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Virtualization in Wireless Sensor Networks: Fault 

Tolerant Embedding for Internet of Things    
Omprakash Kaiwartya, Member IEEE, Abdul Hanan Abdullah, Member IEEE, Yue Cao, Member IEEE, Jaime 

Lloret, Senior Member IEEE, Sushil Kumar, Member IEEE, Rajiv Ratn Shah, Mukesh Prasad, Shiv Prakash

Abstract—Recently, virtualization in wireless sensor networks 
(WSNs) has witnessed significant attention due to the growing 
service domain for IoT. Related literature on virtualization in 
WSNs explored resource optimization without considering 
communication failure in WSNs environments. The failure of a 
communication link in WSNs impacts many virtual networks 
running IoT services. In this context, this paper proposes a 
framework for optimizing fault tolerance in virtualization in 
WSNs, focusing on heterogeneous networks for service-oriented 
IoT applications. An optimization problem is formulated 
considering fault tolerance and communication delay as two 
conflicting objectives. An adapted non-dominated sorting based 
genetic algorithm (A-NSGA) is developed to solve the 
optimization problem. The major components of A-NSGA 
include chromosome representation, fault tolerance and delay 
computation, crossover and mutation, and non-dominance based 
sorting. Analytical and simulation based comparative 
performance evaluation has been carried out. From the analysis 
of results, it is evident that the framework effectively optimizes 
fault tolerance for virtualization in WSNs.   

Index Terms–IoT, Virtualization, Wireless sensor networks. 
 

I. INTRODUCTION 

etwork virtualization has got significant attention as an 
enabling technology for service-oriented heterogeneous 

network for Internet of Things (IoT) [1].  The rigid 
communication architecture of Internet is one of challenging 
issues in IoT. Network virtualization enables Internet to retain 
its communication architecture while enlarging and 
transforming as IoT. In IoT enabled smart cities, service-
oriented communication architecture is required for smart 
applications (see Fig.1). It can be addressed by implementing 
network as a service through virtualization [2]. Sensing as a 
service can be implemented in collaboration with network as a 
service, to support heterogeneous networking and sensing 
resource optimization for smart applications in IoT.      
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Fig. 1. Heterogeneous networks in Internet of Things (IoT)  

 
Network virtualization is implemented using virtual 

network embedding (VNE) algorithms [3]. Due to the 
inception and evolution of VNE, the role of Internet service 
provider has been divided into two parts namely, infrastructure 
provider and service provider. Infrastructure provider is 
responsible for deployment and maintenance of physical 
infrastructure whereas, service provider is responsible for 
range of customizable services to end user. Various virtual 
network embedding techniques have been suggested focusing 
on wired-networks [4]. The two key issues in virtual network 
embedding include resource optimization [5], and 
survivability [6].  

Due to the recent developments in IoT technology, network 
virtualization in WSNs has been envisioned [7]. Some of the 
initial works on the virtualization focuses on service-oriented 
network architecture to optimize sensing resources. An four-
layered architecture for virtualization in WSNs has been 
suggested, based on reducing redundant deployment of sensor 
networks for different IoT applications [8]. Another five-
layered virtualization architecture has been explored to 
support network diversity and increase resource utilization in 
IoT [2]. Brain-inspired adaptive architecture has been 
presented for embedding and running IoT applications on 
virtual wireless sensor networks [9]. The aforementioned 
architectures did not consider communication failure on 
virtual networks, caused by the communication failure on 
physical WSNs. The fault tolerance (reactive capability of 
handling communication failure in physical networks) is a 
pressing issue in virtualization in wired networks [10]. The 
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fault tolerance in WSNs environments is more challenging as 
compared to its wired counterparts, due to the dynamic 
wireless channel based connectivity.  Bandwidth reservation 
based fault tolerance enhancement decreases resource 
utilization [11]. Moreover, estimation of guaranteed 
connectivity, which is utilized to enhance fault tolerance in 
VNE for wired-networks [12], is quite challenging in WSNs.        

 In this context, this paper proposes a framework to 
maximize fault tolerance and minimize communication delay 
for VNE in WSNs environments focusing on IoT services. It is 
a reactive optimization of fault tolerance and communication 
delay for service-oriented heterogeneous virtual networks in 
IoT. Specifically, the major components of the framework are 
listed below as contributions to literature: 
1) The fault tolerance optimization problem is mathematically 

formulated considering fault tolerance and communication 
delay as the two conflicting objectives in WSNs 
environments. 

2) An adapted non-dominated sorting based genetic algorithm 
(A-NSGA) is developed to solve the optimization problem. 

3) The solution framework is consisted of chromosome 
representation, fault tolerance and delay computation, 
crossover and mutation, and non-dominance based sorting.  

4) Simulations are performed to analyze the performance of 
A-NSGA in optimizing fault tolerance for virtualization in 
WSNs.    

The rest of the article is organized into following sections. 
Section II reviews related literature on fault tolerance in VNE 
considering three categorizations including survivability, 
topological knowledge for trust, and reliability using single 
objective optimization.  Section III presents the detail of 
mathematical formulation of the multi-objective optimization 
problem, and A-NSGA for solving the problem.  Section IV 
discusses simulation setting, metrics and comparative 
performance evaluation, followed by conclusion made in 
section V.  

II. RELATED WORK 

     In this section, related literature on fault tolerance in VNE 
is reviewed. It is divided into three categories including 
resource reservation, topological knowledge, and single 
objective optimization based survivability. Next, virtualization 
in WSNs is critically explored as the contribution area.  

A. Resource Reservation based Survivability 
A proactive survival virtual network embedding (SVNE) 
technique has been suggested for single link failure using 
bandwidth reservation [13]. Specifically, SVNE is 
mathematically formulated and solved using two heuristic 
considerations including hybrid policy heuristic and baseline 
policy heuristic. The preserved quota for backup on each link 
has been utilized for restoration and protection. Although link 
restoration and protection based survivability measure is quite 
effective in business perspective. The management of 
restoration information for each link reduces the applicability 
of the approach in realistic network scenario specifically in 
case of wireless environments. Moreover, fault tolerance 
capability of links and communication delay are not 
considered in the survivability measurement. SVNE has been 

enhanced by addressing node failure along with link failure 
using dynamic recovery (DR-SVNE) technique [11]. An 
algorithm has been developed to discover alternative path end 
points of the failed link as source and destination. Node failure 
has been addressed by discovering a set of alternative paths 
for each link of the node. Although back up resources have not 
been utilized in dynamic recovery yet, it manages backup 
information for recovering each link.  It did not explore all the 
alternative paths to select best available alternative path rather 
finds the first alternative path satisfying the requirement.   

Another survival virtual network embedding technique has 
been suggested based on optimal resource allocation for both 
working and backup resources [14].  The problem of single 
node failure in the network has been viewed as NP complete 
multi-commodity network flow problem. Integer linear 
programing model based solution has been suggested to utilize 
available and backup resources optimally. Auxiliary protection 
graph is constructed to facilitate single node survivability. 
Heuristic based algorithm is developed for embedding 
auxiliary protection graph to physical network. Although 
heuristic based mapping effectively addresses single node 
failure. The consideration of backup resources, and possibility 
of multiple nodes and links failure are the undesirable aspects 
of this embedding technique. SVNE has been enhanced 
considering failure dependent protection and transformed 
virtual network request [10]. A backup node has been 
considered corresponding to each node. Enhanced virtual 
network has been designed from the initial virtual network 
request using complete connected graph, for minimizing the 
requirement of resources to survive in case of failure. Binary 
quadratic programing and mixed integer linear programing 
have been utilized to formulate failure dependent protection 
and transform virtual network, respectively.  Heuristic based 
algorithms have been developed for solving the embedding 
problem. The undesirable aspect of failure dependent 
protection is the management of backup resources.      

B. Topological Knowledge based Survivability 
Topology aware virtual network embedding has been 

suggested to improve utilization of resources, and thus, 
maximize revenues due to the better utilization [15].  Six 
topological characteristics have been suggested to rank both 
node and link during mapping. The characteristics include 
degree, strength, closeness, between-ness, eigen vector, and 
Katz centralities. Heuristic embedding algorithms have been 
developed by utilizing these topological characteristics apart 
from resource requirements. The topological characteristics 
have been devised focusing on better utilization of resources 
without considering the fault tolerance capability. Topology 
aware embedding has been improved considering convergence 
degree to avoid embedding of virtual link on longer physical 
path [12]. The degree of virtual nodes has been considered as 
convergence degree. Maximum convergence degree based 
embedding algorithm has been developed to ensure shorter 
physical paths for virtual links. Although survivability 
improves due to the shorter path consideration yet, no direct 
contribution on fault tolerance. Geographical location of 
physical resources has been utilized in VNE to enhance 
survivability with lower operational cost [16]. Location 
constrained survival virtual network embedding (LSNE) 
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problem has been vied as multi-commodity network flow 
problem. The problem has been addressed using integer linear 
programing model for small size network whereas, heuristic 
based algorithm has been utilized for larger size network. The 
impact of location information is negligible in case of smaller 
network due to the high speed of physical links. The 
topological knowledge significantly increase revenue gain, 
and indirectly enhance survivability. The undesirable aspects 
of topology based survivability is the direct impact of 
topology change on virtual networks. It could force re-
embedding for revenue gain.  

C. Single-Objective Optimization based Survivability 
Fault tolerance in virtual network embedding with 

redundant resource has been modelled as an integer linear 
programming problem [17]. A single-objective optimization 
technique namely, discrete particle swarm optimization (PSO) 
has been utilized to solve the embedding problem. The 
consideration of redundant resource as backup reduces 
resource utilization of the PSO-based survivability 
enhancements. Another single-objective optimization 
technique namely, ant colony optimization (ACO) has been 
utilized to improve survivability of VNE, by guarantying 
completeness of virtual network despite a node failure [18]. 
The survival embedding problem has been modelled as integer 
linear programming problem. To solve the problem, firstly, 
primary-cut set of has been identified from the sub-network of 
the virtual network obtained after the removal of failed node. 
Secondly, ACO has been utilized to find optimal embedding 
of virtual network. The performance of some well-known 
single-objective optimization techniques and their variants has 
been investigated comparatively for virtual network 
embedding [19]. ACO-based algorithms differ in the order of 
virtual node embedding and computing pheromone trail 
whereas, PSO-based algorithms differ in calculating rank of 
nodes. Although number of network parameters are 
considered for procuring survival embedding yet, optimal 
values of the parameters not obtained due to the usage of 
single-objective optimization techniques.   

D. Virtualization in WSNs for IoT: The Contribution Area 
Recently, virtualization in WSNs has witnessed significant 

attention due to the advancements in IoT technology. 
Although not much works has been done in the area yet, some 
potential initiatives have been made towards VNE for WSNs 
infrastructure. Network virtualization for IoT has been 
introduced focusing on resource constrained devices [7]. It has 
focused on the two key issues in IoT environments, including 
the lack of end-to-end connectivity among sensors in gateway 
based communication, and access control and authentication 
in direct communication without using gateways. Some use 
cases have conceptualized the virtual networking in IoT. An 
architecture has been suggested for virtualization of WSNs, to 
reduce redundant deployment of sensor networks for different 
IoT applications [8]. The architecture includes four layers 
considering physical, virtual sensor, virtual sensor access, and 
application. Two communication paths including data and 
control, and five interfaces have been also considered in the 
architecture. Another network virtualization architecture for 
IoT has been suggested to support network diversity and 

increase resource utilization [2]. A five-layered architecture 
namely, smart service system has been developed for 
implementing network virtualization in IoT. A four-phase 
service delivery model for IoT has been designed considering 
registration, discovery, description, and execution of services. 
The virtual network resource management model for IoT 
environments has been presented to handle service delivery 
with optimal resource utilization. Brain-inspired adaptive 
architecture has been presented for embedding and running 
IoT applications on virtualized WSNs [9]. Specifically, 
hierarchical modular structure of brain has been utilized for 
constructing different level of virtualization.  

Most of the proposal on virtualization in WSNs focuses on 
enhancing resource (i.e., sensor) utilization, by executing 
application-centric multiple tasks in sensors and abstracting 
sensors based on application (i.e., virtual sensors). This is 
evident from recent surveys focusing on critical investigation 
of node and network level virtualization in WSNs for IoT [20, 
21] and applications [22-25]. Different levels of abstraction 
have been considered for the same purpose including four 
layers [8], five layers [2], and hierarchical layers [9]. 
Complementary to these proposal, we focus on fault tolerance 
aspect in virtualization in WSNs, which can be utilized to aid 
the aforementioned resource-centric proposals. Specifically, 
we utilize multi-objective optimization to maximize fault 
tolerance and minimize communication delay parallelly.   

III. FAULT TOLERANT VIRTUALIZATION   

In this section, the detail of fault tolerant aspect of 
virtualization in WSNs is presented. A four-layered network 
architecture is considered (see Fig. 2). The bottom most 
physical layer is represented by the actual sensor nodes, 
i.e.,(𝑠1, 𝑠2, 𝑠3, 𝑠4) , capable of performing different types of 
tasks. Task based virtualization of sensors is performed in the 
sensor virtualization layer, i.e.,(𝑠11, 𝑠12, … , 𝑠43), resulting in 
more number of sensors than the number of actual physical 
sensors. Different wireless networks are generated at the 
access layer based on fault tolerant embedding of task oriented 
sensors. Each embedded network is considered as access 
agent. The application layer represents smart applications of 
IoT. The proposal is implemented in the access layer.  

Physical Layer

Sensor Virtualization Layer

Access Layer

Application Layer

Temperature Humidity

Fire MonitoringStreet Monitoring

Fault Tolerant
Embedding

Task Oriented Sensors 

S1 S2 S3
S4

S11 S12
S21 S22 S23 S31 S32 S41 S42

S43

S11 S23

S41
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Fig. 2. Fault tolerance embedding at virtual sensor access layer 
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Table I. Nomenclature 

Notation Description 
𝑆𝑖 or 𝑆𝑖𝑗 𝑖𝑡ℎsensor or 𝑗𝑡ℎvirtualization of 𝑖𝑡ℎsensor 
𝑟 Distance of nearest neighbour sensor 
∆𝑟 Small increment in 𝑟  
𝑁𝐴 Network area 
𝜆 Density of sensors in the network 
𝑃𝑟|(𝑟+∆𝑟) 
𝑐  Probability of closest sensor between 𝑟 and 𝑟 + ∆𝑟 
𝑃𝑟|(𝑟+∆𝑟) 
𝑠  Probability of some sensor between 𝑟 and 𝑟 + ∆𝑟 
𝑃<𝑟 
0  Probability of no sensor at less than 𝑟distance 
𝑁𝑛 Number of sensors in the network 
𝑓𝑟(𝑟) Pdf of closest neighbour distance 
𝑅 Transmission range of sensors 
𝐸(𝑟) Expected closest neighbour distance 
 𝑠𝑝 Source physical sensor   
𝑑𝑝 Destination physical sensor 
𝐷 Distance between 𝑠𝑝and 𝑑𝑝 
(𝑁𝑖𝑛 − 2)𝐶𝑘 Number of paths with 𝑘 intermediates 
𝑁𝑝 Total number of paths between 𝑠𝑝and 𝑑𝑝 
𝑁𝑖𝑛 Number of intermediate nodes between 𝑠𝑝and 𝑑𝑝 
𝐹𝑇𝑖

𝑝
 Fault tolerance of 𝑖𝑡ℎpath 

𝐹𝑇𝑖
𝑙 Fault tolerance of 𝑖𝑡ℎlink 

𝐶𝐷𝑖
𝑝

 Communication delay of 𝑖𝑡ℎpath 
𝐶𝐷𝑖

𝑙 Communication delay of 𝑖𝑡ℎlink 
𝐶𝐻𝑖

 𝑖𝑡ℎchromosome 
𝑁𝑟𝑒

 Number of retransmissions for a success 
𝑒𝑖,𝑗

 Packet error rate of a link between nodes 𝑖 and 𝑗 
𝑑𝑖,𝑗
𝑙  Degree estimation of a link between nodes 𝑖 and 𝑗 
𝑑𝑖
𝑒 Degree of 𝑖𝑡ℎnode 
𝛼 Decision variable 
𝑑𝑖,𝑗 Distance between nodes 𝑖 and 𝑗 
𝑆𝑝 Propagation speed 
𝑆𝑡 Transmission speed 
𝑆𝑝𝑘𝑡 Size of packet 
𝑠𝑣 and 𝑑𝑣 Virtualized source and destination sensors of a link failure 
𝑆𝑝𝑜𝑝 Size of chromosome population 
𝑁𝑔𝑒𝑛 Number of generations during solution optimization  

A. The Optimization Problem 
Let there is a link failure between two virtual sensors 𝑠𝑣 and 

𝑑𝑣due to the path failure embedded for the link. The path for 
the link in wireless sensor network is between the physical 
sensor nodes 𝑠𝑝  and 𝑑𝑝 . All the available paths between 𝑠𝑝 
and 𝑑𝑝  need to be explored to obtain an alternative path 
between these nodes with maximum fault tolerant capacity. 
The knowledge of expected number of paths with intermediate 
node is required for exploring these paths.  

To find the total number of paths, expected distance of the 
nearest neighbor node qualified for communication 
establishment is computed. The expected distance of closest 
neighbor sensor can be determined once the probability 
density function (𝑝𝑑𝑓) of the location of sensors is known. To 
determine 𝑝𝑑𝑓 of the location of sensors, the probability of a 
neighbor sensors between the two distances 𝑟 and (𝑟 + ∆𝑟) is 
derived, where 𝑟 is a distance within transmission radius and 
∆𝑟  represents a small incremental distance.  

It is assumed that sensors are distributed across a physical 
wireless sensor network area  𝑁𝐴 with uniform density  𝜆 .  
Therefore, the probability of presence of a sensor in the area is 
1, which can be expressed as given by Eq. (1) 

∫ 𝜆 𝑑𝑁𝐴 = 1
𝑁𝐴

⇒  𝜆 =
1

𝑁𝐴
     (1) 

The probability 𝑃𝑟|(𝑟+∆𝑟) 
𝑐 of closest neighbor sensor at the 

distance between 𝑟  and (𝑟 + ∆𝑟)  is the joint probability of 

𝑃𝑟|(𝑟+∆𝑟) 
𝑠 presence of some neighbor sensor at this distance, 

and probability 𝑃<𝑟 
0 of presence of no other sensor closer than 

the distance 𝑟.  The probability 𝑃𝑟|(𝑟+∆𝑟) 
𝑐  can be expressed as 

given by Eq. (2) 
 𝑃𝑟|(𝑟+∆𝑟) 𝑐 = 𝑃<𝑟 

0  . 𝑃𝑟|(𝑟+∆𝑟) 
𝑠     

= [1 − 𝑃<𝑟 
𝑠 ] . [𝑃𝑟|(𝑟+∆𝑟) 

𝑠 ]          (2) 

Considering only half of the area in transmission range 
towards destination 𝑑𝑝 with 𝑁𝑛 sensor nodes in the network, it 
is simplified as given by Eq. (3).    

𝑃𝑟|(𝑟+∆𝑟) 
𝑐 = [1 − ∑ (𝑁𝑛

𝑗
) (

𝜆𝜋𝑟2

2
)
𝑗

𝑁𝑛
𝑗=1 (1 −

𝜆𝜋𝑟2

2
)
𝑁𝑛−𝑗

] .  

                   [∑ (𝑁𝑛
𝑗
) ∫ (

2𝜆𝜋𝑟 .  𝑑𝑟

2
)
𝑗

𝑑𝑟. ∫ (1 −
𝑟+∆𝑟

𝑟

𝑟+∆𝑟

𝑟

𝑁𝑛
𝑗=1

2𝜆𝜋𝑟 .  𝑑𝑟

2
)
𝑁𝑛−𝑗

𝑑𝑟 ]     

= (1 − 𝜆𝜋𝑟2)𝑁𝑛 [1 − (1 − 𝜆𝜋(𝑟𝑑𝑟 + 𝑑𝑟2))
𝑁𝑛
]    

= (1 − 𝜆𝜋𝑟2)𝑁𝑛 [1 − {1 − (𝑁𝑛
1
). (𝜆𝜋(𝑟𝑑𝑟 + 𝑑𝑟2)) +

(𝑁𝑛
2
). (𝜆𝜋(𝑟𝑑𝑟 + 𝑑𝑟2))

2
…}]   

= (1 − 𝜆𝜋𝑟2)𝑁𝑛 [𝑁𝑛𝜆𝜋𝑟𝑑𝑟 + 𝑁𝑛𝜆𝜋𝑑𝑟
2 − (𝑁𝑛

2
). (𝜆𝜋(𝑟𝑑𝑟 +

𝑑𝑟2))
2
… ]            (3) 

The probability density function 𝑓𝑟(𝑟)  of closest neighbor 
distance can be obtained by considering limit in Eq. (3) as: 

𝑓𝑟(𝑟) = lim
𝑑𝑟→0

𝑃𝑟|(𝑟+∆𝑟) 
𝑐

𝑑𝑟
= 𝑁𝑛𝜆𝜋𝑟(1 − 𝜆𝜋𝑟

2)𝑁𝑛 (4) 

Considering 𝑅 as transmission range of sensors in Eq. (4), the 
expected closest neighbor distance 𝐸(𝑟)can be expressed as 
given by Eq. (5).  

𝐸(𝑟) = ∫ 𝑟𝑓𝑟(𝑟)𝑑𝑟
𝑅

0
= ∫ 𝑁𝑛𝜆𝜋𝑟

2(1 − 𝜆𝜋𝑟2)𝑁𝑛
𝑅

0
𝑑𝑟   

= [
−𝑟(1−𝜆𝜋𝑟2)

𝜆𝜋(𝑁𝑛+1)
]
0

𝑅

+ ∫
(1−𝜆𝜋𝑟2)𝑁𝑛+1

𝜆𝜋(𝑁𝑛+1)

𝑅

0
𝑑𝑟   

= [
1

𝜆𝜋(𝑁𝑛+1)
∑ (𝑁𝑛+1

𝑖
)

𝑁𝑛+1
𝑖

(−𝜆𝜋𝑟2)
𝑖
 𝑟

𝑖+1
]
0

𝑅

    

𝐸(𝑟) =
√𝑁𝐴

𝜆𝜋
3
2⁄ (𝑁𝑛+1)

∑
(−1)𝑖

𝑖+1

𝑁𝑛+1
𝑖    (5) 

Now, the number of paths from 𝑠𝑝  to 𝑑𝑝with 𝑘 number of 
intermediate nodes is (𝑁𝑖𝑛 − 2)𝐶𝑘  where 𝑘 =

{1,2,3,… (⌊𝐷 𝐸(𝑟)⁄ ⌋ − 1)} , total intermediate nodes 𝑁𝑖𝑛 =

(⌊𝐷
𝐸(𝑟)⁄ ⌋ − 1)  and 𝐷  represents distance between 𝑠𝑝  and 𝑑𝑝 . 

The total number of paths 𝑁𝑝 from 𝑠𝑝 to 𝑑𝑝can be expressed 
as given by Eq. (6). 

𝑁𝑝 = (𝑁𝑖𝑛 − 2)𝐶1 + (𝑁𝑖𝑛 − 2)𝐶2 +⋯+ (𝑁𝑖𝑛 − 2)𝐶(𝑁𝑖𝑛−2)
 

= {(𝑁𝑖𝑛 − 2)𝐶0 + (𝑁𝑖𝑛 − 2)𝐶1 +⋯+ (𝑁𝑖𝑛 − 2)𝐶(𝑁𝑖𝑛−2)
} − 1  

= 2𝑁𝑖𝑛 − 1              (6) 

Using the number of paths in Eq. (6), the maximization 
function for Fault Tolerance (FT) can be expressed as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹𝑇 = max
𝑖=1,2,…,𝑁𝑝

(𝐹𝑇𝑖
𝑝
)   (7) 
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Where, 𝐹𝑇𝑖

𝑝 represents fault tolerance of 𝑖𝑡ℎ path from 𝑠𝑝  to 
𝑑𝑝. The normalized fault tolerance of a path can be expressed 
as: 

𝐹𝑇𝑖
𝑝
=

1

(⌊𝐷
𝐸(𝑟)⁄ ⌋−1)

∑ 𝐹𝑇𝑖,𝑗
𝑙

𝑖=(⌊𝐷
𝐸(𝑟)⁄ ⌋−1),𝑗=𝑑𝑝

𝑖=𝑠𝑝,𝑗=1
  (8) 

Where, 𝐹𝑇𝑖,𝑗
𝑙 is the fault tolerance of a link between an adjacent 

pair of nodes, and 𝑖, 𝑗 ∈ 𝑆𝑖
𝑜𝑝
= {𝑠𝑝, 1,2, … , (⌊𝐷

𝐸(𝑟)⁄ ⌋ −

2) , (⌊𝐷
𝐸(𝑟)⁄ ⌋ − 1) , 𝑑𝑝}. The ordered set of nodes of 𝑖𝑡ℎpath 

is represented by 𝑆𝑖
𝑜𝑝. Similarly, the minimization function for 

Communication Delay (CD) can be expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝐷 = min
𝑖=1,2,…,𝑁𝑝

(𝐶𝐷𝑖
𝑝
)  (9) 

Where, 𝐶𝐷𝑖
𝑝 represents delay of 𝑖𝑡ℎ path from 𝑠𝑝  to 𝑑𝑝 . The 

normalized CD of a path can be expressed as: 

𝐶𝐷𝑖
𝑝
=

1

(⌊𝐷
𝐸(𝑟)⁄ ⌋−1)

∑ (
𝐶𝐷𝑖,𝑗

𝑙

𝐶𝐷𝑚𝑎𝑥
𝑙 )

𝑖=(⌊𝐷
𝐸(𝑟)⁄ ⌋−1),𝑗=𝑑𝑝

𝑖=𝑠𝑝,𝑗=1
 (10) 

Where, 𝐶𝐷𝑖,𝑗
𝑙 is the delay of a link between an adjacent pair of 

nodes, and 𝑖, 𝑗 ∈ 𝑆𝑖
𝑜𝑝. The maximum link delay among all the 

links is represented by 𝐶𝐷𝑚𝑎𝑥
𝑙  . The constraints corresponding 

to the aforementioned optimization problem include 0 <

𝐹𝑇𝑖
𝑝
≤ 1, 0 < 𝐹𝑇𝑖

𝑙 ≤ 1, 0 < 𝐶𝐷𝑖
𝑝
≤ 1, 0 <

𝐶𝐷𝑖,𝑗
𝑙

𝐶𝐷𝑚𝑎𝑥
𝑙 ≤ 1.  

B. Adapted NSGA 
An adapted NSGA is developed for solving the multi-

objective optimization problem focusing on chromosome 
representation, fault tolerance and delay computation, cross 
over and mutation operations, and sorting chromosomes using 
non-dominance concept. 
1) Chromosome Representation 

An ordered set of intermediated nodes 𝑆𝑖
𝑜𝑝 starting from 

source 𝑠𝑝  and ending with destination 𝑑𝑝nodes, represents a 
chromosome in the solution space of A-NSGA considering the 
optimization problem.   Each node of the set represents a gene 
of the chromosome representation. An 𝑖𝑡ℎchromosome can be 
represented as (see Fig. 3):  

 
𝐶𝐻𝑖 = {𝑠𝑝, 1,2,… , (⌊𝐷 𝐸(𝑟)⁄ ⌋ − 2) , (⌊𝐷 𝐸(𝑟)⁄ ⌋ − 1) , 𝑑𝑝}𝐹𝑇,𝐶𝐷  (11) 

 
 

𝑠𝑝 Node-1 Node-2 … Node-𝑁𝑖𝑛  𝑑𝑝 
FT CD 

Fig. 3. Genotype representation of chromosome 
 

2) Fault Tolerance and Communication Delay 
The fault tolerance of links are utilized to obtain cumulative 

fault tolerance of a path. The fault tolerance of a link is 
derived considering packet error rate based link quality 
estimation, and neighbor density based degree estimation. It 
can be expressed as given by Eq. (12). 

𝐹𝑇𝑖,𝑗
𝑙 = (1 − ∑ (𝑒𝑖,𝑗)

𝑡
(1 − 𝑒𝑖,𝑗)

𝑁𝑟𝑒
𝑡=0 ) + 𝑑𝑖,𝑗

𝑙   (12) 

Where 𝑁𝑟𝑒 is the number of retransmission required for a 
successful transmission over the link, 𝑒𝑖,𝑗  is the packet error 

rate of the link and 𝑑𝑖,𝑗
𝑙  is the degree estimation of the link. 

The degree estimation can be derived as expressed by Eq. 
(13).     

𝑑𝑖,𝑗
𝑙 =

{
 
 

 
 
1,                           𝑑𝑖

𝑒 = 𝑑𝑗
𝑒 = 𝑁𝑛 − 1 

1 − 𝛼𝑑𝑖
𝑒
,               𝑑𝑖

𝑒 = 𝑑𝑗
𝑒 < 𝑁𝑛 − 1 

1 − 𝛼

(𝑑𝑖
𝑒−𝑑𝑗

𝑒)
2

𝑑𝑖
𝑒+𝑑𝑗

𝑒

,          |𝑑𝑖
𝑒 − 𝑑𝑗

𝑒| > 0

 (13) 

where  𝑑𝑖
𝑒and 𝑑𝑗

𝑒are the degrees of nodes 𝑖 and 𝑗, respectively 
and 𝛼 is a decision variable varies between 0 and 1.  

The communication delay is computed considering 
interference for the link determined by the link quality, and 
propagation and transmission delay. It can be expressed as 
given by Eq. (14). 

𝐶𝐷𝑖,𝑗
𝑙 = (1 − ∑ (𝑒𝑖,𝑗)

𝑡
(1 − 𝑒𝑖,𝑗)

𝑁𝑟𝑒
𝑡=0 ) +

𝑑𝑖,𝑗

𝑆𝑝
+

𝑆𝑝𝑘𝑡

𝑆𝑡
 (14)        

Where, 𝑑𝑖,𝑗  is the distance between the pair of nodes 𝑖 and 𝑗, 
𝑆𝑝represents propagation speed, 𝑆𝑝𝑘𝑡is the packet size and 𝑆𝑡 
represents transmission speed.    
3) Crossover and Mutation  
The crossover operation is performed by selecting two 
chromosomes (also termed as parent solution in optimization 
theory) from the population (all paths between 𝑠𝑝 and 𝑑𝑝), and 
randomly exchanging a group of nodes between the 
chromosomes (see Fig. 4). The exchange is constrained to the 
reachability of the nodes from both downward and upward 
direction in the chromosome. The larger group size is 
considered in initial stage of the solution (at lower 
generations) whereas, smaller group size is preferred in latter 
stages. Thus, size of the group for crossover operation is based 
on the generation number and size of the chromosome pair. 
Due to the possibility of repetition of intermediate nodes, the 
chromosome after crossover operation (also termed as 
offspring in optimization theory) are repaired. The 
intermediate nodes present in the parent chromosome but not 
in the newly generated offspring, are considered while 
repairing the offspring.  
                               Crossover group  
 

𝑠𝑝 2 4 9 8 6 1 14 𝑑𝑝 
0.815 
(FT) 

0.807 
(CD) 

 
𝑠𝑝 13 10 2 5 7 1 9 𝑑𝑝 

0.856 
(FT) 

0.819 
(CD) 

                            Crossover Operation 
      repaired by 9  
    
𝑠𝑝 2 4 2 9 5 7 1 14 𝑑𝑝 

0.818 
(FT) 

0.805 
(CD) 

        
             repaired by 2 

𝑠𝑝 13 10 9 2 8 6 1 9 𝑑𝑝 
0.860 
(FT) 

0.817 
(CD) 

Fig. 4. The crossover operation 

 

offspring-2 

 

Parent-1 

offspring-1 

Parent-2 
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In the mutation operation, the order of two randomly 

selected nodes is exchanged in the chromosome, if the nodes 
are reachable (present as neighbor) from their downward 
nodes. Illustrative example of crossover and mutation 
operation is shown in Fig. 4 and 5, respectively.     

 

𝑠𝑝 13 10 9 5 6 1 8 𝑑𝑝 
0.860 
(FT) 

0.817 
(CD) 

 
Mutation Operation      Pair of nodes exchanged  

𝑠𝑝 13 10 6 5 9 1 8 𝑑𝑝 
0.863 
(FT) 

0.815 
(CD) 

 
Fig. 5. The mutation operation 

 
4) Non-dominance based Sorting for Chromosomes 

The concept of non-dominance is used for sorting 
population of chromosomes. The sorting technique prioritizes 
chromosomes based on multiple conflicting objectives. Let us 
consider, two chromosomes 𝐶𝐻𝑖and 𝐶𝐻𝑗 from the population. 
According to Pareto optimal, chromosome 𝐶𝐻𝑖 is said to 
dominate 𝐶𝐻𝑗 if at least one of the objectives fitness value of 
𝐶𝐻𝑖  is better than the fitness value of 𝐶𝐻𝑗 , and the fitness 
value of the other objectives are equivalent. Parato optimal 
based prioritization is preferred in multi-objective 
optimization use cases in communication networks [26, 27]. 
For two objectives, it can be derived as:  

𝐶𝐻𝑖 > 𝐶𝐻𝑗 = {
𝐶𝐻𝑖(𝐹𝑇) > 𝐶𝐻𝑗(𝐹𝑇),∧  𝐶𝐻𝑖(𝐶𝐷) ≮ 𝐶𝐻𝑗(𝐶𝐷)

𝐶𝐻𝑖(𝐶𝐷) > 𝐶𝐻𝑗(𝐶𝐷),∧ 𝐶𝐻𝑖(𝐹𝑇) ≮ 𝐶𝐻𝑗(𝐹𝑇)
   (15) 

The chromosomes of the population are ranked in ascending 
order by comparing their fitness values using non-dominance 
concept. The chromosomes not dominated by any other 
chromosomes are ranked 1st in the population. The 2nd rank is 
assigned to the chromosomes dominated by only one 
chromosome in the population. The chromosomes dominated 
by two other chromosomes are ranked 3rd in the population. 
The crowding distance is calculated for each chromosomes of 
the population after ranking of the chromosome. Tournament 
selection approach is utilized to select population for the next 
generation.  
5) Adapted NSGA  

The complete set of steps utilized for solving the 
optimization problem is presented in Algorithm 1.  

 
Algorithm 1: A-NSGA 

 Notations:  lS,D: Link between 𝑠𝑝 and 𝑑𝑝; 𝐹𝑖
𝑝𝑎𝑡ℎ

:Fault tolerance of 𝑖𝑡ℎ path 

  D𝑖
𝑠  : Dominance set of 𝑖𝑡ℎ solution; 𝑆𝑖: 𝑖

𝑡ℎ solution of the population 

  np  =This is the number of solutions that dominate p;  𝐹𝑗: 𝑗
𝑡ℎ front 

 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝: Size of child population;  𝑅𝑖: Rank of 𝑖𝑡ℎ solution  
  𝑔 : Number of generations used for looping; 𝑆𝑝𝑜𝑝: Size of the old population 

considered for execution; 𝐶𝑑𝑖𝑠𝑡: Crowding distance 
  𝑁𝑔𝑒𝑛 : Number of generations; 𝑜𝑙𝑑𝑝𝑜𝑝 : Old population; 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 : Child 
population;  

Input: lS,D, 𝐹𝑖
𝑝𝑎𝑡ℎ

, 𝑆𝑝𝑜𝑝, 𝑁𝑔𝑒𝑛    

Process:  
1. Generate initial population of size 𝑆𝑝𝑜𝑝 by random distribution of 

decision variable in given range (low, high). Save one copy of 

population as 𝑜𝑙𝑑𝑝𝑜𝑝 
2. for each 𝑆𝑖 ∈ 𝑜𝑙𝑑

𝑝𝑜𝑝 
a. Calculate objective-1 normalized fault-tolerance using Eq. (8)   
b. Calculate objective-2 normalized delay using Eq. (10)   

endfor 
𝑔 = 1 

3. While (𝑔 ≤ 𝑁𝑔𝑒𝑛) 
Non-dominated_sorting( 𝑜𝑙𝑑𝑝𝑜𝑝) // function for Non-Dominated sorting  

4.         for each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝    

             Calculate D𝑖
𝑠 

         endfor 
         𝑗 = 1,  

5.          For each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝 

             If (D𝑖
𝑠 = 𝜙) 

                 𝐹𝑗 = 𝐹𝑗 ∪ 𝑆𝑖 
                  𝑅𝑖 = 1  
              Endif 
        Endfor 
        𝑗 = 2 

6.         For each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝 

             If (D𝑖
𝑠 ≠ 𝜙 && 𝑅𝑖 == 𝑗 − 1) 

                 𝐹𝑗 = 𝐹𝑗 ∪ 𝑆𝑖 
                 𝑅𝑖 = 𝑗  
                 𝑗 = 𝑗 + 1 
              Endif 
        Endfor  // end of function Non-dominated_sorting 
 Crowing_distance (𝑜𝑙𝑑𝑝𝑜𝑝)  // function for crowing distanc 

       Assume 𝐶𝑑𝑖𝑠𝑡  from boundary point (group of solution) to ∞ for 
any solution  

7.        for each 𝑆𝑖 ∈ 𝑜𝑙𝑑
𝑝𝑜𝑝 // The crowing distance Start 

               calculate 𝐶𝑑𝑖𝑠𝑡 from all point excluding boundary points 
        endfor  // end of crowding distance function 
 

8. Select the best half population as 𝑝𝑎𝑟𝑒𝑛𝑡𝑝𝑜𝑝  considering 𝑅 and 𝐶𝑑𝑖𝑠𝑡 
using tournament selection approach.  
   𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 = Φ      
    𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 = 0 

9.    While(𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 ≤ Spop) 
        Randomly select two chromosomes from the parent population  
        Perform crossover to produce two child chromosomes 
        Update 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 and  𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 = 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 + 2 
        Randomly choose a chromosome from parent population 
        Mutate chromosome to produce a child chromosome 
        Update 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 and 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 = 𝑆𝑐ℎ𝑖𝑙𝑑−𝑝𝑜𝑝 + 
     endwhile 

10.      Generate new population of size (2×Spop) by 𝑜𝑙𝑑𝑝𝑜𝑝 ∪ 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝 
11.      Calculate normalize fault-tolerance using Eq. (8)  
12.      Calculate normalized delay using Eq. (10)  
13.      Non-dominated_sorting( 𝑜𝑙𝑑𝑝𝑜𝑝 ∪ 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝)  
14.      Crowing_distance (𝑜𝑙𝑑𝑝𝑜𝑝 ∪ 𝑐ℎ𝑖𝑙𝑑𝑝𝑜𝑝)   
15.      Select again the best half population as 𝑜𝑙𝑑𝑝𝑜𝑝 using rank and 𝐶𝑑𝑖𝑠𝑡  

endwhile 
16. exit       

Output: optimized chromosomes 
 

Explanation of A-NSGA 
 In step 1 and 2, population (paths from source and 

destination pair) is generated and initialized. The population is 
sorted following non-dominance based sorting in steps 3-6. 
The best half population is selected as parent in steps 7-8. In 
step 9, crossover and mutation operations are performed for 
generating better solutions from selected parent population. In 
steps 10-15, better half population is again selected from the 
combined (old and newly generated) population.   These steps 
are repeated until the condition mentioned in step 3 satisfies 
(the predefined maximum number of generations). These steps 
are presented as flowchart in Fig. 6. The time complexity of 
A-NSGA is  𝑂(2×𝑆𝑝𝑜𝑝×𝑁𝑔𝑒𝑛) , where 𝑆𝑝𝑜𝑝 is size of 
population and 𝑁𝑔𝑒𝑛  represents the number of generations. 

Chromosome-1 
after mutation 

Chromosome-1 
before mutation 
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The size of the network indirectly controls the number of 
generations, and thus execution time. Also, time require for 

each generation might vary, and depend on the hardware 
configuration of the system. 

 

Start

End

lS, D , Fi
path, Spop, Ngen g <= Ngen 4,5,6: Non-dominance sorting of  oldpop

7: Calculate Cdist     Si     oldpop
  

8: Select best half population as  
parentpop considering rank and  C

distSchild-pop <= Spop
9:

3:

Select two chromosome from parentpop

Perform crossover to get two child
Update childpop and Schild-pop=Schild-pop+2

Select a chromosome from parentpop

Perform mutation to get a child
Update childpop and Schild-pop=Schild-pop+1

Generate new population from  oldpop  and childpop

Calculate normalized fault tolerance using Eq. (8) 
Calculate normalized delay using Eq. (10)

Non-dominated sorting of  new population 
Calculate Cdist     Si     oldpop     childpop

Select again the best half population as oldpop
   

1: Generate initial population as oldpop  

2: Calculate normalized fault tolerance by Eq. (8) 
    Calculate normalized delay by Eq. (10) Y

N

Y

N

 
 

Fig. 6. Flowchart of A-NSGA 

IV. EMPIRICAL RESULTS 

 In this section, analytical, case study based simulation 
results are discussed for analyzing the performance of the 
proposed fault tolerance optimization framework for IoT.  It is 
broadly divided into two parts. Analytical results are discussed 
in the first part, whereas simulation setting, metrics and 
comparative analysis of simulation results are discussed in the 
second part. 

A. Analytical Results 
The characteristics of the mathematical derivations are 

analytically analyzed using mathematical tool. The analytical 
analysis evaluates the performance of the mathematical 
formulations obtained for solving the optimization problem in 
IoT environments. Most of the parameters considered for 
generating analytical results are pointed in the results itself. 
The increment on network area has exponential impact on 
expected nearest node distance.   The increment in number of 
paths with the increase in number of intermediate vehicles is 
initially slower but continuous and approximately exponential 
nature with higher intermediate nodes (see Fig. 7 (a) and (b)).   

  
                             (a)                                                             (b) 

Fig. 7. Analytical results, (a) impact of 𝑁𝐴 on 𝐸(𝑟), (b) impact of 𝑁𝑖𝑛on 𝑁𝑝 

B. Simulation Results 
In this section, simulations carried out to evaluate the 

performance of the framework is presented focusing on 
environment setting, metrics, and comparative analysis of 
results. The two objectives were aimed for performing case 
study based simulations. Firstly, effectiveness of fault tolerant 

optimization is measured considering the impact of number of 
generations on optimization. Secondly, efficiency of fault 
tolerant optimization is measured considering network density. 
1) Simulation Setting and Metrics 

The proposed optimization of fault tolerance and delay in 
virtual network is implemented in network simulator NS-2 
using C++ programing language for implementing major 
classes of the simulation. The major classes of the simulation 
include ‘NetworkNode’, ‘VirtualNode’ ‘RandomProvider’, 
‘PathSearchNSGA’ and ‘MainApp’. All the characteristics of 
a node in a network such as position, list of neighbors, link 
delay with neighbors, fault tolerance of associated links are 
implemented in ‘NetworkNode’. Interface based task 
processing is implemented at ‘VirtualNode’, For different 
simulation runs, different set of network nodes are randomly 
generated using ‘RandomProvider’. The optimization of fault 
tolerance and delay for generating virtual network is 
implemented in ‘PathSearchNSGA’. Two prototype IoT 
applications are implemented in ‘MainApp’ class.  The 
simulation is performed in a machine having Intel Core i7-
2500S 2.70 GHz processor, 16GB RAM, 64bit Linux OS. The 
other basic setting of parameters in simulation is 
approximately similar the parameter table and setting 
considered in [28, 29].  Three different sets of network with 
100, 500 and 1000, 1500, 2000 nodes are generated following 
Poisson process. The adapted NSGA is executed up to 500, 
1000 and 1500, and 2000 generations to optimize fault 
tolerance and communication delay in four deferent networks. 
The chromosomes of the last generation in results which 
represents the last optimized values.  
2) Analysis of Results 

A comparison of optimization performance between A-
NSGA and SVNE is shown in Fig. 8(a)-(d) considering 100 
nodes and 500~800generations. It can be clearly observed 
that the optimization performance of A-NSGA is better as 
compared to SVNE for both the objectives including fault 
tolerance and communication delay. The observation affirms 
the capability of handling failure in virtualization of WSNs. 
Specifically, the optimized value of fault tolerance is 
approximately 0.65 whereas the optimized value of delay is 
approximately 0.02 . This can be attributed to the accurate 
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prediction of fault tolerance using packet error rate based link 
quality estimation. In case SVNE, optimized value of fault 
tolerance is approximately 0.3 whereas the optimized value of 
delay is approximately 0.2 . This is due to the degree of 
connectivity based fault tolerant estimation. The estimation is 
not suitable in wireless scenario.  Moreover, large number of 
chromosomes has higher delay and lower fault tolerance 
values. Also, the impact of increment of number of 
generations on the optimized chromosome is quite lower due 
to the smaller network (100 nodes). As the difference between 
the successive results ((a)-(d)) is not clearly visible. This is 
due to the lesser number of path formation in smaller 
networks. 

 
                             (a)                                                             (b) 

 
                              (c)                                                             (d) 
 Fig. 8. Optimized chromosome with 100 nodes after (a) 500 (b) 600, (c) 
700, (d) 800 generations 

 
The network size is enlarged considering 500  nodes for 

magnifying the optimization performance difference in 
successive generations. A comparison of optimization 
performance the larger network size is shown in Fig. 9(a)-(d). 
It is evident from results that the optimization performance of 
A-NSGA is better as compared to SVNE considering both the 
objectives. In particular, the last optimized chromosome value 
of fault tolerance is approximately 0.8 whereas, the optimized 
chromosome value of communication delay is approximately 
0.015 . This can be attributed to the availability of higher 
number of paths with larger networks which helps in selection 
better quality links, with greater fault tolerance nad lower 
communication delay. The optimized chromosome value of 
fault tolerance is approximately 0.3  whereas the optimized 
value of delay is approximately 0.15. This is due to the slower 
convergence of the wired network based approach.  Moreover, 
the number of optimized chromosomes has still lesser and the 
convergence rate towards optimal solution is quite lower. 
Also, the impact of increment of number of generations on the 
optimized chromosome is little bit better due to the larger 

network ( 500  nodes). As the difference between the 
successive results ((a)-(d)) is more visible. 

 
                             (a)                                                             (b) 

 
                              (c)                                                             (d) 
 
 Fig. 9. Optimized chromosome with 500 nodes after (a) 500 (b) 600, (c) 
700, (d) 800 generations 

 
                             (a)                                                             (b) 

 
                              (c)                                                             (d) 
 Fig. 10. Optimized chromosome with 1000 nodes after (a) 500 (b) 600, (c) 
700, (d) 800 generations 

 
The network size is further enhanced with 1000  nodes to 
improve the convergence rate towards optimal solution. A 
comparison of optimization convergence rate is shown in Fig. 
10(a)-(d). It is evident from results that the optimization 
convergence rate of A-NSGA is better as compared to SVNE 
for both the objectives. The optimized chromosome value of 
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fault tolerance is approximately 0.98 whereas, the optimized 
chromosome value of communication delay is approximately 
0.010. This can be attributed to the better felt tolerant path 
selection from the large number of available paths with scaled 
network size. In case of SVNE, the optimized chromosome 
value of fault tolerance is approximately 0.48  whereas the 
optimized value of delay is approximately 0.13. Moreover, the 
number of optimized chromosomes has significantly increased 
with scaled network size. The chromosomes are densely 
clustered for both approaches. The impact of increment of 
number of generations on the optimized chromosome is 
clearly visible in successive results ((a)-(d)) due to the greater 
availability of paths.  

C. Summary of Observations 
The optimization of fault tolerance in virtualization WSNs 

significantly improves the performance of IoT applications, 
requiring heterogeneous network architecture. The problem 
can be modelled as multi-objective optimization. The 
optimization problem can be solved using A-NSGA. The 
number of paths between source and destination pair increases 
exponentially with the increase of network density  The fault 
tolerance can be represented as link quality and density of 
neighbor nodes in wireless network environments. The 
analysis of case study based simulation results attests the 
effectiveness of the optimization framework in handling 
failure of virtual networks. The convergence rate of the 
optimal solution is quite lower with smaller network size (100 
nodes). The impact of number of generations on optimization 
of solutions is more visible with larger network size (1000 
nodes), due to the higher number of paths. The optimized 
chromosomes are higher in numbers and densely clustered 
with scaled network size. Therefore, the fault tolerant 
approach is scalable, and suitable for the scaled network 
environments of IoT.    

V. CONCLUSION AND FUTURE WORK 

In this paper, a framework for optimizing fault tolerance in 
virtualization in WSNs is presented focusing on heterogeneous 
network requirement for IoT applications. A multi-objective 
optimization problem is mathematically formulated 
considering fault tolerance and communication delay in 
virtualization. An A-NSGA is developed for solving the 
optimization problem. The optimization framework is more 
effective as compared the state of the art approaches. It is 
evident from the better optimization results obtained with 
lower number of generations. The optimization results are also 
obtained in shorter time as compared to the state of the art 
approaches. This affirms the efficiency of the proposed 
framework. In future research work, authors will consider 
more network parameter in the multi-objective optimization 
problem.  
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