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ABSTRACT
Traffic congestion in urban network has been a serious problem for decades. In this paper,
a novel dynamic multi-objective optimization method for designing predictive controls of
network signals is proposed. The popular cell transmission model (CTM) is used for traffic
prediction. Two network models are considered, i.e., simple network which captures basic
macroscopic traffic characteristics and advanced network that further considers vehicle
turning and different traveling routes between origins and destinations. A network signal
predictive control algorithm is developed for online multi-objective optimization. A variety
of objectives are considered such as system throughput, vehicle delay, intersection crossing
volume, and spillbacks. The genetic algorithm (GA) is applied to solve the optimization
problem. Three example networks with different complexities are studied. It is observed
that the optimal traffic performance can be achieved by the dynamic control in different
situations. The influence of the objective selection on short-term and long-term network
benefits is studied. With the help of parallel computing, the proposed method can be imple-
mented in real time and is promising to improve the performance of real traffic network.
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1. Introduction

In order to relieve traffic network congestion especially
in large cities, efficient control strategy has always been
strongly demanded. This paper proposes a dynamic
multi-objective optimization method for designing
predictive controls of signals to improve traffic
performance in urban network.

Network signal controls have been implemented
in many cities for a couple of decades. A number
of control design methods have been developed
(Robertson & Bretherton, 1991; Li & Sun 2018a;
Ghanim & Abu-Lebdeh, 2015; Zhang & Chang, 2014;
Olia, Abdelgawad, Abdulhai, & Razavi, 2017; Hale
et al., 2017). Lo and Chow (2004) applied the dynamic
intersection signal control optimization (DISCO)
to a congested network in Hong Kong and studied the
various control strategies enabled by DISCO. Aboudolas,
Papageorgiou, and Kosmatopoulos (2009) presented
a framework for real-time network signal control in
large-scale urban traffic networks, which combines store-
and-forward traffic flow modeling, mathematical opti-
mization, and optimal control. Yang and Jayakrishnan
(2015) developed a real-time network-wide traffic signal
control scheme that is flexible in response to variations

of traffic flows and can handle the expected route flows
in the terms of long-term green time ratios for intersec-
tion movement. Diakaki, Papageorgiou, and Aboudolas
(2002) proposed a traffic-responsive urban control
(TUC) strategy using the linear-quadratic regulator. The
feedback regulator of TUC is designed offline and
controls the traffic signals online with real-time traffic
measurements. Prashanth and Bhatnagar (2011) pro-
posed a reinforcement learning algorithm with function
approximation for traffic signal control. The algorithm
incorporates state-action features and is easily imple-
mentable in high-dimensional settings. Chow and Lo
(2007) developed a novel sensitivity analysis of signal
control with physical queues. The effects of physical
queuing are taken into account, including queue
spillback and blockage. The proposed methodology
shows promising numerical results and can be applied
in dynamic signal control, traffic assignment, and
transport network design. Network signal control was
investigated by Dotoli, Fanti, and Meloni (2006) using
a discrete time model that is embedded in a real-time
control. The control determines the signal timing subject
to technical, physical, and operational constraints.

Papatzikou and Stathopoulos (2015) combined
dynamic traffic assignment and network control to
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minimize the potential loss induced to travelers.
Liu, Han, Gayah, Friesz, and Yao (2015) proposed
a two-stage online signal control strategy for dynamic
networks using a linear decision rule approach and
a distributionally robust optimization technique. A
reinforcement learning-based algorithm was proposed
by Ozan, Baskan, Haldenbilen, and Ceylan (2015) to
find optimal signal timings in coordinated signalized
networks for a fixed set of link flows. The application
of meta-heuristic optimization methods to network
signal setting was investigated by Cantarella, de Luca,
Di Pace, and Memoli (2015), where a new traffic flow
model combining cell transmission model (CTM) and
platoon dispersion model is used. A computationally
efficient simulation-based optimization framework
was improved by Chen, Xiong, He, Zhu, and Zhang
(2016) to optimize dynamic traffic assignment.

Along with the development of traffic network
models with high accuracy and extensibility, simula-
tion-based optimization strategies have been widely
used (Li & Sun, 2015, 2017). Model predictive control
(MPC), which is an optimal control method applied
in a rolling horizon framework, appears to be very
promising and its key ideas are adopted in this study.
MPC has the following advantages compared with other
control strategies (Hegyi, Schutter, & Hellendoorn,
2005). MPC operates in closed-loop with the instant
traffic demands as inputs. They are robust to uncer-
tainty, disturbances, and model mismatch. The future
of the traffic system is predicted with the updated
model, which in turn helps to determine a reliable
control. A short prediction horizon is usually
sufficient, which reduces complexity and makes the
real-time application feasible.

Lin, De Schutter, Yugeng, and Hellendoorn (2011)
applied MPC to control and coordinate urban traffic
networks. The online optimization problem is formu-
lated into a mixed-integer linear programing (MILP)
problem to increase the real-time feasibility of MPC.
An optimal perimeter control for two-region urban
cities was formulated by Geroliminis, Haddad, and
Ramezani (2013) and solved by implementing the
MPC scheme with the use of macroscopic fundamen-
tal diagram. A framework for multi-agent control
of linear dynamic systems was proposed by Oliveira
and Camponogara (2010). The authors decomposed
a centralized MPC problem into a network of coupled
subproblems that are solved by the distributed agents.
Hegyi et al. (2005) applied online control to optimally
coordinate variable speed limits with the aim of
suppressing shock waves. The objective was to find
the control signals that minimize the total time of

vehicles staying in the network. Model-based controls
for road network optimization in L2-norm and
L1-norm were designed by Lin, Zhou, and Xi (2013).

The studies in the literature on network signal con-
trol mostly focus on improving a single objective.
Research can be hardly found on multiple objective
optimizations with online predictive control. This
paper proposes a dynamic multi-objective optimiza-
tion method for designing real-time signal control in
urban traffic network. The CTM is used for traffic
prediction. Example networks with different complex-
ities and scales are considered to show the adaptability
and extensibility of the proposed method. The genetic
algorithm (GA) is adopted to solve the multi-objective
optimization (MOP) problem. The performance objec-
tives such as maximizing system throughput, reducing
traffic delay, and avoiding spillbacks are considered in
this study. A Pareto set of optimal controls can be
derived online. An algorithm is proposed to assist the
user to select and implement the optimal designs.

The paper is organized as follows. The traffic
network model is presented in Section 2. Section 3
presents the design of dynamic signal predictive con-
trol. The network MOP is formulated in Section 4.
Numerical optimization results of case studies and
performance analysis of the control are presented
in Section 5. We close the paper with conclusions
in Section 6.

2. Model description

2.1. Cell transmission model

The CTM initially proposed by Daganzo (1994, 1995)
to describe the traffic flow on highways can be used
to model urban traffic. It is a discretized form of the
macroscopic hydrodynamic Lighthill, Whitham,
Richards (LWR) model (Lighthill & Whitham, 1955;
Richards, 1956) and is based on a simplified trapez-
oidal fundamental diagram. It captures the macro-
scopic features of the traffic including shockwaves,
queue formation, and queue dissipation in both con-
gested and uncongested situations.

Each road section is modeled as a sequence of cells
whose lengths are the products of free flow speed on
that link vfree (m/s) and duration of a time step Dt (s).
The maximum number Ni of vehicles that can be
contained in cell i is the product of cell length l (m)
and jam density kjam (veh/m).

The dynamics in the CTM is governed by the
following two equations at each time step t for cell i.
The outflow qiðtÞ (veh/Dt) of cell i, which is also the
inflow of cell iþ 1 at time step t, is given by,
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qi tð Þ ¼ min ni tð Þ=Dt;Qi;x Niþ1�niþ1 tð Þð Þ= vfreeDt
� �n o

;

(2.1)

where niðtÞ denotes the number of the existing
vehicles in cell i at the beginning of time step t, and
Qi (veh/Dt) represents the outflow capacity of cell i.
The outflow is also limited to the available space in
the following cell, multiplied by the ratio of backward
wave speed x (m/s) and vfree.

After all the flows between cells have been deter-
mined, the number of vehicles niðtÞ in each cell can
be updated as,

ni t þ 1ð Þ ¼ ni tð Þ þ qi�1 tð ÞDt�qi tð ÞDt: (2.2)

2.2. Route choice

In this section, we consider a traffic network with
nine intersections as presented in Figure 1. The net-
work contains 12 origins and destinations. It is
assumed that all the links, which are the road stretch
between two signalized intersections, have the same
length and each one consists of five cells in the longi-
tudinal direction. We should point out that this work
can be extended to asymmetric networks.

More than one route are available for the vehicles to
travel from one origin to a destination. In order to
obtain the set of suitable routes for a given origin–des-
tination (OD) pair, some constraints must be imposed.
The length of each suitable route between one OD pair
in terms of number of cells needs to be constrained so
that unnecessary detouring can be eliminated.

lijm<Lij þ lmax; (2.3)

where lijm denotes the length of the route numbered m
between the OD of i and j subject to i; j ¼ 1; 2; :::; 12,
Lij is the minimum distance of the OD pair, and lmax

is a predetermined coefficient. Lij can be obtained
with the popular shortest path algorithm, also known
as Dijkstra’s algorithm (Dijkstra, 1959).

Let rij denote the set of suitable routes from origin
i to destination j. For a chosen suitable route, say
route m, between the OD pair, we define a proportion
Wij

m of the traffic flow following the route as,

Wij
m ¼ exp l Vij

m þ b ln Pij
m

� �� �
P

n2rij exp l Vij
n þ b ln Pij

n

� �� � ; (2.4)

where Vij
n denotes the utility of route n, which consists

of components such as travel time, distance, and fuel
consumption. In this paper, the utility is represented
by the corresponding route distance, and V equals the
reciprocal of the length of the considered route. l and
b are constant coefficients. Specifically, l is a scale
parameter assumed equal for all routes in the choice
set (Bliemer & Bovy, 2008). The path-size factor for
route m Pij

m is given as,

Pij
m ¼

X
a2Sijm

qa
Sijm

� � 1P
n2rij d

ij
a;n

�Sij

Sijn

� �c ; (2.5)

where Sijm is the set of links constituting route m, qa
denotes the length of link a, �Sij represents the shortest
route from i to j, c is a scaling parameter, and dija;n is
the indicator that is equal to 1 if link a is on route n
and 0 otherwise. This is known as the path-size logit
(PSL) model (Ben-Akiva & Bierlaire, 1999; Bliemer &
Bovy, 2008). Compared with other logit models such
as the multinomial logit model (MNL) where the
route choice probabilities for a given route choice set

Figure 1. The traffic network configuration with nine intersections.
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are usually determined directly from the route utilities
and the traffic network structure is often neglected,
the PSL model takes into account the overlap in route
alternatives by introducing the path-size factor P and
is able to better model the route choice behaviors in
network. The reader can also refer to these references
for the constants used in the model.

The route choices between origins and destinations,
and the proportions of the traffic flow taking each
route have been incorporated in the CTM. Every
proportion of the traffic flow assigned to a route
when entering the network is assumed to follow
through the route.

It should be noted that the route choice model
is used in this study to introduce multiple possible
routes for each origin–destination pair, while only one
route is considered in most related researches. In
this way, the complex urban traffic network can be
more accurately modeled, and the effectiveness of the
proposed optimization method can be better demon-
strated in the realistic traffic scenarios. For simplicity,
only the fixed route fraction based on the physical
distance is considered in this study, and more
advanced route choice models can be easily adopted
in the proposed method. In addition, the route choice
behavior of travelers in response to the variation of
travel time is not considered in this paper, and the
interaction between demand and supply is supposed
to be formulated if that is incorporated in the traf-
fic model.

2.3. Intersection model

Figure 2 shows the cell representation of links and
intersection. In each link, the traffic flow is separated
into two parts in opposite moving directions and

further divided into left turn, through and right-turn
flows based on traveling routes. The exclusive cells are
used for each traffic flow in the CTM. For instance,
when a vehicle arrives at a new link after crossing the
intersection, it is assumed to be in the left-turn cells if
it prefers to turn left at the approaching intersection.

In the intersection area, center cells Li, Ti, and Ri

(i ¼ 1; 2; 3; 4) are used to model vehicle conflict and
spillback behaviors (Lertworawanich, Kuwahara, &
Miska, 2011; Aziz & Ukkusuri, 2011, 2012; Pohlmann
and Friedrich, 2010; Beard & Ziliaskopoulos, 2006; Li
& Sun, 2016b). The merging and diverging behaviors
at the intersection are complicated since different
vehicle traveling routes are considered. Each sending
cell (Li, Ti, and Ri) releases traffic flow to three down-
stream receiving cells across the intersection, and
the receiving cell receives the traffic flow from three
upstream sending cells. Daganzo (1995) modeled the
merging and diverging movements at junction for
the basic CTM. A cell can be in either merging or
diverging regime. However, the cells in the intersec-
tion center are a part of both merging and diverging
regimes. In the following, additional rules for the
merging and diverging models are presented to handle
different route choices.

Figure 3 shows the merging and diverging scheme
at intersection. Take the situation in Approach 3
for example. The traffic flows coming to Approach 3
from other approaches can merge into cell m, n, and
p, depending on their traveling routes, i.e., whether
they need to turn left, go straight, and turn right
at the next intersection. For each of the other three
approaches, three virtual cells are used to classify the
flow directions in advance. Take Approach 1 for
instance. The left-turn flow in cell i can be classified
into three categories. One is to turn left at the next

Figure 2. Cell representation of link and intersection in CTM.
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intersection after crossing this intersection, one is to
go through at the next intersection, and the other is
to turn right at the next intersection. Virtual cells i1,
i2, and i3 receive the flows, respectively. The flows in
cell i1, j1, and k1 that prefer to turn left at the next
intersection after crossing this intersection merge into
cell m. The situations in cell n (go straight at the next
intersection) and p (turn right at the next intersec-
tion) are similar with those in cell m. Therefore, we
have modeled the crossing behavior as separate merg-
ing and diverging processes (Daganzo, 1995). It
should be pointed out that the virtual cells in the
intersection do not exist in space, and they are used
for modeling logic.

To simulate the effect of signal control, the outflow
capacity of the signal control cells at the intersection
(see Figure 2) can be formulated as a binary variable
that switches between null and saturation flow Qmax

(Lo, 1999, 2001),

Qi tð Þ ¼ Qmax; t 2 green phase
0; t 2 red phase

�
(2.6)

where cell i is the signal control cell and the signal phase
for each traffic flow is introduced in the following.

Two kinds of left-turn signals are considered in this
study, i.e., protective and permissive left-turn signal.
When the protective left-turn signal is used, the left-
turning traffic is protected by stopping the opposing
through traffic. When the permissive left-turn signal
is used, the left-turning traffic is permitted to cross
through the opposing flow. The two signal control
schemes are presented in Figure 4. The following
deceleration rules are introduced to deal with the con-
flicts between left-turn and opposing through traffic
flow with permissive left-turn signal (Li & Sun, 2016a).

Take the conflicts between the through traffic in
Approach 1 and left-turn traffic in Approach 2 for
instance. An upper bound for the mixed traffic flow
holds,

qL2 tð Þ þ qT1 tð Þ � cleftQT1 ; (2.7)

where cleft is a predefined conflict coefficient for
mixed traffic flows. The two traffic flows follow the
merging rules (Daganzo, 1995) in this situation.

The traffic network simulation model formulated
above is based on the popular CTM (Daganzo, 1994,
1995) that is consistent with the kinematic wave
theory (Lighthill & Whitham, 1955). Additional
rules are added to the original framework to model
route choices between OD pairs and vehicle turning
and conflicting behaviors at intersections. When the
diversity of the route choices is not considered, the
presented model becomes the basic CTM. Additionally,

Figure 3. Merging and diverging scheme at intersection.

Figure 4. Protective and permissive left-turn signal patterns
at intersection.
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it is assumed in this paper that vehicles would follow
the through, left-turn and right-turn lanes immediately
when they enter the intersection. However in reality,
exclusive turn lanes are usually provided when
approaching the intersection and that can be further
incorporated to improve the traffic model.

3. Model predictive controllers

3.1. Control design

Let Nscale denote the number of intersections in a grid
network. The geometry configuration with Nscale¼9 is
presented in Figure 1. Two kinds of network models
with different complexities are considered in this
study, i.e., a simple and advanced network. In this
section, two corresponding controls are formulated.

3.1.1. Simple network
In the simple network, only straight-through vehicles
are considered. Vehicle turning and different route
choices are neglected. For instance, in Figure 2, the Li
and Ri cells in the intersection area (i ¼ 1; 2; 3; 4) and
the corresponding left-turn and right-turn link cells in
the CTM are ignored. This simplified model is able to
reflect the basic traffic characteristics and has been
widely used for network signal coordination investiga-
tions (Lertworawanich et al., 2011).

In most studies in the current literature, some key
parameters such as the signal cycle length are fixed in
the control design. More information can be included
in the proposed method.

In the simple network, two parameters need
to be optimized for each intersection. They are
the green time g1 for the vertical traffic in one
cycle and the corresponding cycle time tcycle. Hence,
tcycle�g1 represents the green time for the horizontal
traffic in the cycle. Therefore, the control sequence
kðtctrlÞ at a certain control step tctrl can be
formulated as,

k tctrlð Þ ¼ C1 tctrlð Þ;C2 tctrlð Þ; :::;Cp tctrlð Þ	 

; (3.1)

where

Ci tctrlð Þ ¼ S1 cijtctrlð Þ; S2 cijtctrlð Þ; :::; SNscale cijtctrlð Þ	 

;

Sj cijtctrlð Þ ¼ gj1 cijtctrlð Þ; tjcycle cijtctrlð Þ
h i

;

i ¼ 1; 2; :::; p; j ¼ 1; 2; :::;Nscale:

CiðtctrlÞ denotes the general network signal plan for
the ith cycle since control step tctrl and SjðcijtctrlÞ repre-
sent the signal plan of the jth intersection in the ith

cycle. gj1ðcijtctrlÞ and tjcycleðcijtctrlÞ denote the vertical
traffic green time and cycle length of intersection j in

the ith cycle, respectively. ci represents the ith cycle in
the signal plan. To decrease the online computational
complexity, p is introduced to represent the number
of planned cycles, such that

Ci tctrlð Þ ¼ Cp tctrlð Þ; i> p; (3.2)

that indicates the signal plan for the pth cycle will be
used repeatedly in the following cycles until the con-
trol changes.

Some constraints on the parameters apply,

2tpha;min � tcycle � tcyc;max;

tpha;min � g1 � tcycle�tpha;min;
(3.3)

where tpha;min is the minimum time of each phase and
tcyc;max denotes the maximum cycle time.

3.2. Advanced network

The advanced network model considers vehicle
turning and different route choices between origins
and destinations, which makes it more complicated
and realistic than the simple network. The advanced
model is studied to show the extensibility of the
proposed optimization framework.

Since vehicle turning is involved, two left-turn
signal types are included in the control design, i.e.,
protective and permissive one. As Figure 4 shows,
when protective left-turn signal is used, left-turning
traffic is protected by stopping the opposing through
traffic. When permissive left-turn signal is used,
left-turning traffic is permitted to cross through the
opposing flow. Detailed information about the effect
of left-turn signal type on intersection performance
can be found in Li and Sun (2016a).

Let Sper denote whether permissive left-turn signal
is used (Sper¼1) or protective left-turn signal is used
(Sper¼0). g1, g2, g3, and g4 are the corresponding green
time in each phase as presented in Figure 4. The
control sequence can be formulated as,

k tctrlð Þ ¼ C1 tctrlð Þ;C2 tctrlð Þ; :::;Cp tctrlð Þ	 

; (3.4)

where

Ci tctrlð Þ ¼ S1 cijtctrlð Þ; S2 cijtctrlð Þ; :::; SNscale cijtctrlð Þ	 

;

Sj cijtctrlð Þ ¼ Sjper cijtctrlð Þ; gj1 cijtctrlð Þ; gj2 cijtctrlð Þ; gj3 cijtctrlð Þ; tjcycle cijtctrlð Þ
h i

;

i ¼ 1; 2; :::; p; j ¼ 1; 2; :::;Nscale:

SjperðcijtctrlÞ denotes the left-turn signal type of
intersection j in the ith cycle since control step tctrl.
gj2ðcijtctrlÞ and gj3ðcijtctrlÞ represent the corresponding
green time in the two phases as Figure 4 shows.

Some parameter constraints are imposed. When
SjperðcijtctrlÞ ¼ 1,
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gj2 cijtctrlð Þ ¼ 0; gj4 cijtctrlð Þ ¼ 0;
gj3 cijtctrlð Þ ¼ tjcycle cijtctrlð Þ�gj1 cijtctrlð Þ; (3.5)

and when SjperðcijtctrlÞ ¼ 0,

gj4 cijtctrlð Þ ¼ tjcycle cijtctrlð Þ�gj1 cijtctrlð Þ�gj2 cijtctrlð Þ�gj3 cijtctrlð Þ:
(3.6)

In addition,

tpha;min � tjcycle cijtctrlð Þ � tcyc;max;

tpha;min � gjk cijtctrlð Þ � tcycle�tpha;min;
k ¼ 1; 2; 3; 4:

(3.7)

3.2. Control implementation

The proposed algorithm repeatedly solves the opti-
mization problem online in a rolling horizon to derive
the control for the next control horizon. The time
domain updating scheme of the control is presented
in Figure 5. The prediction horizon Np and control
horizon Nc are assumed to be constant. The model
described in Section 2 is used for traffic prediction of
the simple and advanced networks.

Since the feasibility of the dynamic control is very
important, the online computing time for the control
design is investigated. In the time step tctrl;p ¼
tctrl�tdelay where tdelay is the delayed time step, the
information of the current network is assumed to be
collected by the control and used for prediction,
which includes the number of vehicles in each cell,
traffic demands, etc. The online control design is
assumed to be completed in tdelay. The prediction
horizon is the following Np steps from tctrl;p.

The optimized control kðtctrlÞ can be derived by
control step tctrl where tctrl ¼ nint � Nc and nint is an
integer. The multi-objective optimization formulation
described in Section 4 is used in the control design,
and the GA is employed to find the Pareto optimal sol-
utions through simulations over the prediction horizon.

At the next control step, the prediction horizon is
shifted one step forward, and the optimization is car-
ried out again with the updated network information.
The control system benefits from the rolling horizon
framework with feedbacks from the real traffic period-
ically, which makes the proposed control robust to
uncertainties and disturbances.

In the implementation of the proposed control
method, the system needs to be stable in the transi-
tion process between two controls. When the next
control horizon starts, the new signal cycle should not
be implemented until the current cycle expires.

All online optimization algorithms rely on efficient
computational tools to be successful. In this study,
the CPU parallel computing is employed to accelerate
the control design in real time. With the help of
CTM, GA, and parallel computing, the optimal
controls can be obtained efficiently online. This study
will be reported in Section 5.

4. Network multi-objective optimization

In most of the existing signal multi-objective opti-
mization methods, multiple objectives are combined
into a single one using weights. In this way, the MOP
becomes single objective optimization (SOP) problem.
In this section, a traffic network MOP is formulated.
A novel multi-objective optimization algorithm on
dynamic signal control is proposed where multiple
objectives are optimized simultaneously.

4.1. Multi-Objective optimization problem

A MOP can be stated as (Li & Sun, 2018b),

min
k2Q

F kð Þ� �
¼ min

k2Q
o1 kð Þ; o2 kð Þ; :::; onobj kð Þ
h i

; (4.1)

where F : U ! Rnobj is the map that consists of the
objective functions oi : U ! R1. nobj is the number of
objective functions. k 2 U is a c-dimensional vector of
design parameters. U � Rc is a bounded domain and
can be generally expressed by inequality and equality
constraints,

U ¼ k 2 Rcjsubject to constraints on k
� �

: (4.2)

The concept of dominancy (Pareto, 1971) defined
below plays an important role in defining the optimal
solution of the MOP.

Definition 1
1. Let u; z 2 Rn. The vector u is said to be less than

z(u<pz) if ui<zi for all 1 � i � n. The relation
�p is defined analogously.Figure 5. Timing of dynamic signal predictive control scheme.
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2. A design vector u 2 U is called dominated by
another vector z 2 U (z � u) with respect to
MOP (4.1) if FðzÞ�pFðuÞ and FðuÞ 6¼ FðzÞ.
Otherwise, u is called non-dominated by z.

Therefore, a design parameter vector u can be consid-
ered better than z with respect to MOP (4.1) if u
dominates z. The definition of optimality or the best
solution of the MOP is now straightforward.

Definition 2
1. A point u 2 U is called Pareto optimal or a

Pareto point of MOP (4.1) if there is no z 2 U
that dominates it.

2. The set of all Pareto optimal solutions is called
the Pareto set, denoted as Pset.

Pset :¼ u 2 U : u is a Pareto point of MOP 4:1ð Þ� �
:

(4.3)

3. The image FðPsetÞ of Pset is called the Pareto front.
The Pareto set and Pareto front typically form
an ðnobj�1Þ-dimensional manifold under certain mild
assumptions on the MOP (Hillermeier, 2001; Li &
Sun, 2018a). Recent studies seem to suggest that the
Pareto front may have fine structures for MOPs of
complex dynamical systems (Hern�andez et al., 2013).
A survey of the methods for the solution of MOPs
can be found in Jones, Mirrazavi, and Tamiz (2002)
and Marler and Arora (2004).

In general, five measures of network performance
can be used as control objectives (Li & Sun, 2014),

1. maximizing system throughputs.
2. minimizing traveling delays.
3. maximizing intersection crossing volume.
4. avoiding spillbacks.
5. enhancing traffic safety.

Considering the terminal cells in the network
as the boundary, system cumulative outflow can be
obtained by adding all the outflows of the terminal
cells at each step.

fout;m ¼
X

i2Tout;cell

X
t

qi tð Þ; (4.4)

where Tout;cell denotes the terminal outflow cell set in
the network and fout;m is the system cumulative outflow.

To fully take advantage of the network capacity,
maximizing network inflow can be a control objective,
which is obtained as,

fin;m ¼
X

i2Tin;cell

X
t

qi tð Þ; (4.5)

where Tin;cell denotes the terminal inflow cell set and
fin;m is the cumulative system inflow.

Vehicle traveling delay in each cell at time t can be
estimated by subtracting the outflow of the cell from
its occupancy (Lo, 2001). Once the delay has been
determined at the cell level, it can be easily calculated
at the system level by adding the delays of the
involved cells.

dall ¼
X
i

X
t

ni tð Þ�qi tð ÞDt
� �

; (4.6)

where dall denotes the cumulative vehicle delay in the
whole network.

Vehicle crossing volume at intersections can be
calculated by summing up the outflow of the inter-
section cells from different approaches.

cj;m ¼
X
i2Ij;cell

X
t

qi tð Þ; (4.7)

ctotal;m ¼
XNscale

j¼1

cj;m; (4.8)

where cj;m denotes the cumulative crossing volume at
intersection j, Ij;cell is the cell set of the intersection,
and ctotal;m represents the cumulative crossing volume
of all the intersections.

Spillback is a situation when the vehicles on the
approach of the downstream intersection overflow
backward to the subject intersection. That leads to an
intersection blockage, occasionally followed by a grid-
lock. Take approaches 1 and 2 for instance (Figure 2),
a spillback is defined as (Lertworawanich et al., 2011),

nT3 tð Þ> 0 or nT4 tð Þ> 0 or
nL3 tð Þ> 0 or nL4 tð Þ> 0;

(4.9)

when the green phase (left-turn or through) in
approaches 1 and 2 is active.

In the advanced network model, when the permis-
sive left-turn signal is used, the left-turn and through
flows share the same green phase that may lead to
conflicts (Li & Sun, 2016a). In this study, traffic safety
is measured by the potential conflicts between the two
traffic flows. With respect to approaches 1 and 2 (see
Figure 2), an emergency situation for traffic safety is
defined as,

nL1 tð Þ þ nT2 tð Þ> nemerg;cri or
nL2 tð Þ þ nT1 tð Þ> nemerg;cri;

(4.10)

where nemerg;cri is a predetermined coefficient. At each
time step in the simulation, if the above equation
is satisfied, the situation will be considered not safe.

Therefore, the network MOP can be formulated as,

max
k2Q

fout;m; fin;m; cj;m; ctotal;m
	 


;

min
k2Q

dall; nemerg ; nspill
	 


:
(4.11)
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nemerg and nspill denote the cumulative number of
left-turn emergencies (Equation (4.10)) and spillbacks
(Equation (4.9)), respectively. That indicates nemerg

will increase by 1 at each simulated time step if
Equation (4.10) is satisfied, and similarly, nspill will
also increase by 1 at each time step if Equation (4.9)
is satisfied. To simplify the MOP statement, we
assume all the objectives are to be minimized. The
network MOP becomes,

min
k2Q

F kð Þ� �
; (4.12)

where

F kð Þ ¼ fout; fin; dall; cj; ctotal; nemerg ; nspill
	 


; (4.13)

for advanced network optimization,

F kð Þ ¼ fout; fin; dall; cj; ctotal; nspill
	 


; (4.14)

for simple network optimization, and

fout ¼ fout;max�fout;m;
fin ¼ fin;max�fin;m;
cj ¼ cmax�cj;m;

ctotal ¼ Nscale � cmax�ctotal;m;
j ¼ 1; 2; :::;Nscale:

(4.15)

fout;max > 0; fin;max > 0; cmax > 0, and ctotal;max > 0 are
large coefficients to make the corresponding fout, fin,
cj, and ctotal positive for better presentation of the
optimization results. In addition, proper constraints of
the objective evaluations are needed to keep the traffic
performance within an acceptable range.

maxfout � fout;lim;
maxfin � fin;lim;
maxcj � clim;

maxctotal � ctotal;lim;
maxdall � dall;lim;

maxnemerg � nemerg;lim;
maxnspill � nspill;lim;

(4.16)

where fout;lim; fin;lim; clim; ctotal;lim; dall;lim; nemerg;lim; and
nspill;lim are the corresponding limits. The parameter
bounds are set in order to help the convergence of the
optimization, since the traffic control performance in
applications must be in a reasonable range. Moreover,
the bounds also restrict the design space that can
accelerate the optimization computing in real time.

4.2. Genetic algorithm

The GA is a heuristic search method belonging to the
family of evolutionary algorithms (Greenhalgh &
Marshall, 2000; Deb, Pratap, Agarwal, & Meyarivan
2002), and the nondominated sorting genetic algo-
rithm (NSGA) is adopted in this study. Crossover and

mutation are the two main genetic operators for
searching new solutions starting from the current
population. A single-point crossover technique is
adopted in this study to generate new and improved
solutions. A unique mutation method is used, i.e., the
value presented in the particular cell is replaced by
another randomly generated number. This improves
the search space explored by the algorithm. The cross-
over and the mutation operator are performed with a
given crossover and mutation probability.

Before the crossover and mutation operations,
individuals are selected from the current generation to
be parents. The individuals are selected based on
the fitness, a value that reflects the quality of an indi-
vidual. The larger the fitness value of an individual,
the higher its chance of survival and reproduction.
The superior ones are selected to be stochastically
modified to create a new population for the next
generation. For a MOP, a ranking operation is
implemented to determine the fitness. The rank of
an individual is generally determined by its Pareto
dominance in the present population.

A Pareto-set filtering procedure is introduced to
record the so-called Pareto-front solutions that are
Pareto optimal among all solutions ever encountered
by the algorithm. At each generation, after the
ranking of the current generation, all nondominated
individuals in the current generation are copied and
put into an independent Pareto set. When new
solutions are added into the set, a new round of
dominance check is performed. Therefore, dominated
ones are discarded and real nondominated points are
reserved. With this repetitive procedure, the popula-
tion eventually converges to the optimal solution.

The flow chart of the multi-objective optimization
GA is presented in Figure 6. For the detailed informa-
tion of the algorithm, the readers are referred to Deb
et al. (2002).

4.3. Control selection

After the MOP is solved with GA, multiple layers of
Pareto fronts can be obtained in the final generation
(Deb et al., 2002). The Pareto set corresponding to
the best Pareto front is used as the solution set in this
study. To facilitate the user to pick up a control from
the set to implement, we propose an algorithm that
operates on the Pareto front.

Let fi;min denote the minimum of the ith objective
in the Pareto front and fi;max be the corresponding
maximum. Define a vector,

Fideal ¼ f1;min; f2;min; :::; fnobj;min
	 


: (4.17)
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where Fideal is considered to be an ideal point in the
objective space. Let ns denote the number of Pareto
solutions. To eliminate the effect of different scale of
the objectives, the Pareto front is normalized as,

�f i;j ¼
fi;j�fi;min

fi;max � fi;min
;

i ¼ 1; 2; :::; nobj;
j ¼ 1; 2; :::; ns;

(4.18)

where fi;j is the ith objective of the jth optimal solution,
and �f i;j represents the normalized value of fi;j. The
normalized objective vector �Fi reads,

�Fi ¼ �f 1;i;
�f 2;i; :::;

�f nobj;i
h i

; (4.19)

and its norm is denoted as ri ¼ jj�Fijj. Let rmax and
rmin denote the maximum and minimum of the norm.

Let nper denote the percentage of control designs in
the Pareto set such that their corresponding radii in
the Pareto front are among the nper percent smallest
ones. We refer these controls as the top nper percent. A
special set of top controls consists of the so-called knee
points (Hern�andez et al., 2013). They are defined as,

kknee ¼ kiji ¼ min
1�i�ns

ri
n o

: (4.20)

Figure 7 illustrates the concept of control selection
with two objectives. It should be noted that there are

different ways to normalize the Pareto front.
Furthermore, the normalization affects the classifica-
tion of the controls. The normalization used in this
paper is intuitive and simple to implement.

5. Optimization results

We present a case study with Nscale¼ 9 intersections
in a grid network with simple model as shown in
Figure 1. Simulation time step Dt is 5 seconds and the
whole optimization duration was 1000Dt. The popular
CTM coefficients in Lo (2001) are used in this study.
The initial network is assumed to be empty. The
default values of the key parameters in the proposed
method are p¼ 2, Nc¼ 20, and Np¼ 30. In the GA,
the default population size is 1,000 and the number
of generations is 30. The influence of Np and Nc

on the optimization results and the selections of
the coefficients in GA are discussed in Section 5.1.
The other parameters are presented in Table 1.

The evaluations of objective functions in GA are
independent from each other. Hence, the CPU parallel
computing can be used to accelerate the control
design process. The computations of all examples
reported in this paper are conducted on a PC with
2.50GHz CPU and 12 cores. The programing is in
Cþþ. Each scenario of the online optimizations is
simulated for 20 times. The mean values of the

Figure 7. Illustration of the control selection from a 2-dimen-
sional Pareto front.

Table 1. The parameters used in this study.
Parameter Value Parameter Value Parameter Value

x 13:9m=s vfree 13:9m=s ctotal;max 90,000veh
cleft .7 Qmax 2:5veh=Dt ctotal;lim 45,000veh
l 75m tpha;min 2Dt cmax 10,000veh
kjam 0:12veh=m fmax 10,000veh clim 5,000veh
nemerg;cri 4 ftraffic;lim 9,000veh fout;max 50,000veh
lmax 2 nemerg;lim 2,000 fout;lim 30,000veh
tdelay Dt dall;lim 30; 000vehDt fin;max 50,000veh
tcyc;max 20Dt nspill;lim 200 fin;lim 30,000veh

Figure 6. Flowchart of the multi-objective optimization genetic
algorithm. NGA denotes the size of the corresponding population.
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statistics are taken as the result of optimization. The
corresponding standard deviations are provided.

It is often to consider the predetermined traffic
demands in the control design (Lo, 2001; Lertworawanich
et al., 2011). The varying traffic demands considered in
this case are shown in Table 2. The MOP formulation is,

min
k2U

dall; c1; c8; ctotal½ �; (5.1)

where ½dall; c1; c8; ctotal� is a subset of the MOP formu-
lation in Equation (4.14), and the rest of the objectives
will be analyzed in Section 5.3.

The post-processing algorithm proposed in Section
4.3 is applied to the Pareto fronts obtained in each
control step. The user can pick a control from the top
nper subset of the Pareto optimal designs according to
the performance balance over different objectives. The
performances of the knee point kknee and two other
controls k20 and k50 are shown in Table 3. k20 is a
control randomly picked from the top nper ¼ 20%
subset of the Pareto set, and k50 is randomly picked
from the top nper ¼ 50%.

As we have seen in Hern�andez et al. (2013), the
performances of all the Pareto optimal controls are
usually bounded by those of the extreme designs with
one of the objectives being the global minimum. In
fact, the extreme designs are the results of single
objective optimization problems. All other Pareto

optimal controls represent various compromises of
these extreme designs. Let k1; k2; k3, and k4 denote
the extreme designs with the best performance of dall,
c1, c8, and ctotal, respectively. Their performances are
shown in Table 3. Two controls, kf 1 and kf 2, that are
time-invariant and therefore nonoptimal, are listed in
the table for comparison. For i ¼ 1; 2; :::;Nscale; kf 1
represents the control with gi1 ¼ 6 and ticycle ¼ 12, and
kf 2 represents that with gi1 ¼ 10 and ticycle ¼ 20.

Furthermore, in order to evaluate the effectiveness
of the dynamic control, the static optimization is car-
ried out with the varying traffic demand. Assume that
the traffic flow fluctuations in the whole simulation
period are available in advance. The Pareto set over
the entire simulation period can be obtained with the
proposed method, and the static optimization can be
thus considered as an offline approach. The numbers
in the brackets in Table 3 represent the improvement
(negative value) and deterioration (positive value) in
the performance by the dynamic control compared
with that by the static optimization responding to the
same traffic demand.

It can be observed that the proposed controls can
achieve the optimal and balanced traffic performance
with respect to the objectives. While kknee; k20, and k50
share similar balanced mean values of the perform-
ance objectives, their standard deviations increase

Table 2. Varying traffic demands in simple network optimization with nine intersections. The duration of each time period is
500s. Unit: veh/h.

Time period

Demand from origin 1 2 3 4 5 6 7 8 9 10

1 1,600 1,550 1,300 1,650 1,600 1,800 2,000 1,600 1,650 1,450
2 1,400 1,200 1,500 1,800 2,000 1,850 1,750 1,400 1,400 1,400
3 1,700 1,500 1,800 2,200 2,200 2,100 2,000 1,900 1,800 1,700
4 1,600 1,800 1,400 1,400 1,400 1,200 1,000 800 800 1,000
5 1,500 1,400 1,300 1,600 1,800 1,800 1,900 2,000 1,500 1,500
6 1,500 1,600 1,400 1,400 1,400 1,500 1,700 1,800 1,900 1,600
7 1,700 1,600 1,600 1,500 1,700 1,800 1,700 1,600 1,400 1,600
8 1,400 1,200 1,200 1,300 1,600 1,600 1,800 1,800 2,000 1,800
9 1,600 1,600 1,700 1,800 1,500 1,500 1,500 1,300 1,200 1,200
10 1,600 1,800 2,000 2,200 2,200 2,100 2,000 1,600 1,600 1,600
11 1,700 1,500 1,400 1,300 1,500 1,600 1,800 1,400 1,300 1,500
12 1,800 1,800 1,800 1,700 1,600 1,500 1,400 1,800 1,800 1,600

Table 3. The dynamic optimization results with different control demands in simple network with nine intersections. The stand-
ard deviations share the same scales with the corresponding mean values.

optimization results

control �dall=1000ðvehDtÞ rdall �c1=100ðvehÞ rc1 �c8=100ðvehÞ rc8 �ctotal=100ðvehÞ rctotal
Knee Point kknee 455:1ð�3:5%Þ 5.92 38:0ðþ1:2%Þ .40 38:2ð�8:8%Þ .23 353:1ð�5:5%Þ 1.31
Top 20% k20 461.6 11.4 38.8 .42 38.6 .25 353.5 2.55
Top 50% k50 452.2 16.3 38.5 .70 38.5 .39 357.4 4.62

k1 430:1ð�9:0%Þ 7.04 39:7ð�13:0%Þ .61 40:0ðþ2:7%Þ .35 353:0ð�9:7%Þ 1.35
Extreme k2 489:2ð�21:7%Þ 6.21 36:9ð�6:2%Þ .22 39:5ð�6:1%Þ .28 358:1ð�5:9%Þ 1.51
Designs k3 479:2ð�25:3%Þ 5.57 38:9ð�7:2%Þ .41 37:8ð�5:0%Þ .26 352:3ð�9:6%Þ 1.42

k4 472:0ð�19:6%Þ 9.42 38:4ð�4:7%Þ .27 38:2ð�11:8%Þ .16 349:1ð�3:9%Þ 2.36
Time-invariant kf1 614.2 8.32 49.1 .31 46.5 .24 478.6 2.07
Controls kf2 578.1 9.18 48.2 .26 45.6 .28 457.5 1.68
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individually, representing different compromises. For
example, when minimizing the vehicle overall delay
has the highest priority, the extreme control k1 deliv-
ers the performance objective dall¼437.4, smaller than
that with other controls. Similar characteristics can
be observed with respect to k2; k3, and k4. Significant
improvements in the network performance are
obtained with the predictive control compared with
the two time-invariant controls. The proposed online
optimization algorithm is able to achieve the optimal
traffic performance in different situations.

In addition, the proposed dynamic optimization
method outperforms the static optimization in most
cases. Better performance can be achieved by the online
predictive control with the varying traffic demand.
The average CPU computing time for the control
design in this scenario is 1:69s and the standard
deviation is 0:11s. That is an acceptable delay since
tdelay ¼ 1Dt (5s) is reserved for online computation.

5.1. Notes on the algorithm

In this section, the influence of the prediction and
control horizon on the optimization performance is
investigated first. Figure 8 shows the optimization
results of dall, c1, c8, and ctotal with different combina-
tions of Np and Nc. The population size is 1000, and
the number of generations is 30 in GA. Specialized
control demand is used to optimize each objective.
For instance, k1 is used in sub-figure (a) for a better
view of the performance of dall. Correspondingly,

k2; k3, and k4 are used in sub-figures (b), (c), and (d),
respectively.

In general, larger Np leads to better optimization
results with identical Nc. However, two display
patterns of the influence of Nc are observed with the
four sub-figures. For network delay dall in sub-figure
(a), shorter control horizon provides better optimiza-
tion. For c1, c8, and ctotal in the other sub-figures
which fall in the performance category of intersection
crossing volume, the optimal results can be obtained
with the medium Nc. Similarly, the optimization
results with the knee point kknee are presented in
Figure 9. While the influence of Nc on dall resembles
that in Figure 8, larger Nc yields better optimization
performance of intersection crossing volume in the
range of interest.

Therefore, while longer prediction horizon is
more beneficial for the system generally, the effect of
control horizon on optimization has underlying
relationships with objective selection and control
demand. On one hand, shorter control horizon leads
to better optimization results of reducing vehicle
traveling time in network. On the other hand, the
intersection crossing volume usually increases with
relatively longer Nc. No general influence of control
horizon is observed with respect to different perform-
ance objectives.

The corresponding average CPU computing time
in the controller design process with different Nc and
Np is presented in Figure 10. In general, longer pre-
diction horizon results in larger online computational
burden. Considering the trade-off between optimiza-
tion performance and online computing time, Nc¼ 20
and Np¼ 30 are used in this paper.

Figure 8. The optimization performance dall (vehDt=1000),
c1 (veh=100), c8 (veh=100), and ctotal (veh=100) with different
combinations of Nc ðDtÞ and Np ðDtÞ. The population size
is 500, and the number of generations is 30 in GA. The
brighter color indicates the higher level, while the darker color
means the lower level. Subfigures (a), (b), (c), and (d) show
the optimization performance of dall, c1, c8, and ctotal with
control demand U1;U2;U3, and U4, respectively.

Figure 9. The optimization performance dall (vehDt=1000),
c1 (veh=100), c8 (veh=100), and ctotal (veh=100) with different
combinations of Nc ðDtÞ and Np ðDtÞ. The most balanced
controller over different objectives Ur is used. The population
size is 500, and the number of generations is 30 in GA. The
brighter color indicates the higher level while the darker color
means the lower level.
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Furthermore, guidelines are presented on the
selection of the coefficients in GA in the proposed
control framework.

Figure 11 shows the optimization performance of
the four objectives with different combinations of
population size and generations in GA. It can be
observed that in general, more generations lead to
better optimization performance significantly with
identical population. However, the improvements
of larger population size on the optimization results
are limited. The corresponding average CPU comput-
ing time in the controller design process with different
population size and generations is presented in
Figure 12. It is clear that larger population size and
more generations result in larger online computational
burden.

Based on the performance characteristics of the
parameters in GA, small population size (1,000) and
many generations (30) are preferred in this study to
achieve good optimization results without much
online computing time.

It should be pointed out that while the controller
formulation can be high dimensional (see Equations
(3.1) and (3.4)), many constraints hold (see Equations
(3.3), (3.5), (3.6), and (3.7)), and some parameters
(Sper) are not continuous in the design space.
Therefore, the feasible design space is limited, and the
population size of 1000 in GA is able to cover the
space and achieve the optimal results.

In addition, when the network scale becomes
larger (Nscale), more design parameters are introduced
(see Equations (3.1) and (3.4)). However, due to the
parameter constraints in the GA (see Equations (3.3),
(3.5), (3.6), and (3.7)), the number of actual function
evaluations in the controller design process with
identical GA coefficients tends to decrease with larger
network scale. The optimization performance is not at
the same level (deteriorates in most cases) when Nscale

increases with fixed population size and the number
of generations. Therefore, the influence of the network
scale on the computational burden can be hardly
investigated with identical optimum.

In summary, the trade-off between online comput-
ing time and optimization performance has to be made
when the proposed method is used in practice.

5.2. Network disturbance

In this section, as Figure 1 shows, a road bottleneck is
created at time step 500Dt to investigate the network
performance against disturbance with the proposed
dynamic optimization method. The outflow capacity
Q of one cell in the bottleneck link becomes .5 since
500Dt due to traffic accident.

In order to capture the network congestion in real
time, screenshots at time steps 550Dt and 1000Dt in
the simulation animations are presented in Figure 13.
The upper panel shows the network situations with
the proposed online predictive control. The control
kknee is used. The lower panel shows the congested

Figure 11. The optimization performance dall (vehDt=1000),
c1 (veh=100), c8 (veh=100), and ctotal (veh=100) with different
combinations of population size and generations in GA. The
brighter color indicates the higher level, while the darker color
means the lower level.

Figure 12. The average CPU computing time in the control
design process with different combinations of population size
and generations in GA. The brighter color indicates the higher
level, while the darker color means the lower level.

Figure 10. The average CPU computing time in the control
design process with different combinations of control and
prediction horizons. The brighter color indicates the higher
level while the darker color means the lower level.
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network circumstance with the time-invariant control
kf 1. The darker color in the links indicates more
vehicles are in the cell. It can be observed that the
traffic keeps flowing and no significant congestion
occurs under the dynamic control, while the network
jam can hardly dissipate and gridlock forms under the
time-invariant control. The proposed dynamic control
reacts fast to the network capacity changes with
disturbance and achieves optimal performance.

5.3. Objective selection

Different from the long-term network optimization,
short-term predictive control is more focused on
instant benefits in the prediction horizon even though
cumulative performance is considered in the optimiza-
tion. The advantages lie in that the control is able to
switch online according to the traffic demand. For
instance, the control can be promptly tuned if the
traffic engineer in charge of the network operation
prefers to relieve more congestion at an intersection
at some time rather than focusing on reducing overall
vehicle delay. However, the drawback is that the com-
bination of local optimum in each control step does
not lead to global optimum for some performance
indices. In this section, the influence of different
objective selections on network optimization perform-
ance is studied considering more objectives as,

min
k2U

fout; fin; nspill; dall; ctotal
	 


: (5.2)

Let us define five new extreme controls
k1;new; k2;new; k3;new; k4;new, and k5;new that correspond
to the best performance of fout, fin, nspill, dall, and ctotal,
respectively. In the following, two levels of traffic
demands are applied to the network. Figure 14 shows

the influence of different control demands on the
network cumulative performance fout, fin, nspill, and dall
with high traffic volume as listed in Table 2. Define
a variable,

fout;dif tð Þ ¼ f 1out tð Þ�f 5out tð Þ; (5.3)

where f 1outðtÞ denotes the cumulative system output
fout at time step t with control k1;new and f 5outðtÞ is that
with control k5;new. fout;dif ðtÞ reflects the cumulative
improvements (negative) or deterioration (positive) in
fout by the dynamic control which uniquely focuses on
improving fout in each control horizon, compared
with that by a “typical” control. Without loss of
generality, k5;new is taken as the typical control for
comparison. Similarly,

fin;dif tð Þ ¼ f 2in tð Þ�f 5in tð Þ;
nspill;dif tð Þ ¼ n3spill tð Þ�n5spill tð Þ;
dall;dif tð Þ ¼ d4all tð Þ�d5all tð Þ:

(5.4)

It can be observed in the traffic congestions that
the indices fout;dif , fin;dif , and nspill;dif remain positive in

Figure 13. Network screenshots in disturbance with controls kknee and kf1 at time steps 550 and 1000Dt.

Figure 14. The influence of objective selection on network
cumulative performance with high-traffic demands.
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the steady state. This indicates pursuing local
optimum of some performance such as system output
fout , inflow fin, and spillbacks nspill in each control
period does not lead to global optimum in the long
term with high traffic demands. As a comparison, the
difference in the cumulative vehicle delay of control
k4;new and k5;new is presented in the lower-right sub-
figure. dall;dif is negative in the steady state, suggesting
a reduction of overall delays at both local and
global optimum.

Figure 15 shows the influence of different controls
with low traffic volume. The traffic demands are 30
percent of those in Table 2. It can be observed that
fin;dif and nspill;dif almost remain zero, which indicates
no significant difference in the network inflow with
different controls. The spillback hardly occurs with

low traffic volume. Small fluctuations around zero are
observed in fout;dif and dall;dif . Different from con-
gested situations, optimization results are less affected
by the selection of objectives with low traffic volume.

In summary, the objectives for optimization in
the predictive control framework should have both
short-term and long-term benefits. With high-traffic
demands, some indices such as fout, fin, and nspill are
not suitable to be objectives, while the influence of
objective selections on the results of optimization is
weak with low-traffic volume.

5.4. Extensibility to larger scale

The proposed dynamic multi-objective optimization
method can handle large-scale network with accept-
able computing time. In this section, the traffic
network shown in Figure 16 with Nscale¼ 25 is investi-
gated to show the extensibility. The constant traffic
demands are considered for this example and are
shown in Table 4. The dynamic control scheme and
parameters are similar with those in Section 5. The
MOP for this example is formulated as,

min
k2U

dall; c1; c23; ctotal½ �: (5.5)

Table 5 gives the optimization results. The controls
are similar to those in Table 3. It can be observed that
the proposed control is able to effectively optimize the
large-scale network. The average computing time of

Figure 16. The traffic network configuration with 25 intersections.

Figure 15. The influence of objective selection on network
cumulative performance with low-traffic demands.
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the control selection in this example is 1:53s, and the
standard deviation is :09s. As discussed in Section
5.1, the online computing time decreases as the
network scale becomes larger with the same para-
meters in GA since more constraints are imposed
(see Equations (3.3), (3.5), (3.6), and (3.7)). The
population size and number of generations are
supposed to increase with larger network if the same
quality of the optimization results as that for a differ-
ent network scale is demanded.

5.5. Extensibility to advanced model

The advanced network model is used to model com-
plex traffic networks including vehicle turning and
route choices. In this section, the proposed algorithm

is applied to an advanced network with Nscale¼4
as shown in Figure 17. Vehicle turning and different
route choices between origins and destinations
are considered. The origin–destination (OD) traffic
demands are shown in Table 6. In each OD pair, the
probabilities of different traveling routes are deter-
mined by the path-size logit model 2.2. tcyc;max is 40Dt
in this case. The optimization scheme and parameters
are similar with those in Section 5. The MOP for this
network is formulated as,

min
k2U

dall; c1; ctotal; nemerg
	 


: (5.6)

The optimization results are listed in Table 7. The
controls are similar to those in Table 3. For i ¼ 1; 2;
:::;Nscale, the control kf 1 with gi1 ¼ 6; gi2 ¼ 6; gi3 ¼ 6;
ticycle ¼ 24 and Siper ¼ 0 focuses on the safety, and kf 2
with gi1 ¼ 10; gi2 ¼ 0; gi3 ¼ 10; ticycle ¼ 20 and Siper ¼ 1
aims at high traffic efficiency. It is observed that the
proposed method is able to effectively handle online
optimization with increased model complexity. The
average computing time for the control design is 3:91s
and the standard deviation is :40s. While more

Table 4. Time-invariant traffic demands in simple network optimization with twenty-five intersections. Unit: veh/h.
Traffic demands

Origin 1 2 3 4 5 6 7 8 9 10 11 12 13

Demand 1,600 1,800 1,500 1,800 2,000 2,000 1,400 1,500 1,800 1,800 1,600 1,500 1,600
Origin 14 15 16 17 18 19 20 21 22 23 24 25
Demand 1,800 1,600 1,600 2,000 2,200 1,600 1,600 1,700 1,800 1,800 1,400 1,800

Table 5. The dynamic optimization results with different control demands in simple network with twenty-five intersections. The
standard deviations share the same scales with the corresponding mean values.

Optimization results

Control �dall=1000 ðvehDtÞ rdall �c1=100 ðvehÞ rc1 �c23=100 ðvehÞ rc23 �ctotal=100 ðvehÞ rctotal
Knee Point kknee 1571 ð�8:5%Þ 18.86 39:8 ðþ3:7%Þ .21 39:1 ðþ2:7%Þ .12 902:1 ð�6:9%Þ 3.55
Top 20% k20 1595 29.53 39.4 .31 38.8 .42 898.4 9.55
Top 50% k50 1562 45.11 41.2 .86 38.1 .56 906.3 10.14

k1 1505 ð�4:9%Þ 24.51 39:5 ð�1:5%Þ .17 40:2 ð�0:4%Þ .12 938:4 ðþ2:8%Þ 3.10
Extreme k2 1640 ð�21:8%Þ 20.87 38:4 ð�4:6%Þ .11 38:9 ð�4:4%Þ .26 892:3 ð�8:2%Þ 2.11
Designs k3 1598 ð�12:5%Þ 22.03 38:9 ð�4:0%Þ .21 37:3 ð�6:8%Þ .12 900:1 ð�4:3%Þ 2.41

k4 1591 ð�5:5%Þ 18.44 38:8 ð�6:0%Þ .13 37:9 ð�4:7%Þ .26 881:2 ð�4:8%Þ 4.43
Time-invariant kf1 1769 24.41 42.6 .24 42.1 .18 956.5 4.02
Controls kf2 1786 21.34 44.1 .36 39.6 .16 970.1 3.86

Figure 17. The traffic network configuration with four
intersections.

Table 6. Time-invariant traffic demands between different ori-
gins and destinations in advanced network optimization with
four intersections. Unit: veh/h.

Destination

Origin 1 2 3 4 5 6 7 8

1 N/A 100 200 50 100 400 200 100
2 100 N/A 200 30 450 100 50 80
3 70 100 N/A 144 150 100 150 380
4 50 100 120 N/A 80 80 400 120
5 50 290 100 120 N/A 120 80 80
6 450 120 80 70 100 N/A 120 70
7 100 110 100 370 120 80 N/A 80
8 150 60 380 100 60 80 70 N/A
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realistic modeling issues and control choices can be
considered with the advanced network, the computa-
tional burden rises significantly compared with
the simple model. With the help of CTM, GA, and
parallel computing, the online computing time can
be acceptable without deterioration of the control
performance. In order to decrease the computing
time, the parameters such as population size, the
number of GA generations, control and prediction
horizons, and planned signal cycles can be tuned.
The trade-off between online computational load and
model accuracy has to be made when the proposed
method is used in practice.

6. Conclusions

In this paper, a novel dynamic multi-objective opti-
mization method on network signal predictive control
is proposed. The CTM is used for traffic prediction.
Two kinds of network models with different complex-
ities are studied by simulations. Multiple operational
objectives are optimized simultaneously with the
online predictive control algorithm. A wide variety of
objectives are considered such as maximizing system
throughput, minimizing vehicle delay, avoiding spill-
backs. The MOP is solved with the GA. An algorithm
is proposed to assist the user to select and implement
the Pareto optimal designs.

It is observed that the optimal traffic performance
can be achieved by the dynamic control in different
situations. The proposed control is able to optimize
networks with different model complexities and
scales. Network disturbance can be well handled. The
computational burden of the online dynamic control
is acceptable with the help of parallel computing.
The influence of the key parameters in the proposed
method on traffic behavior is investigated, and
the trade-off between optimization performance and
computational complexity is studied. The results of
this study suggest that the proposed dynamic multi-

objective optimization of the traffic network system
offers a new and promising approach.

It should be noted that in this study, the boundary
conditions of the traffic network are assumed to be
available. For instance, the network inflows can be
monitored by the system. The CTM is only used to gen-
erate the short-term state estimation in the traffic net-
work system given the boundary conditions. In further
research, external predictors such as time series model
and neural network are supposed to be adopted if the
predictions of the boundary conditions are considered.

In addition, it is demonstrated in the case studies in
the paper that the proposed method is able to handle
operation uncertainty in the network, such as network
disturbance and the variation of traffic demands. Since the
proposed algorithm is based on real-time MPC method, it
holds the potential to achieve strong robustness against
uncertainty, disturbance, and model mismatch, which can
be further developed in following researches.

This study has used the GA extensively, which is
a stochastic approach. Other deterministic methods
for solving the MOP such as the cell mapping method
can be applied. In addition, only the simulations are
used in this study. Real traffic data should be used to
obtain the network state when the proposed method
is applied to real traffic networks. Based on the pro-
posed optimization method, further researches such
as urban network evaluation and traffic navigation
can be carried out. Different optimization algorithms
such as cell mapping and partical swarm optimization
(PSO) are also encouraged to be tested in the frame-
work for comparisons.
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