4), (5), (10) and (12));
3. t = 0;
4. Initialize the external archive A0; 
5. Initialize the set of extreme points found so far Z0;
6. Generate the set of reference points using NBI technique;
7. while t <  tmax do 

8. Update At from At  ∪ St  and Prune it if needed;
9. Calculate the approximated ideal point zmin from At; 

10. Calculate the new extreme points Zt from Zt  ∪At (using ASF function);

11. Calculate the hyperplane from extreme points Zt;

12. Calculate the density measure a (using the Density operator) and the convergence measure a (using the 

Convergence operator) of each solution a ∈At using the reference set;

13. Select a social and a cognitive leader ∈ At for each particle i ∈ St using the density and convergence measures; 
14. Compute Velocity (); 
15. Update Position ();
16. Mutation;

17. Evaluation; 
18. t ++
19. end while 

20. Return Atmax
 containing best non-dominated schedules.

Based on the above descriptions, the algorithm’s flowchart is drown and showed in Fig. 3.

4.2.2. Differences with respect to MaOPSO

Given that MaOPSO is the basis of our I_MaOPSO, and it is necessary to distinguish between them as follows:

1) In the approach presented in [12], the initial swarm S0 is randomly generated using a uniform distribution in 
decision space. However, we propose four greedy heuristic methods for generating four of N initial solution, 
which consider the objective functions in order to create the initial solutions. In this way, the possibility of 
generating a ‘more explored’ initial swarm increases considerably. It should be noted that other N – 4 members 
of the initial swarm are randomly generated. These methods are as follows:

- Heuristic 1: given the similarity of the workflow-scheduling problem considering the makespan as the objective 
function to the parallel machine sequencing and scheduling problem (Qm/prec/cmax). Since the LPT (the Longest 
Processing Time first) method for this problem leads to good and near optimal solutions, this heuristic is applied 
to create one of the solutions of the initial swarm. In this approach the tasks are sequenced based on the 
descending order of their processing time on the processors and each task is assigned to the machine with the 
minimum total execution time. 

- Heuristic 2: in order to minimize the total cost objective, at any given moment, the task and machine with the 
minimum total computation and communication costs are selected for allocation.

- Heuristic 3: in this method, the tasks are assigned to the most reliable resource. This assignment leads to a 
solution with the maximum reliability and the minimum failure rate respectively.

- Heuristic 4: energy consumption can be optimally solved by assigning all tasks onto the resource with the least 
energy consumption with respect to its computational speed. Therefore, in this approach, at any given moment 
the task is assigned to the machine with the minimum energy consumption.

2) In the MaOPSO, according to the analysis presented by Clerc and Kennedy [56], aiming to control the particle’s 

velocity, a constriction coefficient is introduced as  in which  and . � =
2∅ ― 2 + ∅2 ― 4∅ ∅ = ∅1 + ∅2 > 4 ∅1,∅2 > 0
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Then the acceleration coefficients and w coefficient are calculated as . Among  � = ∅, �1 = � × ∅1, �2 = � × ∅2

all possible values for  and  the optimal values are . Based on this value, the constriction ∅1 ∅2   ∅1 = ∅2 = 2.05

coefficient is equal to 0.7298, the acceleration coefficients c1 and c2 are set to 1.49618 and the w coefficient � =  

is set to 0.7298. However, in order to strike an appropriate balance between exploration and exploitation, in this 

article in addition to this approach another efficient approach is used to set and change the 

of these coefficients. In this paper, the coefficients c1 and c2 are set to the fix value 2 and the coefficient w is set 

to 1 in the first iteration. In order to reduce the exploration rate over time, w is multiplied by a constant coefficient 

(=0.9 in this research) in each iteration. For example, in the first iteration w = 1, in the second iteration w = 0.9, 

in the n-th iteration w = (0. 9) n - 1, and so on. In order to compute the velocity of a specific particle, one of these 

two approaches are selected with the same probability of selection (= 0.5) with fitness proportionate selection 

method. This means that before calculating the velocity of a particle, a random value is created in the interval [0, 

1]. If this random value is less than 0.5, the first approach and otherwise the second one is used to calculate the 

velocity of the mentioned particle. 

To choose the social leader for the sub-swarm , the roulette wheel selection process is used instead of the �2

tournament selection. The proposed roulette wheel selection method can be described as follows. 

Let us consider there are |At| solutions in the external archive, each characterized by its density measure ( ) � ≥ 0

and its convergence measure ( ). The selection probability of the i-th solution in At is specified by Eq. (19):� ≥ 0

                           ����� =
1

(�� + ��) ∑|��|� = 1

1

(�� + ��) (19)

where  and  are the density and convergence measures of solution i and  is the size of the external archive. �� �� |��|
It is necessary to mention that the sum of the probability of selecting all solutions in the archive equals to 1  (

). ∑|��|� = 1
����� = 1

Suppose a roulette wheel with the size of sectors, which is proportional with . Choosing 
1

(�� + ��) (� = 1, 2, �,|��|)
a point on the wheel randomly and locating the corresponding sector are equal to an individual selection. Roulette 

wheel selection makes a line segment of length  out of consecutive sectors of length∑|��|� = 1

1

(�� + ��) 1

(�� + ��) (�
, creates a random number R such that  , and then specify the corresponding = 1, 2, �,|��|) 0 < � < ∑|��|� = 1

1

(�� + ��)
sector, and choosing the respective solution. Fig. 4 shows an instance for choosing a solution as a social leader 
based on the density and convergence measures with roulette wheel.
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Fig. 3. Flowchart of the proposed algorithm (I_MaOPSO), which shows the innovations added to MaOPSO 
algorithm under the dashed rectangles.

3)  Applying a roulette wheel selection procedure provides some benefits as: 

a) This approach guarantees that the probability of selecting a weaker solution (i.e., a solutions with the bigger sum 
of the density and convergence measures) as social leader be smaller than the probability of selecting a better solution.
 b) While candidate solutions with a smaller sum of the density and convergence measures will be more likely to be 
selected, because their selection probability is less than 1 (or 100%), there is still a chance that they may be not 
selected.
c) Contrary to the less developed selection algorithm (i.e., the truncation selection used in MaOPSO) which will 
choose a fixed percentage of the best candidates, roulette wheel selection always gives a chance to all of solutions in 
the archive to be selected. 
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Therefore, even if the selection probability of weak solutions is low, it is not zero that means it is still probable they 
will select. This is a remarkable point, since in some cases even weak solutions may have characteristics that can be 
useful as a leader; and there is still a chance that they will be selected.

Fig. 4. Social leader selection by a roulette wheel based on the density and convergence measures of the 
solutions in the External Archive.

4) In this paper, the same as the MaOPSO algorithm, the Pareto-optimal front is adaptively discretizes by creating 

and adopting an entire normalized hyperplane. This hyperplane is created based on a widely distributed set of 

points (e.g., reference and extreme points) which ensure preserving the diversity of Pareto-optimal front during 

the search process. In fact, the keeping diversity between particle swarm is done by providing and updating a 

number of well-distributed reference and extreme points. In the MaOPSO algorithm during selection a cognitive 

leader for a solution, if it is not possible to compare solutions with each other, the Euclidean distances of the 

current solution and the cognitive solution to the ideal point are calculated, and the solution with the lowest 

distance is chosen as the new cognitive leader. It should be noted that the ideal point is a point in which the 

amount of each objective equals to the desired target value of that objective. The disadvantage of choosing the 

closest solution to the ideal point as the cognitive leader is leading the algorithm to premature convergence. In 

order to resolve this deficiency, in this work in the condition of incomparable solutions, the solution with the 

lowest Euclidean distance to the hyperplane is chosen as the new cognitive leader. The main advantage of this 

choice is that during the search process and creating the population members, a balance between the 

diversification and intensification capabilities of the I_MaOPSO algorithm is established. In intensification the 

regions around Pareto-optimal front are explored more thoroughly in the hope to find better solutions, while in 

diversification non-explored regions must be visited to ensure that all regions of the search space are evenly 

explored and that the search is not confined to only a reduced number of regions (e.g., around the ideal point).
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4.3. Applying the proposed I_MaOPSO for the workflow scheduling 

In order to implement the proposed I-MaOPSO algorithm for the workflow scheduling two main inputs should be 
determined: list of user requests (workflows), and 2) list of VMs as VM = {VM1, VM2, …, VMm. Each users request 
consists of 1,…, n workflow instances , where for example User request1 may have n workflow instances { WI1 

,WI2,…, WIn}, then each workflow instance may have different workflow tasks WI1={ WT1,1 , WT1,2...., WT1,m}, WI2={ 

WT2,1 , WT2,2...., WT2,m}, and WIn={ WTn,1 , WTn,2...., WTn,m}. 
The initial population of the proposed approach is generated based on the mapping between tasks and VMs, where 
represents particles or the potential solutions of the problem domain. The set of particle consists of P= P1, P2, …, Pn. 
Each particle is encoded with three variables SEQ, MAP, and VEL (Fig.5) as follows:

Fig.5. Structure of a particle

SEQ denote the scheduling sequence of all workflow tasks. It contains workflow task numbers and identifies the 
sequence of execution of workflow tasks in the VM. An example of SEQ matrix for workflow tasks given in the Fig.1 
is SEQ= [WT11, WT12, WT15, WT13, WT14, WT16, WT17, WT18, WT19].   
MAP determine the mapping of workflow tasks to VMs. In addition, the MAP can be expressed as follows:

Map= [
�11 �12 � �1��21 �22 � �2�
� � � ���1 ��1 � ���]

where the possibility of assignment of workflow task WTi to the VMj is denoted as pij uniformly distributed in the 
interval [0,1] which is defined as�∑� = 1

��� = 1 , ���  (20)

where Eq.1 presents a sum of all probability values of allocation user requesti that the value should not be greater 
than 1. If probable value of workflow task allocation is the highest in the row, we will map the workflow task to 
that VM. An example for map matrix with four VMs and workflow tasks given in the Fig.1 is as follows:

                     [  ��1 ��2 ��3 ��4 ]

Map=  

��11��12��13��14��15��16��17��18��19

[
0.13 0.25 �.�� 0.17
0.23 0.19 �.�� 0.25
0.31 0.05 0.30 �.��
0.27 �.�� 0.24 0.21�.�� 0.11 0.42 0.02�.�� 0.30 0.04 0.27
0.26 �.�� 0.24 0.17�.�� 0.14 0.11 0.11
0.30 0.21 0.10 �.��]

VEL is the velocity of each particle uniformly distributed in the interval [-1,1].

In this paper, first, based on the seq and map value, the Position matrix for a particle in the proposed approach for 
scientific workflow scheduling in Clouds is as follows:

                          [  ��1 ��2 ��3 ��4 ]
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Position=  

��11��12��15��13��14��16��17��18��19

[
0.13 0.25 �.�� 0.17
0.23 0.19 �.�� 0.25�.�� 0.11 0.42 0.02
0.31 0.05 0.30 �.��
0.27 �.�� 0.24 0.21�.�� 0.30 0.04 0.27
0.26 �.�� 0.24 0.17�.�� 0.14 0.11 0.11
0.30 0.21 0.10 �.��]

This position matrix is decoded as shown in Table. 4.

Table 4. The decoded Position matrix as an example for a particle in the proposed approach for scientific workflow 
scheduling

Workflow Task ��11 ��12 ��15 ��13 ��14 ��16 ��17 ��18 ��19

Virtual machine ��3 ��3 ��1 ��4 ��2 ��1 ��2 ��1 ��4

Next, the velocity of each particle is initialized by randomly generating in the range of [-1, 1]. It is necessary to 
explain that after updating the position of a particle, if the amount of pij for a particular i and j becomes less 

than zero, it replaced by  and if it becomes more than 1, it replaced by .― ��� 4 ��� 4

The aim of this study is to optimize many objective scheduling of scientific workflows in a cloud computing 
environment based on the proposed I_MaOPSO algorithm to obtain a uniformly distributed solution set with better 
convergence toward the non-dominated solutions (Pareto front) in terms of reduced makespan, minimized cost, 
efficient energy consumption of the VMs and maximized reliability. Finally, we calculate the squared Euclidean 
distance (SED) [57] for each output solution i as follows that estimates how far our current solution is from the 
summation of true Pareto points of a problem. Then we choose the output solution that has the least amount of the 
SED that is convergent toward the true Pareto front.

Therefore for each output solution i=1, 2,…, n : ���� =∑����� ������ �� ������ ������� = 1
[( ����―  ���������� )

2
+ ( ������ ������������―  ������ ������������������ )

2
+ �������� �― ��������������� ������� �����― ������� �����������

                                                                               ]

(2
1)

Final output solution k is selected with the lowest value of .����
5. Performance evaluation

The proposed approach is compared with three other leading algorithms called MaOPSO and LEAF, in the context of 
solving many-objective optimization problems and an Evolutionary Multi-objective Scheduling for Cloud (EMS-C) 
algorithm to solve the workflow scheduling problem on an Infrastructure as a Service (IaaS) platform.

a) MaOPSO

Many-Objective particle swarm Optimization (MaOPSO) is a many-objective optimization algorithm based on 
particle swarm and Pareto dominance which utilizes the idea of reference points uniformly distributed in its fitness 
assignment method for imposing the selection pressure required for the algorithm to converge toward the non-
dominated solutions [12]. MaOPSO started by generating N particles randomly in the decision space using a uniform 
distribution to form the initial swarm S0. Then, the particles are evaluated using a fitness assignment method. MaOPSO 
also has an external archive that is empty at first. Given that social leader selection process is used to differentiate 
between solutions within the external archive a set of well-distributed reference points is generated to be used during 
this process. Then, The algorithm applies iteratively a series of steps that involves: (1) Select the cognitive and social 
leaders for the particles from the external archive (2) Apply polynomial mutation to 15% of the particle swarm in (3) 
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Update the external archive using the new solutions visited by the particles. (4) Prune the external archive when its 
maximum size excesses. The above steps are repeated until the termination condition is reached. 

b)  LEAF

Another algorithm is 

[17] and it 

b)  EMS-C

EMS-C algorithm [58] is under the multi objective NSGA-II framework and introduces a set of new genetic operators, 

the evaluation function and the population initialization scheme to solve the multi-objective Cloud scheduling 

problem, which minimizes both makespan and cost simultaneously, but it does not consider minimizing the energy 

consumption and maximizing reliability. The outcome of the algorithm is the final population with the results in both 

decision and objective spaces.

5.1. The benchmark workflows

To evaluate the proposed workflow scheduling algorithm, three scientific workflows with names Montage, 

Cybershake, and Epigenomics have been used. The Montage workflow is used in astronomy, the Cybershake 

workflow is used to describe the earthquake hazards in a region, and Epigenomics is used in biology [59] The Montage 

is known as an intensive data-processing workflow, which takes a lot of time to transmit data, but does not require 

complex calculations, and it only increases data transmission costs. Cybershake and Epigenomics need more 

computing resources. By choosing these three types of workflows, the efficiency of the proposed approach can be 

measured both in terms of processing data transfer. For each type of workflow, three kinds of DAG with dissimilar 

number of tasks and edges are presented. For example, the type of Cybershake workflow respectively has three kinds 

with 25, 50, 100 and 1000 tasks. In this article, the test case is workflow with maximum number of tasks. The DAG 

specifications of these workflows are given in Table 5, which shows the experimental results under the dashed 

rectangles. The sample structures of different scientific workflows are given in Fig. 6. 

Table 5. Characteristics of the benchmark workflows [60]

Workflow Number of Nodes Number of Edges Average data size (MB)

Montage_25 25 95 3.43
Montage_50 50 206 3.36
Montage_100 100 433 3.23

Montage_1000 1000 4485 3.21

CyberShake_30 30 112 747.48
CyberShake_50 50 188 864.74
CyberShake_100 100 380 849.60

CyberShake_1000 1000 3988 102.29

Epigenomics_24 24 75 116.20
Epigenomics_46 46 148 104.81
Epigenomics_100 100 322 395.10

Epigenomics_997 997 3228 388.59
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a) Montage Workflow b) Cybershake Workflow
c) Epigenomics 

Workflow
Fig. 6. Structure and complexity of scientific workflows [7]

5.2. Simulation Setup

The speed of the processor and other VM specifications, such as cost model, memory, failure rate, bandwidth, etc. are 

implemented based on the Amazon's proposed model and in accordance with Table 6. The average bandwidth of all 

sources is the same as 20 Mbps, and the VM's processing power is set to between 1000 and 10,000 millions of 

instruction per second (MIPS) inspired by the reference [9]. Also, the cost and failure rates of VMs are proportional 

to their processing power. To simulate, the cloud environment is assumed to include a service provider that delivers 

seven different computing resources with different processing speeds and different prices. In order to simulate the 

cloud environment, the WorkflowSim software, an upgraded version of CloudSim, has been used. One of the most 

important changes in this simulator is that it can read DAX files generated from workflow structures and provide 

required parameters such as runtime, file size, output file size, and tasks dependency [47].

Table 6: Recommended Amazon EC2 virtual machines (From https://aws.amazon.com/ec2/instance-types/)

Energy consumption ����
 (Watt per Hour)

RHEL 

Cost(ppl)

Failure rate 

(pk)
Bandwidth(Mbps)

Memory 

(GiB)
core CPU(mips)

Machine 

name

250 $0.16 per 
Hour

0.1 20 8 2 1000 m4.large

300 $0.26 per 
Hour

0.07 20 16 4 2000 m4.xlarge

350 $0.53 per 
Hour

0.03 20 32 8 4000 m4.2xlarge

400 $0.93 per 
Hour

0.02 20 64 16 6000 m4.4xlarge

450 $2.13 per 
Hour

0.008 20 160 40 8000 m4.10xlarge

500 $3.33 per 
Hour

0.006 20 256 64 10000 m4.16xlarge

Given that the algorithms used are all implemented in re-simulation, the initial parameters of each of them must be 

properly set. The estimated values for each algorithm are considered with regard to their best execution. Table 7shows 

the initial parameters of the algorithms.

#
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Table 7: Algorithm parameters  

Algorithm algorithm Parameter

Common parameters 
Population size = 100 , iteration = 250 , Repeat number of simulations = 30
Total number of VMs=50 in expermint1
Total number of VMs from 16 to 128 in expermint2

LEAF Mutation rate =1 , Crossover rate =0.9

MaOPSO c1=1.52.5,c2=1.52.5
r1=0 1,r2 =01,w = 0.1

EMS-C
Mutation rate = 0.5

Proposed approach
c1=1.5  2   c2=1.52  ,w=0.5  0.5
polynomial mutation rate = 0.3

The replication condition of the algorithms is 250 repetitions and each simulation implementation provides 30 optimal 

solutions hence in order to get more precise results, the average values as the final results are presented in the form of 

tables and plots.

5.3. Evaluation Indicators

In order to evaluate multi-objective optimization problems, there are various indicators such as GD, IGD, 

HyperVolume and etc.  Each of them is used to measure some of the performance criteria of the algorithm such as 
density. In this study, the HV criterion was used to evaluate the simulation results [61].

HyperVolume (HV): The HV criterion computes the volume of target space surrounded by the set of solutions 

generated by the algorithm and a reference point and is defined as follows:��(�) = �( ∪ �� ∈ �{�│�� < � < ����}) (22)

Where  is the Lebesgue criterion, P is the set of approximate solutions and zref is the reference point. Using the HV 

criterion, both the density and the spread of the algorithm's solutions can be measured, maximum HV value is the 

optimal and expected. To determine the HV, the reference point is necessary. In this research, the reference point for 

calculating HV equals the worst value of each target among the values obtained from it. Fig. 7 shows how to calculate 

the HV.

Fig. 7. HV criterion for 2D [62]

5.4. Evaluation resultsExperiment 1: Evaluation based on makespan, cost, reliability and energy consumption 

with different workflow instances and constant VM count

Implementation and evaluation of scheduling algorithms, energy, cost, reliability, and makespan are considered as 

targets. In order to facilitate displaying and analyzing the results of scheduling, parallel coordinates plots are used, 
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and four targets are presented at the same time. In the Figs. 8, 10 and 12, the horizontal axis shows different objectives 

and the vertical axis shows the value of each objective function. In order to calculate Pareto values, algorithms were 

repeated 250 times for each simulation and finally, each simulation implementation provides 30 optimal solutions 

(equals to archive size) and the maximum and minimum values of the targets were extracted. We use a collective 

frequency method to provide non-dominated solutions in any figure. A cumulative frequency distribution is the sum 

of the class and all classes below it in a frequency distribution. That entire means is you are adding up a value and all 

of the values that came before it.

a) Montage workflow

Figure 8 shows the comparison between the results for running 30 times of the LEAF, MaOPSO, EMS-C and proposed 
approach for energy, cost, makespan and reliability. 

 The results of this figure indicate that the 
solutions of the proposed approach are closer to the non-dominated solutions and more uniform distribution in the 
target space in Montage workflow compared to other workflows. In the MaOPSO algorithm, the initial swarm S0 is 
randomly generated using a uniform distribution in decision space. However, the proposed approach applies four 
greedy heuristic methods for generating four of N initial solution, which consider the objective functions in order to 
create the initial solutions. In the proposed approach, the possibility of generating a ‘more explored’ initial swarm 
increases considerably. Compared to the LEAF method, the proposed approach applies an efficient approach to 
compute the velocity of particles in order to achieve an appropriate balance between exploration and exploitation. 
According to Fig. 9, the HV criterion of the proposed scheduling algorithm has improved up to 71%, 182%, and 262% 

respectively, compared to LEAF, MaOPSO, and EMS-C algorithms. In the MaOPSO, to control the particle’s velocity, 

a constriction coefficient is introduced. In the proposed approach in addition to this approach, another efficient 

approach is used to set and change the amounts of these coefficients in order to strike an appropriate balance between 

exploration and exploitation.

(a) Non-dominated solutions
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(b) MaOPSO

(c) LEAF
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(d) EMS-C

(e) Proposed approach

Fig.8. Parallel coordinates plot of non-dominated solutions obtained from different approaches of 
Montage workflow scheduling for 4-objective
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Fig. 9. Comparison of the HV criterion for the Montage workflow

b) Cybershake workflow

Figure 10 shows the average of cost, makespan, energy consumption, and reliability for each algorithm’s non-
dominated solutions. Although in Cybershake workflow the results of all algorithms are close to each other, with a 
closer look, it can be concluded that the first to forth rankings are assigned to the proposed approach, LEAF , MaOPSO, 
and EMS-C algorithms, respectively. Obviously, achieving a lower makespan requires resources that are more 
expensive. This Figure shows that reaching the lowest makespan requires the use of resources with more calculating 
power so there is a significant difference between energy consumption and cost at the beginning and end of the plot. 
The significant difference between the proposed approach and the other two algorithms is given in the uniformity of 
solutions. In the proposed approach, in the condition of incomparable solutions, the solution with the least Euclidean 
distance to the hyperplane is selected as the new cognitive leader. The main advantage of this choice is that during the 
search process and creating the population members, a balance between the diversification and intensification 
capabilities of the proposed algorithm is established. In intensification the areas around Pareto-optimal front are 
explored more carefully in order to find better solutions, while in diversification non-explored areas must be visited 
to make ensure that all areas of the search space are uniformly explored and that the search is not confined to a reduced 
number of areas (e.g., around the ideal point). In general, all three approaches have been able to obtain an acceptable 
score for reliability. According to Fig. 11, the HV criterion of the proposed scheduling algorithm has improved up to 
7.59%, 9.72%, and 10% respectively, compared to LEAF , MaOPSO, and EMS-C algorithms. In the LEAF algorithm, 
author applies a 

MaOPSO, we apply a roulette wheel selection process instead of the tournament selection 

to enhance the selecting the social leader.
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(a) Non-dominated solutions

(b) MaOPSO
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(c) LEAF

(d) EMS-C
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(e) Proposed approach
Fig.10. Parallel coordinates plot of non-dominated solutions obtained from different approaches of Cybershak 

workflow scheduling for 4-objective
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Fig. 11. Comparison of the HV criterion for the Cybershak workflow

c) Epigenomics workflow

Epigenomics is one of the most difficult workflows for scheduling. The high volume of processing and data transfer 

between tasks has made it difficult to provide optimal scheduling. Therefore, maintaining the balance between 

convergence and uniformity of distribution of solutions in this workflow is an important challenge. Taking into 

account fig. 12 and examining the differences in the values of the makespan, cost and energy consumption of the 

Epigenomics with two other workflows, the complexity of this workflow is clear. It should be noted that each time 

the algorithms are executed, 30 optimal solutions (schedulers) are produced. As shown in Fig. 13, according to the 
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HV criterion, the proximity of the solutions provided by the proposed approach to non-dominated solutions relative 

to the MaOPSO, LEAF, and EMS-C algorithms has been improved up to 8.19% , 21.78%, and 25% which 

demonstrates the remarkable advantage of the proposed approach to the EMS-C algorithm and relative advantage over 

the MaOPSO and LEAF algorithms. In the proposed approach, in order to select the social leader for a sub-swarm, 

the roulette wheel selection procedure is used instead of the tournament selection. The roulette wheel selection 

guarantees that the chance of selecting a weaker solution as social leader be smaller than the probability of selecting 

a better solution. Contrast with the less sophisticated selection algorithm (i.e., the truncation selection used in 

MaOPSO) which will select a fixed percentage of the best candidates, roulette wheel selection always gives a chance 

to all of solutions in the archive to be selected. In addition, we apply an efficient approach to choose the new cognitive 

leader in order to achieve a balance between the diversification and intensification capabilities of the proposed 

approach.

(a) Non-dominated solutions
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(b) MaOPSO

(c) LEAF
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(d) EMS-C

(e) Proposed approach
Fig.12. Parallel coordinates plot of non-dominated solutions obtained from different approaches of Epigenomics 

workflow scheduling for 4-objective
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Fig. 13. Comparison of the HV criterion for the Epigenomics workflow

Experiment 2: Evaluation based on makespan parameter with variable VM count

Here, the VM count is raised from 16 to 128 to determine the efficiency of the algorithms in makespan. The average 
makespan gained for Montage, Cybershake, and Epigenomics are shown in Fig. 14(a-c). When the VM number 
increased from 16 to 96, the makespan for three approaches decreased. When it increased from 96 to 128, neither 
approach changed. It can be concluded that: (1) the workflow makespan will decrease when the VMs increase and 
will reach a point where further addition of VMs fail to decrease the makespan; (2) an increase in the number of VMs 
up to 96 improved makespan up to 25.8% , 44.35% , 45% for the proposed approach over the LEAF, MaOPSO, 
EMS-C respectively. In addition, for Cybershake, the difference between the makespan obtained by the proposed 
algorithm and the LEAF is low, where; the proposed algorithm has a better overall makespan over others. 
This is because in the proposed approach, we apply an efficient approach to compute the velocity of particles in order 
to achieve an appropriate balance between exploration and exploitation. 

Montage Cybershake Epigenomics

(a) (b) (c)
Fig.14. Impact of VM count. (a) On the makespan in Montage workflow. (b) On the makespan in Cybershak 

workflow. (c) On the makespan in Epigenomics workflow.

Experiment 3: Evaluation based on deadline violation probability with variable λ of the workflow deadline

In order to evaluate the deadline violation probability of the four algorithms, in this subsection, we compare the 
average time violation and count violation of the algorithms under various λ. The deadline factor λ is tested with the 
values from 3 to 5 with an increment of 0.5, and fix the workflow count. Fig. 15 shows that all four algorithms have 
a few workflows that do not complete before the deadlines. In addition, the deadline violation probabilities of the four 
algorithms decrease with the increment of λ i.e., extending the deadlines of workflows. The reason is when extending 
the deadlines of workflows; the workflows can be completed later without violating their deadlines. From Figs. 15(a) 
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and 15(b), we can observe that the deadline violation probability of EMS-C and MaOPSO are much higher than the 
results of proposed approach and LEAF because EMS-C and MaOPSO fail to deal with the variable execution time. 

(a)

(b)
Fig.15. Deadline violation of workflow scheduling. (a) Time violation. (b) Count violation

6. Conclusions and Future Work

Maintaining a balance between various and conflicting requirements of both users and cloud providers is an important 
issue in workflow scheduling in cloud computing. In this research, the four-objective workflow scheduling problem 
was addressed using a many-objective I_MaOPSO optimization algorithm with the aim of producing optimal 
schedules close to the non-dominated solutions and it tries to minimize makespan, minimize energy consumption and 
cost, and maximize the reliability of the VMs. In order to increase the probability of creating a ‘more explored’ initial 
population, we propose four greedy heuristic method for generating four of N initial solution which consider the 
objective functions in order to create the initial solutions. In addition, in the I_MaOPSO an efficient approach is used 
to set and change the amounts of coefficients in order to strike a balance between exploration and exploitation. The 
simulation was performed with three different workflows called Montage, Cybershake, Epigenomics, each with 
different characteristics in terms of complexity and data communications. The experimental results show that the 



36

proposed approach can improve up to 71%, 182%, 262% the HyperVolume (HV) criterion compared with the LEAF, 
MaOPSO, and EMS-C algorithms respectively. In the overall comparison between the four evaluated algorithms, 
proposed approach ranked first, and LEAF, MaOPSO, and EMS-C respectively ranked second, third, forth. In future 
studies, we intend 1) to address the issue of security and confidentiality of the user’s data for user's workflow tasks 
and cluster the resources and tasks based on their security level, 2) to propose workload prediction and multi-objective 
auto-scaling using artificial intelligence (AI) for dynamic resource provisioning can be accomplished using Deep 
learning, 3) to find out the trade-off among different optimization objectives due to wide range of the Internet of 
Things (IoT) applications are running on cloud computing systems, 4) to assess the performances of the proposed 
approach on heterogeneous fog environments, and 5) to use novel AI motivated techniques for more efficient thermal 
aware scheduling of scientific workflow and resources. Finally, the interested readers can further explore using 
extensive survey of computing paradigms and technologies and the influence of triumvirate (block chain, IoT and AI) 
to the evolution of cloud computing [63]. 
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Highlights:

 Proposing four greedy heuristic methods to generate uniformly distributed particles

 Applying an efficient approach to compute the velocity of particles. 

 Applying a roulette wheel selection process to select the social leader.

 Applying an efficient approach to choose the new cognitive leader.


