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Abstract—Physical layer security is a promising way to secure
the wireless communications in the Internet of Things. Motivated
by the fact that the limited feedback resources in the IoT network
would degrade the secrecy advantage of the multiple-antenna
technique, we attempt to investigate the problem of how many
transmit antennas should be utilized to perform secure com-
munications. In particular, we consider the heterogeneous IoT
downlink network and design a multiuser secure transmission
scheme. In this scheme, the zero-forcing beamforming technique
is adopted to serve the IoT legitimate users, and the remaining
spatial freedoms are utilized to send artificial noise (AN) for
confusing the passive eavesdroppers. Given the secrecy outage
constraints, we derive the closed-form expression for the network
secrecy throughput and formulate a non-convex optimization
problem with multiple parameters, e.g., the number of transmit
antennas, the wiretap codes, the feedback bits allocation strategy,
and the power allocation ratio between the information bearing
signal and the AN. To effectively tackle this problem, we develop
an optimization framework involving the block coordinate de-
scent (BCD) algorithm and the one-dimensional search method.
Simulation results validate the effectiveness of our proposed
optimization framework and show that the optimal number of
transmit antennas increases as the secrecy outage constraints
become stricter, or the feedback resources become scarcer.

Index Terms—Physical layer security, Internet of Things,
optimal number of antennas, feedback bits allocation.

I. INTRODUCTION

A. Security for the Internet of Things

The fifth generation (5G) network is recognized as the
panacea of the current cellular network to meet the ever-
increasing demands of mobile broadcast traffic and massive
connections [1]. As an ongoing paradigm of the 5G network,
the Internet of Things (IoT) is expected to provide connec-
tivity for massive public and private sectors, thus serving
as a promising cornerstone for the future intelligent society
[2]. This promise generates enormous interest in exploring
future IoT applications such as smart cities, home automation,
wearable electronics, environmental monitoring, industrial IoT,
and the Internet of Vehicles (IoV) [3, 4].

Note that the IoT would involve an enormous amount of
sensitive and confidential information exchanged via wireless
channels, e.g., personal privacy, trade secrets, financial files,
and military secrets, such that providing the security service
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is one of the top priorities in the design of IoT networks
[5, 6]. Traditionally, the security of data transmission has
been entrusted to cryptographic techniques at the network
layer. However, the dynamic and heterogeneous nature of IoT
networks would raise issues such as key distribution for sym-
metric cryptosystems, and high computational complexity of
asymmetric cryptosystems [7]. Additionally, all cryptographic
measures are based on the premise that it is computationally
infeasible for them to be deciphered without knowledge of
the secret key, which remains mathematically unproven. Thus,
the vulnerability of cryptographic schemes and the lack of a
fundamental proof for perfect secrecy motivate new security
mechanisms that are provably unbreakable to secure the wire-
less communications in IoT networks.

Different from the conventional cryptographic techniques,
physical layer security provides a promising method to secure
the IoT networks by exploring the inherent randomness at
the physical layer [7–9]. On one hand, with appropriately
designed coding and transmit precoding schemes in addition
to the use of any available channel state information (CSI),
physical layer security schemes enable secure communications
over the wireless medium without the aid of an encryption
key. This keyless advantage of physical layer security makes
it particularly suitable to implement in the future IoT networks
that may have no guarantee of security protocols. On the
other hand, no limitations are assumed for the eavesdroppers
in terms of computational resources or network parameter
knowledge. As a result, even if the eavesdroppers are equipped
with power computational devices, the secure communications
can still be guaranteed. Therefore, physical layer security,
operating essentially independently of the higher layers, is
now commonly expected to complement the existing security
measures to provide security service for the IoT networks [9].

B. Related Work and Motivation

A promising technique in the research field of physical layer
security is the multiple-antenna technique [10]. By exploiting
the spatial degrees of freedom, the multiple-antenna technique
can enhance the reception performance of legitimate users
and simultaneously degrade the reception performance of
eavesdroppers. Since the eavesdroppers generally keep silent
to hide their existence, the artificial noise (AN) technique
is usually incorporated to design multi-antenna secure trans-
mission schemes for the secrecy performance enhancement
[11, 12]. The key of AN lies in sending noise signals in the
null space of the legitimate user’s channel to confuse the
passive eavesdroppers. Typically, the secrecy performance of
the AN-aided transmission scheme is directly concerned with
the channel state information at the transmitter (CSIT). For
example, in a three-node point-to-point scenario, the imperfect
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CSIT incurred from the limited feedback would lead to the
noise leakage to the legitimate receiver, causing a loss to the
secrecy performance [13–15].

The multiple-antenna technique is also widely used in the
multiuser secure transmission scenario [16]. Compared to the
conventional point-to-point scenario, the inter-user interfer-
ence makes the secure transmission design in the multiuser
scenario more complicated. Moreover, the multiuser transmis-
sion also results in more opportunities of information leakage
to the eavesdroppers, thus increasing the risk of being eaves-
dropped [17]. To decrease the risk of information leakage,
the massive MIMO technique has been incorporated to design
the multiuser secure transmission schemes [18–20]. In [18],
a linear precoder based on regularized channel inversion was
proposed to perform large-system secure communications in
the broadcast channels. In [19], the massive MIMO and AN
techniques were utilized to perform secure transmission in the
multi-cell downlink network. In such a scenario, the authors
further optimized the power allocation between the legitimate
signal and the AN signal under different linear precoding
schemes in [20]. These studies concluded that if there is a large
enough number of antennas, the network secrecy performance
can be improved.

The downlink traffic in IoT is inundated with the significant
and sensitive control information, which should be kept secre-
cy against eavesdropping to avoid serious consequences. Since
the IoT downlink network is a broadcast scenario, the multi-
antenna technique is applicable and needs to be considered for
designing secure transmission schemes. However, due to the
limited feedback resources shared by enormous IoT users, the
secrecy advantage incurred from the multi-antenna technique
should be reexamined in the IoT network. Specifically, on
one hand, increasing the number of antennas provides more
spatial freedoms for sending AN to degrade the reception per-
formance of the eavesdroppers. On the other hand, the limited
feedback resources make the CSIT become less accurate as the
number of antennas increases, such that each IoT user would
suffer from more inter-user interference and experience the
weakened reception performance. Motivated by this, in this
work we aim to perform the multi-user secure transmission
design for the IoT downlink network and address the following
problem: “How many antennas are needed to perform secure
transmission in the IoT downlink network?”

C. Our Contributions

In this work, we consider the heterogeneous IoT down-
link network, where the multi-antenna controller intends to
simultaneously serve secure communications to multiple IoT
users in the presence of randomly distributed eavesdroppers.
Given the limited feedback resources in the IoT network, we
design an AN-aided multi-user secure transmission scheme
and characterize the network secrecy throughput performance.
In order to maximize the network secrecy throughput, many
system parameters need to be carefully optimized, e.g., the
number of transmit antennas, the power allocation ratio, the
wiretap code parameters, and the amounts of feedback re-
sources allocated to different users. Although this optimization

problem is non-concave and difficult to solve, we propose an
efficient method to handle it. The main contributions of this
work can be summarized as follows.

1) We design a multi-user secure transmission scheme for
the heterogeneous IoT downlink network by combing
the zero-forcing beamforming and AN techniques. Un-
der the fixed-rate scheme, we derive the closed-form
expression for the network secrecy throughput and facil-
itate the comprehensive optimization of the number of
transmit antennas, the power allocation ratio, the wiretap
code parameters, as well as the feedback bits allocation
strategy.

2) We develop an optimization framework to solve the non-
concave optimization problem of maximizing the net-
work secrecy throughput. In particular, we decompose
the original problem into two steps. In the first step, we
fix the number of antennas and design a block coordinate
descent (BCD) algorithm to determine the optimal power
allocation ratio, the optimal wiretap code parameters,
and the optimal feedback bits allocation strategy. In the
second step, the optimal number of antennas is solved
by a one-dimensional search.

3) Our findings highlight that in the IoT downlink network,
it is not the case that the more transmit antennas the
better network secrecy performance. Moreover, we show
that the optimal number of transmit antennas increases
in the following cases: 1) The eavesdroppers’ abilities
become strengthened; 2) The IoT users need stricter
secrecy requirements; 3) The feedback resources in the
IoT network become scarcer.

D. Organization

The remainder of this work is organized as follows. In
Section II, we describe the IoT secure downlink transmis-
sion scenario. In Section III, we characterize the statistics
of the received SINRs at the IoT users and eavesdroppers.
In Section IV, we design an on-off-based multiuser secure
transmission scheme. In Section V, we propose a BCD-based
one-dimensional search method to solve the optimization prob-
lem of maximizing the network secrecy throughput. Finally,
we provide our numerical simulations and main findings in
Section VI and VII, respectively.

Notation: Matrices and column vectors are denoted by
uppercase and lowercase boldface letters. A complex Gaussian
random variable x with zero mean and unit variance is denoted
as x ∼ CN (0, 1). An Exponent-distributed random variable
y with parameter a is denoted as y ∼ Exp(a). A Gamma-
distributed random variable z with parameters (b, c) is denoted
as z ∼ Gamma(b, c). (·)T and (·)† stand for transpose
operation and conjugate transpose operation. null(·) stands
for spanning the null space of matrix. | · | and ∥ · ∥ represent
the norm of scalar and vector. log2(·) and ln(·) represent the
base 2 logarithm and natural logarithm, respectively.

II. SYSTEM MODEL

We consider the secure downlink transmission in a typical
IoT network [21, 22], where an M -antenna central controller
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Fig. 1. Secure downlink transmission in a local IoT deployment.

transmits independent confidential messages to K single-
antenna IoT users (K ≤ M), in the presence of randomly
located single-antenna eavesdroppers, as illustrated in Fig. 1.
We assume that the eavesdroppers can only passively overhear
the transmitted information without malicious attacks. Since
there are a large number of IoT users but the feedback time
slots are relatively small, the feedback resources in the IoT
scenarios are fundamentally limited. Motivated by this, in
this work we aim to design a multiuser secure transmission
scheme for the IoT network and address the problem of how to
determine the number of transmit antennas, as well as how to
allocate the limited feedback resources to these IoT legitimate
users.

We assume that the IoT users and the eavesdroppers expe-
rience independent flat Rayleigh fading [23, 24]. We denote
hi,k ∼ CN (0, 1) as the channel coefficient between the k-th
user and the i-th transmit antenna at the central controller,
which facilitates us to denote hk = [h1,k, h2,k, · · · , hM,k]
as the channel vector between the k-th user and the central
controller. As such, the received signal at the k-th IoT user
can be given by

yk =
√
ςkhkx+ nk, (1)

where ςk denotes the path loss coefficient between the k-th
IoT user and the central controller, x is the transmitted symbol
vector containing information symbols carried by all M beams
with an average power constraint E{∥x∥2} = ρ, and nk ∼
CN (0, 1) denotes the additive white Gaussian noise (AWGN)
at the k-th IoT user.

For a robust secure transmission design, we assume that the
eavesdroppers’ locations are unavailable to the network. In the
literature, the homogeneous Poisson point process (PPP) has
been widely used to examine the impact of random eavesdrop-
pers’ locations on secrecy performance [25–28]. In this work,
we model the eavesdroppers’ locations to be distributed on the
infinite two-dimensional plane according to a homogeneous
PPP Φ of intensity λ. Also, we denote gi,l ∼ CN (0, 1) as
the channel coefficient between the l-th eavesdropper and the
i-th transmit antenna at the central controller, which facilitates
us to denote gl = [g1,l, g2,l, · · · , gM,l] as the channel vector
between the l-th eavesdropper and the central controller. As

such, the received signal at the l-th eavesdropper can be given
by

zl =
√
ϱlglx+ wl, (2)

where ϱl denotes the path loss coefficient between the l-th
eavesdropper and the central controller, and wl ∼ CN (0, 1)
denotes the AWGN at the l-th eavesdropper.

In each coherent block, the central controller first broadcasts
pilot symbols to enable the IoT users to perform channel
estimation. In this work, we assume that there is no estimation
error at the user side, i.e., the k-th IoT user has perfect knowl-
edge of hk, and the l-th eavesdropper has perfect knowledge
of gl. Moreover, we consider that the central controller is able
to acquire partial knowledge about hk with the help of some
feedback information from the IoT users. However, since the
eavesdroppers perform as passive users, the central controller
cannot obtain any instantaneous knowledge about gl.

For a robust secure transmission design, we consider the
worst-case scenario where we assume that if an eavesdropper
intends to intercept one message stream, he/she is capable
of canceling the interference caused by the message streams
transmitted from the central controller to other IoT users [26].
To guarantee security under this scenario, it is advisable to
use certain dimensions of beams to send AN for confusing the
eavesdroppers’ reception. Motivated by this, in the following
we perform the secure transmission design by exploiting
K out of M beams to serve the IoT users and using the
remaining M−K dimensions of beams to send AN for secrecy
enhancement.

A. Limited Feedback and CDI Quantization Model

Prior to the secure message transmission, the central con-
troller first sends pilot symbols, and then the K IoT users
perform channel estimation and convey back their channel
knowledge to the central controller for the subsequent beam-
forming design. However, a common fact in the IoT network
is that the feedback resources available for the IoT users are
quite limited. Practically, the feedback resources allocated to
a single IoT user determines the accuracy of its corresponding
CSIT, which directly affects the secure transmission design for
this user. Therefore, how to allocate the feedback resources
to these IoT users has an important impact on the network
secrecy performance.

We assume that all IoT users share a common feedback
channel with a capacity of Btotal bits per coherence block,
and the number of feedback bits allocated to the k-th IoT
user is Bk, leading to the constraint

∑K
k=1 Bk = Btotal.

Since the channel direction information (CDI) is especially
vital for beamforming design in the multi-user system, we
further assume that all the feedback load per user, e.g., Bk,
is used to capture the CDI knowledge, e.g., dk = hk/∥hk∥.
Specifically, in each coherence block the k-th IoT user chooses
the optimal quantized CDI vector from a 2Bk -sized codebook
Ck = {c1,k, c2,k, · · · , c2Bk ,k}, yielding

d̃k = argmax
cn,k∈Ck

|dkc
†
n,k|

2. (3)
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Then the k-th IoT user conveys back the index of d̃k to the
central controller by using Bk feedback bits. We clarify that
the codebooks at different users (e.g., Ck1 and Ck2 , k1 ̸= k2)
are independent with each other.

To guarantee a good quantization codebook, e.g., Ck, [29]
and [30] have concluded that an optimal codebook is the one
which minimizes the maximum correlation between any pair
of beamforming vectors. In this work, we adopt this criterion
to independently generate the quantization codebook at each
IoT user and resort to the quantization cell approximation used
in [29, 30] to characterize the codebooks generated by this
criterion. Using this method, if we define cos2θk = |dkd̃

†
k|2,

the cumulative distribution function (CDF) of cos2θk is ap-
proximated as

Fcos2θk(x) =

{
0, 0 ≤ x < 1− εk,

1− 2Bk(1−x)M−1, 1− εk ≤ x ≤ 1,
(4)

where εk = 2−
Bk

M−1 reflects the maximum quantization error
of the codebook (e.g., Ck) used at the k-th IoT user.

B. Artificial Noise Beams Construction

After receiving the channel feedback from K IoT users, the
central controller can acquire an M ×K CDI matrix as D̃ =
[d̃T

1 , d̃
T
2 , · · · , d̃T

K ]. To degrade the reception performance at
the passive eavesdroppers, we introduce the AN technique for
secrecy enhancement. In particular, we exploit the remaining
M −K beams for AN transmission and construct these AN
beams, e.g., {f1, f2, · · · , fM−K}, fj ∈ CM×1, by finding an
orthonormal basis for the null space of D̃. Therefore, these AN
beams form an M×(M−K) matrix F = [f1, f2, · · · , fM−K ],
satisfying F = null(D̃).

C. Zero-Forcing Beams Construction

To avoid significant interference affecting the IoT users, in
this work we consider that the central controller simultaneous-
ly serves K IoT users through the zero-forcing beamforming
(ZFBF) technique. To keep the ZF beams independent with
the AN beams, we first generate an M × (M −K) matrix as
D̂ = [d̂1, d̂2, · · · , d̂M−K ], where d̂i ∈ CM×1 is a randomly
generated unit vector. Then we define D = [D̃, D̂] and
construct the K unit ZF beams, e.g., wi ∈ CM×1, from the
pseudo-inverse

E = D†(DD†)−1. (5)

In particular, wi can be obtained by normalizing the i-th
column of E. It is worth mentioning that since we only have
K IoT users and add M −K dimensions of randomness into
D, only the first K columns of E are meaningful. These ZF
beams form an M ×K matrix W = [w1,w2, · · · ,wK ].

D. Transmitted Symbol Vector

Based on the construction of AN and ZF beams, the pre-
coding matrix at the central controller can be written as P =
[W,F]. We define s = [u1, u2, · · · , uK , v1, v2, · · · , vM−K ]T

as the signal vector, where ui is the information-bearing signal
intended for the i-th IoT user, and vj is a randomly generated

complex Gaussian signal intended for confusing the passive
eavesdroppers. As such, the transmitted symbol vector x is
formulated as

x = Ps = Wu+ Fv, (6)

where u = [u1, u2, · · · , uK ]T, and v = [v1, v2, · · · , vM−K ]T.
In this work, we consider that the transmit power of each ZF
beam is ρu, and the transmit power of each AN beam is ρv,
such that we have Kρu +(M −K)ρv = ρ. By defining ρv =
ρuϕ, we formulate ρu and ρv as ρu = ρ

K+(M−K)ϕ and ρv =
ρϕ

K+(M−K)ϕ , respectively. Note that ϕ acts as an important
parameter in the process of secure transmission design.

III. STATISTICAL CHARACTERIZATION OF SINR

Prior to the secure transmission design, in this section we
focus on characterizing the statistics of the received SINRs at
the IoT users and the eavesdroppers.

1) Received SINRs at IoT Users: Aided by (6), the received
signal at the k-th IoT user in (1) can be rewritten as

yk =
√
ςk

hkwkuk+
K∑

i=1,i̸=k

hkwiui+
M−K∑
j=1

hkfjvj

+nk.

(7)

Since the ZF beams and AN beams are independently chosen
orthogonal to the quantized CDI of other IoT users but not the
actual CDI, the interference terms in (7) are not completely
eliminated. More specifically, the second term in (7) is the
interference from the K − 1 message streams intended for
other IoT users, and the third term is the interference from
the transmitted AN. Thus, the received SINR at the k-th IoT
user is given by

γt,k =
ςkρu|hkwk|2

1+ςk

(
ρu

K∑
i=1,i̸=k

|hkwi|2+ρv
M−K∑
j=1

|hkfj |2
)

=
ςkρu|hkwk|2

1+ςk∥hk∥2
(
ρu

K∑
i=1,i̸=k

|dkwi|2+ρv
M−K∑
j=1

|dkfj |2
) .

(8)

As depicted in Fig. 2, we decompose dk as

dk = (cos θk)d̃k + (sin θk)ek, (9)

where ek ∈ C1×M is an unit vector orthogonal to d̃k. By
applying d̃kwi = 0 and d̃kfj = 0, we rewrite (8) as

γt,k =
ςkρu|hkwk|2

1 + ςk∥hk∥2(sin2 θk)Θ
, (10)

where

Θ = ρu

K∑
i=1,i̸=k

|ekwi|2 + ρv

M−K∑
j=1

|ekfj |2. (11)

Note that ek and wi are independent unit vectors on the
M−1 dimensional hyperplane orthogonal to d̃k, implying that
|ekwi|2 is a Beta-distributed random variable with parameters
(1,M−2). Similarly, |ekfj |2 is also a Beta-distributed random
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variable with parameters (1,M − 2). As such, for a given hk,
the expected SINR at the k-th IoT user is given by

E{γt,k|hk} =
ςkρu|hkwk|2

1 + ςk∥hk∥2(sin2 θk)E{Θ}
, (12)

where

E{Θ} = E

ρu

K∑
i=1,i̸=k

|ekwi|2 + ρv

M−K∑
j=1

|ekfj |2


= ρu
K − 1

M − 1
+ ρv

M −K

M − 1
=

ρ− ρu
M − 1

. (13)

For simplicity, we adopt the similar approximation method
proposed in [31] by directly formulating γt,k = E{γt,k|hk}
for the following analysis. Since determining wk is irrelevant
to d̃k, wk and hk are independent, implying that |hkwk|2 ∼
Exp(1). We further note that ∥hk∥2(sin2 θk) ∼ Gamma(M−
1, εk), which has been proved in Appendix I of [31]. Thus,
we can derive the CDF of γt,k as

Fγt,k
(x) = 1− e

− x
ςkρu (1 + τ(ϕ)εkx)

1−M
, (14)

where τ(ϕ) = (M−K)ϕ+K−1
M−1 .

2) Received SINRs at Eavesdroppers: If the l-th eavesdrop-
per intends to intercept the k-th IoT user, the received signal
in (2) can be rewritten as

zl =
√
ϱl

glwkuk +
K∑

i=1,i̸=k

glwiui +
M−K∑
j=1

glfjvj

+ wl.

(15)

Since in this work we consider the worst-case eavesdropping
scenario, we cannot make any assumptions that may limit the
eavesdroppers’ abilities to decode information [26, 32]. Based
on this consideration, we assume that the eavesdroppers can
cancel the interference caused by the K−1 messages streams
intended for other IoT users, i.e., the second term in (15)
should be assumed to be zero. As such, the received SINR
at the l-th eavesdropper is given by

γe,l =
ϱlρu|glwk|2

1 + ϱlρv
M−K∑
j=1

|glfj |2
. (16)

Since either wk or fj is merely determined according to
the quantized channel knowledge of the IoT users, e.g., D̃,
they are independent of gl, implying |glwk|2 ∼ Exp(1) and
|glfj |2 ∼ Exp(1). Conditioned on a fixed ϱl, we use the same
method for deriving γt,k and formulate the CDF of γe,l as

Fγe,l
(x|ϱl) = 1− e

− x
ϱlρu (1 + ϕx)K−M . (17)

Note that the eavesdropper with the maximum received
SINR has the strongest eavesdropping ability, and thus we
next characterize the statistic of γe = maxl∈Φ γe,l. For
analytical tractability, we denote the distance between the l-
th eavesdropper and the central controller as dl and apply
the classical unbounded path loss model, e.g., ϱl = d−α

l ,
where α denotes the path loss exponent. Since we consider
the randomly located eavesdroppers in the network, we derive
the CDF of γe as

Fγe(x) = exp

(
−2λπ

α(1 + ϕx)M−K

(ρu
x

) 2
α

Γ

(
2

α

))
. (18)

For the detailed derivation process of (18), readers may refer
to [33] for the complete proof.

IV. SECURE TRANSMISSION DESIGN

In this section, we present the secure transmission design in
our considered IoT scenario. To guarantee the design with low
complexity, we first describe how to facilitate the fixed-rate
wiretap codes design. Since this fixed-rate design makes the
on-off scheme be a natural candidate for use, we then develop
an on-off-based secure transmission scheme and characterize
the network secrecy throughput.

A. Wiretap Codes Design

To perform the secure transmission in our considered IoT
scenario, we need to determine the wiretap code parameters
for different legitimate users, i.e., the codeword transmission
rate Rt,k, and the rate redundancy Re,k [34, 35]. To be
specific, for the k-th IoT user, an n-length wiretap code is
constructed by generating 2nRt,k codewords xn(w, v), where
w ∈ {1, · · · , 2n(Rt,k−Re,k)}, and v ∈ {1, · · · , 2nRe,k}. When
the central controller intends to transmit a message indexed by
w, it randomly selects v from {1, · · · , 2nRe,k} with uniform
probability and transmits the codeword xn(w, v). Note that
the IoT devices generally have limited hardware and cost
less; thus, the sophisticated decoding or encoding may be
not available at the receiver side. Motivated by this, in this
work we adopt the fixed-rate scheme to design the wiretap
codes. Since K IoT users are simultaneously served by the
central controller, we need to construct K sets of code pair,
e.g., (Rt,k, Re,k), for different IoT users.

B. Secure Transmission to the k-th IoT User

1) Transmission Probability: To implement the fixed-rate
design, we propose an on-off-based secure transmission
scheme. Specifically, the secure transmission to the k-th IoT
user happens only when the instantaneous channel quality at
the k-th IoT user, e.g., Ct,k = log2(1 + γt,k), can support
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Rt,k. This is the so-called transmission condition, and the
corresponding transmission probability is given by ptm,k =
Pr{Ct,k ≥ Rt,k}. To simplify denotations, we define Rt,k =
log2(1 + ξt,k) and express ptm,k as ptm,k = Pr{γt,k ≥ ξt,k}.
Aided by the CDF of γt,k in (14), the transmission probability
is mathematically derived as

ptm,k = 1− Fγt,k
(ξt,k) = e

−
ξt,k
ςkρu (1 + τ(ϕ)εkξt,k)

1−M
.

Notably, in every transmission block, each IoT user should also
convey back an extra bit identifying the on/off state. However,
this 1-bit feedback overhead is relatively small, such that it is
omitted in our work.

2) Secrecy Outage Probability: In the passive eavesdrop-
ping scenario, perfect secrecy is not always available due
to the lack of eavesdroppers’ channel knowledge. When the
transmission condition is met but the designed rate redundancy
is below the channel capacity of the strongest eavesdropper,
the information leakage occurs. This is the so-called secrecy
outage event conditioned on transmission. Conversely, for the
secure transmission to the k-th IoT user, the secrecy outage
probability is expressed as

pso,k = Pr{Ce ≥ Re,k|Ct,k ≥ Rt,k}, (19)

where Ce = log2(1 + γe) denotes the instantaneous channel
capacity of the strongest eavesdropper. Due to our fixed-
rate design, the secrecy outage event is independent of the
transmission condition, which yields pso,k = Pr{Ce ≥ Re,k}.
Also, we define Re,k = log2(1 + ξe,k) and express pso,k as
pso,k = Pr{γe ≥ ξe,k}. Aided by the CDF of γe,k in (18), we
derive pso,k as

pso,k = 1−Fγe(ξe,k) = 1−exp

(
−χ(ρu/ξe,k)

β

(1 + ϕξe,k)
M−K

)
, (20)

where β = 2/α, and χ = λπΓ(β + 1).
3) Secrecy Throughput: To find the optimal wiretap codes,

the secrecy throughput is often formulated as the optimization
goal. In our considered scenario, the secrecy throughput of
the k-th IoT user is defined as the product of the transmission
probability and the secrecy rate, e.g., ηt,k = ptm,k(Rt,k −
Re,k), yielding

ηt,k =
e−ξt,k/(ςkρu)

(1 + τ(ϕ)εkξt,k)
M−1

log2

(
1 + ξt,k
1 + ξe,k

)
. (21)

C. Network Secrecy Throughput
Since in this work we consider the IoT downlink network,

the network secrecy throughput should be used as the opti-
mization target to determine the system parameters. Aided by
(21), the network secrecy throughput is expressed as

η =
K∑

k=1

ηt,k =
K∑

k=1

e−ξt,k/(ςkρu)

(1 + τ(ϕ)εkξt,k)
M−1

log2

(
1 + ξt,k
1 + ξe,k

)
.

(22)

In the following, we aim to discuss how to determine the opti-
mal M , ϕ, B = [B1, B2, · · · , BK ], ξt = [ξt,1, ξt,2, · · · , ξt,K ],
and ξe = [ξe,1, ξe,2, · · · , ξe,K ] maximizing the network se-
crecy throughput subject to the pre-specified secrecy outage
constraints, e.g., δ = [δ1, δ2, · · · , δK ].

V. NETWORK SECRECY THROUGHPUT MAXIMIZATION

In this section, we show that the optimization problem of
maximizing the network secrecy throughput can be solved
by two steps. Specifically, we first fix M and determine the
optimal ϕ, B, ξt, and ξe by developing a BCD algorithm.
Then we directly use the one-dimensional search method to
tackle the optimal M .

A. Problem Formulation

Problem 1: The joint optimization of M , ϕ, B, ξt, and ξe
maximizing the secrecy throughput under the given secrecy
outage constraints can be formulated as

max
M,ϕ,B,ξt,ξe

η(M,ϕ,B, ξt, ξe), (23a)

s.t. pso ≤ δ, (23b)
ξt ≥ ξe, (23c)
M ≥ K, (23d)∑K

k=1
Bk = Btotal, (23e)

where pso = [pso,1, pso,2, · · · , pso,T ] and δ = [δ1, δ2, · · · , δK ].
To clarify, the constraint (23b) guarantees the secrecy outage
probability of each IoT user meets its individual requirement,
and the constraint (23c) guarantees a positive secrecy rate for
the k-th IoT user.

We find from (23) that Problem 1 is a typical mixed
integer nonlinear programming (MINLP) problem, and very
few effective methods can be used to solve it efficiently. To
facilitate an effective method to solve it, we first carry on the
following equivalent transformation

max
M,ϕ,B,ξt,ξe

η ⇔ max
M

max
ϕ,B,ξt,ξe

η. (24)

This transformation implies that we can handle Problem 1 by
decomposing it into two optimization problems. In particular,
we can first maximize η over ϕ, B, ξt, and ξe subject to a fixed
M , and then maximize η over the one-dimensional variable
M . In the following, we provide the detailed procedures to
handle these two optimization problems.

B. BCD Algorithm Design for Solving the First Problem

Problem 2: Subject to a fixed M , what are the optimal ϕ,
B, ξt, and ξe that maximize η under the given secrecy outage
constraints? This problem is formulated as

max
ϕ,B,ξt,ξe

η(ϕ,B, ξt, ξe), (25a)

s.t. (23b), (23c), and (23e). (25b)

Prior to solving Problem 2, we first transform the constraint
in (23b) into a more explicit form. In particular, aided by the
monotonicity of Fγe,k

, we obtain

pso,k ≤ δk ⇔ ξe,k ≥ F−1
γe

(1− δk), (26)

where F−1
γe

(·) denotes the inverse function of Fγe(·). For ease
of notation, we define Θk(ϕ) = F−1

γe
(1−δk). It is easy to find

that to maximize η in (22), ξe,k needs to be set to its minimum
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value, e.g., ξe,k = Θk(ϕ), which enables us to re-express (22)
as

η =
K∑

k=1

e−ξt,k/(ςkρu)

(1 + τ(ϕ)εkξt,k)
M−1

log2

(
1 + ξt,k

1 + Θk(ϕ)

)
. (27)

Although Θk(ϕ) is an implicit function of ϕ, it is not hard to
calculate its value by numerically searching the unique root
of Fγe(Θk(ϕ)) = 1− δk subject to an arbitrary ϕ.

The above analysis demonstrates that ξe can be determined
together with ϕ, such that we can decrease the dimensions
of the optimization variables in Problem 2. However, this
simplified problem is still non-convex and difficult to solve.
In the following, we propose an efficient BCD algorithm to
solve this joint optimization problem [36, 37]. Specifically, we
decouple all the optimization variables into three blocks, e.g.,
{ξt}, {ϕ, ξe}, and {B}, and alternatively optimize one block
of variables by fixing other blocks of variables at their values
from the last iteration. Each iteration of the proposed algorithm
involves solving three subproblems as follows.

1) Subproblem 1: In the n-th iteration, we first intend to
optimize ξt[n] subject to ϕ[n−1] and B[n−1] by considering
the following problem

max
ξt[n]

η (ξt[n], ϕ[n− 1],B[n− 1]) . (28)

By observing the expression for η in (27), we find that the
maximization of η can be facilitated by respectively maxi-
mizing its general term, e.g., ηt,k. Moreover, in the term of
ηt,k, ξt,k is merely coupled with ϕ and Bk, which implies
that we only need to characterize the maximization of ηt,k
to determine the optimal ξt,k[n] with the fixed ϕ[n − 1] and
Bk[n − 1]. In the following, we show that ηt,k is a quasi-
concave function of ξt,k when ϕ ≤ 1 holds true1.

We take the first derivative of ηt,k in (21) on ξt,k, yielding

∂ηt,k
∂ξt,k

=
e
−

ξt,k
ςkρu Ξ(ξt,k)

ln 2 · (1 + τ(ϕ)εkξt,k)
M

, (29)

where Ξ(ξt,k) is expressed by

Ξ(ξt,k) =
1 + τ(ϕ)εkξt,k

1 + ξt,k
− 1 + τ(ϕ)εkξt,k

ςkρu
ln

(
1 + ξt,k

1 + Θk (ϕ)

)
− (M − 1)τ(ϕ)εk ln

(
1 + ξt,k

1 + Θk (ϕ)

)
. (30)

Since the sign of ∂ηt,k

∂ξt,k
follows that of Ξ(ξt,k), the monotonic-

ity of ηt,k can be examined by analyzing the sign of Ξ(ξt,k).
Under the constraint ϕ ≤ 1, τ(ϕ) ≤ 1 always holds true,
implying that the three terms in the right-hand side (RHS)
of (30) are all decreasing functions of ξt,k, i.e., Ξ(ξt,k) is a
decreasing function of ξt,k. Therefore, we state that ηt,k is a
quasi-concave function of ξt,k.

Subject to the constraint of ξt,k ≥ ξe,k, the feasible region
of ξt,k is [Θk(ϕ),∞). Since Ξ(Θk(ϕ)) > 0 and Ξ(∞) < 0
always hold true, Ξ(ξt,k) is first positive then negative. That
is, ηt,k first increases then decreases with ξt,k, such that the

1The condition ϕ ≤ 1 ensures that ρv ≤ ρu holds true, thus limiting the
artificial noise leaked into the legitimate users. As such, we clarify that ϕ ≤ 1
is a reasonable choice for the secure transmission design.

maximum is achieved at ξt,k = ξ∗t,k, satisfying Ξ(ξ∗t,k) = 0.
Although the explicit expression for ξ∗t,k is difficult to derive,
we clarify that we can adopt the bisection method to calculate
it. In this way, the optimal ξt[n] subject to the fixed ϕ[n− 1]
and B[n− 1] can be determined.

2) Subproblem 2: In the n-th iteration, we then intend to
optimize ϕ[n] subject to ξt[n] and B[n − 1] by considering
the following problem

max
ϕ[n]

η (ϕ[n], ξt[n],B[n− 1]) . (31)

This subproblem is more difficult to solve due to the implicit
expression for Θk(ϕ). Fortunately, we can provide the mono-
tonicity and concavity of Θk(ϕ) in the following lemma.

Lemma 1: Θk(ϕ) is a monotonically decreasing function
and also is a convex function of ϕ.

Proof: The proof is given in Appendix A.

We take the first derivative of η in (27) on ϕ and formulate
∂η
∂ϕ as

∂η

∂ϕ
=

K∑
k=1

e
−

ξt,k
ςkρu Ψk(ϕ)

ln 2 · τ(ϕ)(1 + τ(ϕ)εkξt,k)
M−1

, (32)

where Ψk(ϕ) is expressed by

Ψk(ϕ) =− Θ
′

k(ϕ)τ(ϕ)

1+Θk(ϕ)
− (M−K)τ(ϕ)ξt,k

ςkρ
ln

(
1+ξt,k

1+Θk(ϕ)

)
− (M−K)τ(ϕ)εkξt,k

1+τ(ϕ)εkξt,k
ln

(
1+ξt,k

1+Θk(ϕ)

)
. (33)

Aided by the monotonicity of τ(ϕ), Θk(ϕ), and Θ
′

k(ϕ), it is
not hard to find that Ψk(ϕ) is a decreasing function of ϕ.
Given the constraint Θk(ϕ) ≤ ξt,k, the feasible region of ϕ
in (33) is [ϕ◦

k,∞)2, where ϕ◦
k is the solution of ϕ satisfying

Fγe(ξt,k) = 1− δk. Since Ψk(ϕ
◦
k) > 0 and Ψk(∞) < 0 hold

true, Ψk(ϕ) is first positive and then negative. That is, there
exists a unique root of Ψk(ϕ) = 0, and we refer to it as ϕ∗

k.
As such, for different Ψk(ϕ), we can obtain an optimal set
ϕ = {ϕ∗

1, ϕ
∗
2, · · · , ϕ∗

K}. By respectively defining ϕmin and
ϕmax as the minimum element and maximum element of ϕ,
we state that η is an increasing function when ϕ < ϕmin, but a
decreasing function when ϕ > ϕmax. Therefore, the optimal ϕ
maximizing η, e.g., ϕ∗, must lie in the region of [ϕmin, ϕmax].
However, it is difficult to characterize the monotonicity of η
in this region, and we directly use a one-dimensional search to
find ϕ∗. Since the search space has been significantly reduced,
we highlight that using the one-dimensional search method is
reasonable and efficient.

In this way, the optimal ϕ[n] subject to ξt[n] and B[n− 1]
can be determined. By using the relationship between ξe,k and
ϕ, e.g., ξe,k = Θk(ϕ), the optimal ξe[n] can also be together
determined after some algebraic manipulations.

2We temporarily put the constraint ϕ ≤ 1 aside to ease the difficulty
of finding solution, and we alternatively impose this constraint on the final
solution, such that ϕ ≤ 1 still holds true.
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3) Subproblem 3: In the n-th iteration, we finally optimize
B[n] subject to ϕ[n] and ξt[n] by considering the following
problem

max
B[n]

η (B[n], ξt[n], ϕ[n]) . (34)

To solve the problem in (34), we adopt a continuous relaxation
technique to relax the integer constraint. However, this relaxed
problem is not always a convex optimization problem, which
is easy to find by deriving the second-order derivative of η on
Bk. Although the globally optimal solution can be obtained by
the exhaustive search method, the computational complexity
would significantly increase with Btotal. In what follows, we
show that we can determine a local optimum by solving its
Lagrange dual problem with an efficient algorithm.

Specifically, the Lagrange function of the problem in (34)
is expressed by

L(B, µ) =
K∑

k=1

Λk

(1+τ(ϕ)ξt,kεk)
M−1

−µ

(
K∑

k=1

Bk−Btotal

)
,

(35)

where

Λk = e
−

ξt,k
ςkρu log2

(
1 + ξt,k

1 + Θk(ϕ)

)
, (36)

and µ ≥ 0 is the nonnegative Lagrange multiplier associated
with the constraint on the total feedback bits. Then the dual
problem of (34) can be defined as

min
µ≥0

g(µ), (37)

where
g(µ) = max

B
G(B, µ) + µBtotal, (38)

and

G(B, µ) =
K∑

k=1

(
Λk

(1 + τ(ϕ)ξt,kεk)
M−1

− µBk

)
. (39)

To solve this dual problem, we iteratively apply the fol-
lowing Step 1 and Step 2 until a pre-specified convergence
criterion is met.

Step 1: The first step is to solve the problem in (38) with
a given µ. By relaxing {Bk} to the continuous variables,
we find that the optimal {Bk} can be obtained by using
the conventional method of calculating the maximum of a
continuous differential function.

Step 2: The second step is to update the value of µ by
using the results obtained in Step 1 and solving the dual
problem in (37). If

∑K
k=1 Bk > Btotal, µ should be increased;

If
∑K

k=1 Bk ≤ Btotal, µ should be decreased. This update
procedure builds on the monotonicity of

∑K
k=1 Bk relative to

µ, which is proved in Lemma 2.

Lemma 2: For the problem in (38), the sum feedback∑K
k=1 Bk is a monotonically decreasing function of µ.

Proof: The proof is given in Appendix B.

In conclusion, a two-step iterative algorithm can be devel-
oped to solve the dual problem in (37), which is summarized
in Algorithm 1.

Algorithm 1 A Two-Step Iterative Algorithm for Solving the
Dual Problem in (37).

1: Initialize µmin = 0 and µmax = 1.
2: Given µ = µmax, determine B = argmax

B
G(B, µmax).

3: while
∑K

k=1 Bk > Btotal do
4: µmax = 2µmax.
5: Given µ = µmax, determine B = argmax

B
G(B, µmax).

6: end while
7: Set the accuracy tolerance ϵµ > 0.
8: while |µmax − µmin| > ϵµ do
9: µ = (µmin + µmax)/2.

10: Given µ, determine B = argmax
B

G(B, µmax).

11: Check
∑K

k=1 Bk: If
∑K

k=1 Bk > Btotal, set µmin = µ;
If otherwise, set µmax = µ.

12: end while
13: Output µmax and B.

This algorithm starts by finding the upper bound on µ, e.g.,
µmax. Typically, this procedure can be completed within a few
iterations and has a negligible impact on the computational
complexity of this algorithm. In fact, the complexity mainly
results from the bisection method for searching the optimal
µ to ensure that the feedback constraint is tight. Given the
accuracy ϵµ, this bisection search requires log2(µmax/ϵµ) iter-
ations. Moreover, in each iteration K evaluations are required
to obtain the local optimal B. As such, the total complexity
of Algorithm 1 is O(K · log2(µmax/ϵµ)). Aided by this
algorithm, we clarify that B[n] can be optimized subject to
the fixed ϕ[n] and ξt[n].

Based on the above analysis to the three subproblems, a
BCD algorithm can be developed to iteratively optimize {ξt},
{ϕ, ξe}, and {B}, which is summarized in Algorithm 2.

Algorithm 2 The BCD Algorithm for Solving Problem 2.
1: Initialize ϕ[1], B[1], ξt[1], and ξe[1].
2: Set n = 1 and the accuracy tolerance ϵη > 0.
3: Calculate η[1].
4: repeat
5: n = n+ 1.
6: Given ϕ[n− 1], ξe[n− 1], and B[n− 1], determine the

optimal ξt[n] maximizing η.
7: Given ξt[n] and B[n − 1], determine the optimal ϕ[n]

and ξe[n] maximizing η.
8: Given ϕ[n], ξe[n], and ξt[n], determine the optimal

B[n] by using Algorithm 1.
9: until Convergence: |η[n]− η[n− 1]| < ϵη.

10: Output.

The convergence of Algorithm 2 can be proved by using
the Bolzano-Weierstrass theorem [38], and the detailed proof
is presented in the following proposition.

Proposition 1: The solution generated by Algorithm 2 is
a stationary point of the optimization problem in Problem 2.

Proof: The proof is given in Appendix C.
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In the following, we provide the complexity analysis for
this algorithm. Specifically, the computational complexity of
Algorithm 2 contains three parts, e.g., searching the optimal
ξt, searching the optimal ϕ, and searching the optimal B.
For each part, the worst case is that the optimum is ob-
tained via the bisection search of K iterations. Assuming
that the number of needed iterative steps for Algorithm 2
is L, the total computational complexity of this algorithm
is O(L · K · log2((ξt,max/ϵξ)(ϕmax/ϵϕ)(µmax/ϵµ))), where
ξt,max and ϕmax are the preset search bound, and ϵξ and ϵϕ
are the preset accuracy tolerance, respectively.

C. One-Dimensional Search for Finding the Optimal M

We clarify that M is a crucial parameter that plays an
important role on the secrecy performance in the IoT scenario.
On one hand, a small M means that only a small fraction
of beams can be used for sending AN to confuse the eaves-
droppers, implying that the eavesdroppers’ reception cannot be
effectively inhibited. On the other hand, a larger M may not
necessarily bring the benefits on secrecy performance. To be
specific, increasing M means that the CSIT becomes rather
imprecise, which makes the amount of interference leakage
becomes larger, severely degrading the IoT users’ reception.
Moreover, a very large M potentially wastes the network
communication resources.

Since M has a major impact on the network secrecy
performance, in this subsection we concentrate on the second
problem, e.g., finding the optimal M maximizing η over its
feasible region. Specifically, we formulate the optimization
problem in the second step as follows.

Problem 3: What is the optimal M that maximizes η
under the given secrecy outage constraints? This problem is
mathematically expressed as

max
M

η(M,ϕopt,Bopt, ξt,opt, ξe,opt), (40a)

s.t. M ≥ K. (40b)

Here, ϕopt, Bopt, ξt,opt, and ξe,opt can be obtained via solving
Problem 2. However, since ϕopt, Bopt, ξt,opt, and ξe,opt are
not explicit functions of M , we clarify that Problem 3 is
a typical non-linear integer problem and difficult to handle.
Fortunately, since the number of transmit antennas at the
central controller is optimizing variable, the search space
of this problem is quite limited. For example, to ensure an
efficient use of the transmit antennas, the upper bound on M is
generally less than N = 10K. Therefore, an exhaustive search
is computationally tractable, such that we directly apply the
one-dimensional search method to solve this problem.

Based on the above analysis for Problem 2 and 3, we have
developed an efficient method involving the BCD algorithm
and the one-dimensional search to solve Problem 1. Aided
by the complexity analysis for Algorithm 1, we state that
the total computational complexity of our proposed method is
O(N · L ·K · log2((ξt,max/ϵξ)(ϕmax/ϵϕ)(µmax/ϵµ))).

VI. NUMERICAL RESULTS

In this section, numerical results are provided to illustrate
the convergence of our proposed BCD algorithm, the optimal
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Fig. 3. The convergence rate of the BCD algorithm in a homogeneous
scenario for M = 16, K = 10, Btotal = 200, and λ = 0.01.

number of transmit antennas maximizing the network secrecy
throughput, as well as the feedback bits allocation law among
the heterogeneous IoT users. Unless otherwise stated, in the
following we set the transmit power as ρ = 20 dB and set the
path loss exponent as α = 4. Moreover, we set the accuracy
tolerance parameters in Algorithm 1 and 2, e.g., ϵµ, ϵη, ϵξ, and
ϵϕ, as ϵµ = ϵη = ϵξ = ϵϕ = 10−6. We also clarify that the
following simulations are only for the single-tone transmission
with a small number of IoT users. Through a straightforward
extension, it is easy to obtain the multi-tone simulation with
a large number of IoT users. Due to the space limitations, the
multi-tone simulation is omitted in this work.

A. Convergence

Since our designed BCD algorithm is crucial to determine
the optimal system parameters maximizing the network se-
crecy throughput, in this subsection we firstly examine its
practicality by illustrating the convergence rate of this BCD
algorithm in Figs. 3 and 4.

Specifically, we first provide Fig. 3 to depict the conver-
gence rate of our proposed BCD algorithm in a homogeneous
network, where all the IoT users are assumed to experience the
same path loss coefficient and secrecy outage constraint, e.g.,
ς1 = ς2 = · · · = ςK = 1, and δ1 = δ2 = · · · = δK = δ. We
first observe that for different values of δ, the iteration steps are
generally small, which highlights the efficiency of this BCD
algorithm. Furthermore, we observe that the iteration steps are
directly related to the value of δ. For example, when δ = 0.2,
this algorithm requires 7 iteration steps; When δ = 0.1, this
algorithm requires 13 iteration steps. This indicates that when
the secrecy outage constraint becomes stricter, our designed
BCD algorithm needs more iteration steps.

To illustrate the convergence rate of our proposed BCD
algorithm in the heterogeneous networks, we then provide
Fig. 4 by randomly generating 50 system topologies where
different users experience different path loss coefficients and
secrecy outage constraints. We observe from this figure that the
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Fig. 4. The required number of iterations of the BCD algorithm in 50
randomly-selected system topologies for M = 16, K = 10, Btotal = 200,
and λ = 0.01.

10 20 30 40 50 60 70 80

Number of Antennas

0

0.04

0.08

0.12

0.16

0.2

N
et

w
o
rk

 S
ec

re
cy

 T
h
ro

u
g
h
p
u
t

Fig. 5. The network secrecy throughput versus the number of transmit
antennas for K = 15, Btotal = 200, and δ = 0.1.

maximum number of iteration steps is 21, and for most cases
our proposed BCD algorithm converges within 15 steps. Fig. 4
highlights that our designed BCD algorithm can also converge
very fast in the heterogeneous scenarios, which validates its
practicality and generality on determining the optimal system
parameters for secure transmission.

B. Optimal Number of Transmit Antennas

In this subsection, we focus on the homogeneous network
and intend to illustrate the existence of the optimal number of
transmit antennas, and investigate the impact of the secrecy
outage constraint and the sum feedback bits constraint on the
optimal number of transmit antennas.

Fig. 5 plots the maximum network secrecy throughput
versus the number of transmit antennas for different values of
λ. We clarify that the maximum network secrecy throughput
with a fixed M , e.g., ηM , is obtained by applying our designed
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Fig. 6. The optimal number of transmit antennas versus the secrecy outage
constraint for K = 15 and Btotal = 200.

BCD algorithm. We first observe that ηM first increases then
decreases as M increases, indicating that there exists an opti-
mal M maximizing ηM . This phenomenon can be explained
as follows. When M is relatively small, increasing M means
more AN beams can be used for confusing eavesdroppers,
thus leading to a higher ηM . However, when M is very large,
this freedom advantage is outweighed by the interference
leakage resulting from the limited feedback resources. To be
specific, increasing M means the CDI quantization at each
IoT user becomes more inaccurate, which consequently makes
interference leakage problem become worse and thus degrades
the reception performance of IoT users. We further observe
that the maximum ηM decreases as λ increases, which is not
surprising since the eavesdropping ability increases with λ.
This figure highlights that the number of transmit antennas
should be carefully optimized.

Fig. 6 plots the optimal number of transmit antennas versus
the secrecy outage constraint for different values of λ. We
clarify that the optimal number of transmit antennas, e.g.,
Mopt, is determined by using the BCD-based one-dimensional
search method. We first observe that for a fixed λ, Mopt

decreases as δ increases. This is because when δ becomes
looser, using fewer AN beams can still keep the secrecy outage
meeting its requirement, making possible to reduce the number
of transmit antennas. We also observe that for a fixed δ, Mopt

increases as λ increases. This is because when λ increases,
more transmit antennas should be utilized for sending AN
beams to confuse the eavesdroppers. This figure highlights
that when the eavesdropping scenario becomes worse, e.g., a
smaller δ or a lager λ, we need to increase the number of
transmit antennas for secure transmission.

Fig. 7 plots the optimal number of transmit antennas versus
the sum feedback bits constraint for different values of λ. We
observe that for a fixed λ, Mopt decreases as Btotal increases.
This phenomenon can be explained as follows. When Btotal is
relatively small, the CDI quantization error at each IoT user is
particularly serious. To avoid too much interference incurred
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Fig. 7. The optimal number of transmit antennas versus the sum feedback
bits constraint for K = 15 and δ = 0.01.

from the AN beams affecting the reception at the IoT users,
it is necessary to reduce the transmit power allocated to the
AN beams. In this case, to satisfy the pre-set secrecy outage
constraint, more AN beams should be used to confuse the
eavesdroppers’ reception. As such, more transmit antennas are
needed when Btotal is small. This figure highlights that in the
IoT scenario, we can utilize more transmit antennas for secure
transmission to compensate the disadvantage of limit feedback
resources.

C. Feedback Bits Allocation Law

Due to the equal status of each user in the homogeneous
network, it is easy to find that under our proposed secure
transmission design, the total feedback resources would be
averagely distributed to all the IoT users. However, since
in the heterogeneous network different users may experience
different path loss coefficients and secrecy outage constraints,
how to allocate the limited feedback resources among different
users would have a major impact on the network secrecy
performance. In this subsection, we aim to show the feedback
bits allocation law under our secure transmission design.

Fig. 8 shows the optimal feedback bits allocation among
the heterogeneous users with different path loss coefficients
and secrecy outage constraints. We clarify that this figure
is obtained together with the optimal number of transmit
antennas by applying our proposed BCD-based one-dimension
search method. In this figure, we provide four groups of users
with different parameter settings, e.g., d and δ. Here, d denotes
the distance between the user with the central controller, such
that a larger d means a smaller path loss coefficient. It can
be seen from this figure that for the users with the same
path loss coefficient, e.g., Group 1 and 3, the users with
looser secrecy outage constraint should use large shares of
feedback resources. Moreover, for the users with the same
secrecy outage constraint, e.g., Group 1 and 2, the users with
larger path loss coefficient should use large shares of feedback
resources. Therefore, we conclude that to obtain good network
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Fig. 8. The feedback bits allocation among the heterogeneous users for
K = 12, Btotal = 200, and λ = 0.01.

secrecy performance, the feedback bits allocation law is to
allow the IoT users with looser secrecy outage constraint and
larger path loss coefficient to share large shares of feedback
resources.

VII. CONCLUSIONS

In this work, we concentrated on designing the IoT down-
link secure transmission scheme. Constrained by the limited
feedback resources, we designed an on-off-based multiuser se-
cure transmission scheme and derived the closed-form expres-
sion for the network secrecy throughput. Then we proposed
a BCD-based one-dimensional search method to optimize the
number of transmit antennas, the wiretap codes, the power
allocation ratio, and the feedback bits allocation strategy for
maximizing the network secrecy throughput. Numerical results
demonstrated that the optimal number of transmit antennas
really exists, and this optimal antenna number tends to be
larger when the IoT users need higher secrecy requirements,
or the IoT network possesses scarcer feedback resources.

APPENDIX A
PROOF OF LEMMA 1

To simplify the following notations, in this proof we omit
ϕ from Θk(ϕ). Since Θk is defined as Θk = F−1

γe
(1−δk), we

have
Ω1(Θk, ϕ) + Ck = 0 (41)

where

Ω1 (Θk, ϕ) = (1 + ϕΘk)
M−K(Θk/ρu)

β
, (42)

and Ck = χ/ln (1− δk). Using the derivative rule for implicit
functions, we first derive the first-order derivative of Θk on ϕ
as

Θ
′

k = − ∂Ω1/∂ϕ

∂Ω1/∂Θk
= − (M −K)ΘkT(Θk, ϕ)

K + (M −K)ϕ
, (43)
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where

T(Θk, ϕ) = 1 +
KΘk

(M −K)ϕΘk + β(1 + ϕΘk)
. (44)

It is obvious to find that Θ
′

k ≤ 0 always holds true, such
that Θk is a decreasing function of ϕ. To characterize the
concavity of Θk, we further need to examine the monotonicity
of T(Θk, ϕ) relative to ϕ. In order to achieve this, we define
Ak = ϕΘk and characterize its monotonicity relative to ϕ. In
particular, by substituting Ak into (41), we have

Ω2 (Ak, ϕ) + Ck = 0, (45)

where

Ω2(Ak, ϕ) = (1 + Ak)
M−K

(
Ak

ϕρu

)β

. (46)

Similar to (43), we derive the the first-order derivative of Ak

on ϕ as

A
′

k =
βKAk(1 + Ak)

ϕ(K + (M −K)ϕ)((M −K + 1)Ak + 1)
. (47)

Since A
′

k > 0 always holds true, Ak is an increasing function
of ϕ, implying that T(Θk, ϕ) decreases with the increase of ϕ.
Aided by the monotonicity of Θk and T(Θk, ϕ), we conclude
that Θ

′′

k > 0 must hold true, i.e., Θk is a convex function of
ϕ, which completes our proof.

APPENDIX B
PROOF OF LEMMA 2

Consider two Lagrangian multipliers µa and µb, satisfying
µa ≤ µb. Given µa and µb, we denote the corresponding opti-
mal B maximizing G(B, µ) as Ba = {Ba

k} and Bb = {Bb
k},

respectively. We define

A = G(Ba, µa) (48a)

Â = G(Bb, µa) (48b)
B = G(Bb, µb) (48c)

B̂ = G(Ba, µb). (48d)

Due to the optimality of Ba maximizing G(B, µa) and the
optimality of Bb maximizing G(B, µb), we have A ≥ Â and
B ≥ B̂. Moreover, by observing (39), we find that µa ≤ µb

leads to Â ≥ B. As such, we have the following relationship

A ≥ Â ≥ B ≥ B̂. (49)

Note that (49) implies A− B̂ ≥ Â−B, yielding

(µb − µa)
K∑

k=1

Ba
k ≥ (µb − µa)

K∑
k=1

Bb
k. (50)

Based on (50), we conclude that subject to µa ≤ µb,∑K
k=1 B

a
k ≥

∑K
k=1 B

b
k holds true. That is, a larger µ leads to a

smaller sum feedback consumption, e.g.,
∑K

k=1 Bk. Therefore,
we state that

∑K
k=1 Bk is a decreasing function of µ.

APPENDIX C
PROOF OF PROPOSITION 1

By relaxing {Bk} to continuous variables, we find from
(25a) and (25b) that the objective function is continuously
differentiable, and the feasible set is closed, nonempty, and
convex. Since η(ϕ,B, ξt, ξe) is bounded, we learn from the
Bolzano-Weierstrass theorem that as long as η(ϕ,B, ξt, ξe)
is a monotonically nondecreasing function, the optimization
variables (e.g., ϕ, B, ξt, and ξe) must have limit points. That
is, it is necessary to firstly prove the relationship given by

η(ϕ[n],B[n], ξt[n], ξe[n])

≥ η(ϕ[n− 1],B[n− 1], ξt[n− 1], ξe[n− 1]). (51)

We note that (51) is easy to obtain by using the properties of
the saddle points, yielding

η(ϕ[n],B[n], ξt[n], ξe[n])

≥ η(ϕ[n],B[n], ξt[n− 1], ξe[n])

≥ η(ϕ[n− 1],B[n], ξt[n− 1], ξe[n− 1])

≥ η(ϕ[n− 1],B[n− 1], ξt[n− 1], ξe[n− 1]). (52)

According to the Corollary 2 concluded in [38], every limit
point obtained by Algorithm 2 is a stationary point of Problem
2, which concludes our proof.
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