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Abstract

Purpose – This research paper aims at proposing a framework based on semantic integration in Big Data for
saving energy in smart cities. The presented approach highlights the potential opportunities offered by Big
Data and ontologies to reduce energy consumption in smart cities.
Design/methodology/approach – This study provides an overview of semantics in Big Data and reviews
various works that investigate energy saving in smart homes and cities. To reach this end, we propose an
efficient architecture based on the cooperation between ontology, Big Data, and Multi-Agent Systems.
Furthermore, the proposed approach shows the strength of these technologies to reduce energy consumption in
smart cities.
Findings – Through this research, we seek to clarify and explain both the role of Multi-Agent System and
ontology paradigms to improve systems interoperability. Indeed, it is useful to develop the proposed
architecture based on Big Data. This study highlights the opportunities offered when they are combined
together to provide a reliable system for saving energy in smart cities.
Practical implications – The significant advancement of contemporary applications (smart cities, social
networks, health care, IoT, etc.) requires a vast emergence of Big Data and semantics technologies in these
fields. The obtained results provide an improved vision of energy-saving and environmental protection while
keeping the inhabitants’ comfort.
Originality/value – This work is an efficient contribution that provides more comprehensive solutions to
ontology integration in the Big Data environment. We have used all available data to reduce energy
consumption, promote the change of inhabitant’s behavior, offer the required comfort, and implement an
effective long-term energy policy in a smart and sustainable environment.

Keywords Big data, Energy saving, Multi-agent system, Ontology, Semantics integration, Smart cities

Paper type Research paper

Introduction
The term Big Data has appeared with the tremendous growth of online activities and
network technology over the past two decades. The constant growth of computational
power has produced an overwhelming flow of data. Usually, digital data is generated
continuously from millions of smart devices and applications, e.g. (social networks,
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Amazon, smart-phones, sensors, etc.). Gartner defines Big Data as a large information
resource, high-velocity, and/or high-quality that requires new forms of processing to improve
decision-making, discovery, and the optimization process (Eine et al., 2017). Big Data
importance is highly raised in many vital areas, such as smart cities, IoT, healthcare, air
traffic management, etc.

For fulfilling the inevitable need for Big Data applications especially data storage
processing, various technologies have been allowed to handle Big Data (such as Hadoop and
MapReduce), which offer more reliability, flexibility, scalability, and performance in a
reasonable time and cost. However, the lack of interoperability between heterogeneous
resources engenders an inherent issue, which makes data sharing and knowledge reuse a
difficult task in Big Data applications (Rani et al., 2017). To overcome this challenge, it
becomes imperative to endowBigDatawith semantics and allow a standard view to ensuring
efficient interoperability between applications (Chandrasekaran et al., 1999). Moreover, data
could be shared and exchanged between individuals, systems, and organizationswithout any
particular effort (Eine et al., 2017).

For validating the contribution, this study focuses on smart cities as a contemporary
example. We propose a variety of intelligent solutions to deal with urban challenges in
citizens’ real-life. Reducing energy consumption is one of the most relevant fields, which
cope with smart cities development and sustainability. It aims at allowing an efficient
strategy to save energy and reduce bills (Ejaz et al.,2017). In this context, we propose an
architecture of various technologies cooperating together to provide efficient energy
optimization. Not only for individual buildings, but also for the entire city as well. The
proposed architecture is based essentially on Smart Building Ontology (Onto-SB), which is
a powerful tool to represent the domain knowledge and provides a structural framework
for organizing smart building data (Degha et al., 2019). Onto-SB enables the reasoning by
formally representing domain knowledge. In addition, we use the Multi-Agent System
(MAS) to offer a reliable role, which provides efficient cooperation and autonomy needed
to manage the enormous data generated and exchanged between the different actors of the
system (Ma et al., 2019). The use of Big Data technologies offers a reliable mechanism for
data storage and processing. Therefore, the proposed system succeeds in reducing energy
consumption and ensuring inhabitants’ comfort in the context of smart environmental
sustainability.

The rest of the paper is organized as follows. Background of the study reviews a
background on Big Data, semantic integration, and smart cities. In Related work, some
relevant related works are presented. Proposed multi-layer architecture is devoted to the
presentation of the architecture. Implication presents system implementation of energy
consumption in smart cities. Experimental results, discuss the experimental results. Finally,
we conclude and mention some future works.

Background of the study
This section aims to present the main aspects involved in this work and helps the reader
to establish the study in the context of the research. In addition, it provides a brief
overview summarizing the main research topics used, such as Big Data, semantics,
and MAS.

Big Data and semantic integration
In literature, Big Data is defined as a massive volume of both structured and
unstructured data that is very difficult to store and process by using traditional database
and software techniques, and it is characterized by the 5Vs model (Manyika et al., 2011).
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Big Data has recognized three generations in their development, as mentioned in (Jeong
and Ghani, 2014), Big Data 1.0 (1994–2004), Big Data 2.0 (2005–2014), and Big Data 3.0
(2015-. . .). NoSQL databases and the Apache Hadoop are considered as the appropriate
tool for Big Data management, which ensures scalability and high availability (Mehta
and Buch, 2015). The new Big Data requirements in terms of data mining are
increasingly changed from traditional data warehousing and mining systems. The
heterogeneous and unstructured data involve novel technologies to ensure efficient data
processing and analysis. To allow hidden patterns and derive value, various methods are
used, such as decision trees, neural networks, and SVM. On the other hand, Big Data
associated with cloud computing offer promising opportunities by providing high
availability and elasticity with a low cost, low running time, and enables the deployment
of new applications (Merizig et al., 2019). Moreover, it allows computing resources
sharing, including processing, storage, networking, and analytical software (Yang
et al., 2017).

Semantics integration in Big Data opportunities and challenges
A colossal evolution in data sources deluges the web by a wide variety of data in several
areas. The challenges faced in modeling and managing systems in these areas appear with
the 5Vs of Big Data. However, database researchers were anxious about how to combine
different heterogeneous data sources by providing a standard query interface. Indeed,
semantics integration offers many promising opportunities and harnesses the power of
semantic knowledge bases (Beneventano and Vincini, 2019). It reduces comparatively the
sources heterogeneity, offers data consistency, and warrants reliable interoperability
among various systems (Abbes and Gargouri, 2018). Furthermore, it can share and reuse
knowledge by standardizing vocabulary, providing pertinent information in retrieval,
and executing queries in natural language. Moreover, it decreases information traffic
through the network by mapping the ontology into the data sources and offers
perceptual inference (Calvanese, 2015). Ontologies can deploy semantics security risk
management tools.

However, when the ontologies grow, relatively many deficits appear, particularly the ratio
between the size of the created instances and the working memory allowed, which can affect
the performance and flexibility of the system (running time). Hence, the Big Data ecosystem
offers the required tools to improve ontology-based systems. Whereas HDFS, HBase, and
MongoDB permit to store a large volume of ontology instances and provide a sufficient
running space regardless of their size (Bhadani and Jothimani, 2016). Besides, MapReduce,
Storm, and Spark can ensure a quick processing framework. The use of NoSQL database and
query languages, such as SPARQL, allows supporting the complicated structures of
ontologies linked to Big Data applications. Furthermore, it offers reliable and efficient data
management (Sayah et al., 2018).

Energy-saving in smart cities
Scientists predict that by 2050, around 70 per cent of the world’s population will reside in
cities (Dritsa and Biloria, 2018). Hence, cities need smart technologies to address
sustainability issues associated with the development of energy consumption (Wang and
Moriarty, 2019). A smart city is considered as an integrated ecosystem endowed by the use of
powerful technologies, which addressed to make cities more sustainable. In fact, smart cities
are considered as one of the most important Big Data applications and an active domain of
IoT (Shafik et al., 2020). Researchers have been focused, as a part of their works, on smart
cities, on reducing energy consumption (Soomro et al., 2019). Especially with the daily growth
of device usage in people’s daily lives (Butt et al., 2019). Knowing that the global demand for
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energy is continually increasing, it becomes necessary to find new solutions that ensure
energy saving and offer a comfortable life for residents without affecting the environmental
protection (Samuel, 2016).

Related work
The exponential growth in data volume obliges researchers to deal seriouslywith the newBig
Data aspects (5 Vs). Various advanced technologies were developed to permit the easy
management, storage, and analysis of data share. Otherwise, semantics help to facilitate
interoperability among various systems (Ma et al., 2019). These issuesmainly characterize the
smart cities. In our research, the works presented hereafter inquire into the topics dealing
with intelligent technologies using ontologies, Big Data, andMAS for energy saving in smart
homes and smart cities in general, which aim at ensuring sustainability and improve
citizen’s life.

Among the works focused on energy savings, the following used MAS as a principal
paradigm thanks to their features, such as communication, autonomy, fault-tolerance,
and high flexibility. (Anvari-Moghaddam et al., 2017) proposed a practical framework of
an ontology-driven MAS based energy management system (EMS) for monitoring and
optimal control of buildings and micro-grid systems. In the same theme, the works
presented in (Kofinas et al., 2018) and (Harmouch et al., 2019) discussed a real-time
operation of the energy management system, which is based on MAS and fast
converging T-Cell algorithm. These works aim to decrease the grid working cost and
maximize the real-time response in the network. (Soetedjo et al., 2019) Presented a
hardware testbed for testing the building energy management system (BEMS) using
MAS. Indeed, they employ both a genetic algorithm to find the optimal power required
and the fuzzy logic controller to monitor the building devices. Otherwise, (Lejdel and
Kazar, 2018) proposed a MAS to distribute the different tasks between agents when each
agent can perform genetic algorithms to optimize energy consumption in real-time.
Then, they develop a GIS system, which allows detecting the position of buildings and
all the pertaining data.

For the same purpose, but with different means, authors choose an ontological approach
for energy consumption (Kott and Kott, 2019). (Delgoshaei et al., 2018) described an approach
to monitor energy consumptions in an intelligent building by combining machine-learning
techniques with semantics modeling and reasoning. A supervised learning algorithm with
K-means clustering is integrated to identify and predict electricity consumption in buildings.
More relevant work is reported in (Degha et al., 2019) to manage and improve energy
efficiency in buildings by considering resident behavior and building environment. Their
works based on context-awareness with the aim of reducing energy consumption and
allowing inhabitants comfort. The integrated Ontology offers a generic model to allow logical
inference and a data mining classification algorithm, which used to obtain the rules
representing normal energy consumptions (Lork et al., 2019). Otherwise, (Saba et al., 2019),
based on the same parameters, as well as the occupants’ behavior and activities, used OWL
and SWRL for knowledge presentation and intelligent reasoning to reduce energy
consumption in smart cities.

Otherwise, Big Data technology is used to offer a reliable, scalable, distributed data
management, and storage. (Bokolo et al., 2019) developed a layered architecture providing
energy data that aims to facilitate energy prosumption with a renewable source. APIs were
used as data adapters for prosumers, stakeholders, and real-time streaming to manage
energywithin smart cities.Moreover, in (Grolinger et al., 2016), the authors used local learning
with Big Data and support vector regression SVR to increase training speed and performing
energy prediction scenarios.
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In addition to the previous technologies, IoT, and other techniques are used to reduce
energy in smart cities (Wala et al., 2020). Mahapatra et al. (2017) developed a unifying
framework for IoT in smart homes to build a green and sustainable smart city. A neural
network-based Q-learning algorithm is applied to both reducing the demand and conserving
energy during peak period while minimizing the resident’s inconvenience. Papastamatiou
et al. (2017) presented a methodology combining energy efficiency and energy management
using multi-disciplinary data sources. The proposed approach contains two pillars:
assessment and optimization of energy consumption in smart cities for short- and long-
term periods. Another perspective based on cloud and fog for energy management in the
smart cities employing meta-heuristic algorithm was tested by (Butt et al., 2019), a VMs
implemented to perform fast running of user’s applications. However, the different
components of the proposed system participate in providing the relevant information used
to make more intelligent decisions and to help the consumers to reduce energy consumption
all over the smart cities.

In the works cited above, we have perceived certain shortcomings:

(1) Some approaches intend to manage a single building and provide an individual
solution.

(2) In the case of a system crash, the buildings lose the global energy consumption
control.

(3) There is an overall high cost when we apply some system modifications in the smart
cities.

(4) Some frameworks do not permit data collecting for the entire population.

(5) In several cases, we cannot predict the global consumption if we cannot know the
general behavior.

(6) Lack of long-term consumption policy to avoid increasing energy production and
environmental pollution.

(7) The majority of approaches do not ensure scalability and cooperation among various
system components.

To overcome these drawbacks, we propose a new architecture that aims at performing
the previous systems by using building ontology that offers a structural framework (Ma
et al., 2019). We employ the Big Data tool to manage a large number of buildings with
multiple systems and devices, as well as to manage real-time interactions over storing
a considerable amount of data from all resources of houses. Besides, it can ensure
scalability, availability, sustainability, and greatly reduce the cost of hardware installed
in each home. Our system employs the multi-agent system, which allows a high level of
autonomy and cooperation; it significantly reduces data flow through the network
(Howell et al., 2017).

Through the data analysis offered by Big Data tools and inference rules, the system can
understand the collective inhabitants’ behavior, knows the appliances and peak periods. It
can predict consumption for long-term and endows decision-making by a real overview to
establish a global policy for reducing energy consumption in smart cities (Bokolo et al., 2019).

Proposed multi-layer architecture
The following section describes the global system architecture and explains the different
layers composing the system, where each layer contains a set of technologies that satisfy the
requirements of the system.
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System objective
The main objective of the proposed architecture is to allow efficient control of appliances and
devices in smart buildings (air conditioning, heating, lighting, TVs, doors, etc.) to offer an
appropriate energy-saving strategy, to ensure inhabitants’ comfort and to reduce energy
consumption overall the smart cities.

General architecture of the system
In this section, we present a description of different layers constituting our approach and the
relationships between them. The Intelligent System for Energy Management in Smart cities
(ISEM-SC) grounded on aMulti-Layer architecture by using agents. Each layer has its agents
with a particular behavior and specific roles. The knowledge is distributed between cognitive
agents, and we choose a peer to peer as a communication mode. Moreover, ISEM-SC uses a
smart building ontology (Degha et al., 2019). Further layers are added to meet smart cities’
requirements, such as the high number of buildings served (speed of management and
storage space), real-time interaction, autonomy services, etc. It also ensures scalability and
extensibility by using Big Data infrastructure, autonomy and interoperability with MAS
paradigm, flexibility, and prediction by integrating ontology and employing inference rules
(Lork et al., 2019).

ISEM-SC architecture is divided into four essential layers; each layer contains several
components or modules that play a complementary role for each other and exchange data
with adjacent modules to achieve ISEM-SC objectives. (Table 1 shows layers and the
associated technologies).

Big Data tools are deployed to process thousands of data gigabytes, which are generated
from a variety of devices installed in over the smart cities (Raghavan et al., 2020). These tools
offer promising solutions to manage volume, velocity, and variety of energy data. Likewise, a
layered approach provides robustness, capability, and scalability in data processing, and
analysis. Moreover, it can manage both real-time and historical energy data. These thematic
tool becomes a talent solution to support a distributedmanagement of energy consumption in
smart cities and ensure sustainability by the good energy governance policy (Bokolo
et al., 2019).

In what follows, we provide a description of each layer, and a brief explanation is
also included on the reason for each technology selected and its role (as shown in
Figure 1).

End-User layer: Collects the data generated by different sensors and gathered into a
supervised agent of each building that sends them to the Kafka for subsequent redirection to
be processed (Alvarez et al., 2019). Furthermore, it receives commands that are returned by
the service provider layer via Kafka to enable and change device states to modify the
environmental condition and reduce energy consumption.

Service provider (Backend agent) layer: Once Kafka receives data, it redirects each one to a
chosen agent for processing by agent service, which imports knowledge from the database
(MongoDB) and integrates the building ontology (Jena) by the communication with the
storage layer. At this stage, agent service invokes SWRL rules and applies treatments on

Layer Tools and Technologies

End User layer Agents, sensors, devices
Service provider (Backend agent) layer Agents, kafka
Storage layer MongDB, Jena, ontology, SWRL
Hadoop infrastructure layer Hadoop HDFS, MapReduce

Table 1.
Architecture’s layers
and the associated
technologies
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knowledge to update the database and send commands and advice for the end-user layer. At
this layer, Kafka used as a distribution event-streaming platform for building real-time data
pipelines and streaming applications. It works as a cluster on multiple servers that can span
many data centers; it can manage trillions of events a day (Le Noac’H et al., 2017). Their uses
in our architecture consist of the creating real-time streaming data pipelines that reliably
transfer data among layers (End-User and service provider layer) and convert them to data
streams.

Storage layer: Based on MongoDB and Jena are used to save information and knowledge
providing from environmental resources, such as smart house devices, weather data, etc.
(Chodorow et al., 2019). It holds all data history and provides a framework for knowledge
construction from data transformation combined with onto-SB ontology. This layer includes
the inference rules engine, which is used to offer efficient management of smart cities’ energy
data (Yang et al., 2018).

Hadoop infrastructure layer: In the smart city architecture, Huge amounts of data are
collected frommillions of sensors deployed in each building (Jawhar et al., 2018). In ourmodel,
the Hadoop layer communicates directly with the storage layer via MongoDB and Jena to
perform fast data processing and provides effective management of storage, availability,
performance, and scalability, etc. (by HDFS and MapReduce).

AUML sequence diagram of the proposed architecture
This diagram summarizes the sequence of events and the interactions between the different
components used in the proposed system (see Figure 2).

System scheduling
The house represents a dynamic environment where appliances’ parameters and states
have a frequent change. Once the sensors detect any modification, they send data to the
user agent who receives and collects all data coming from appliances, sensors, and the
environment (Estrada et al., 2019). Each agent invokes ontology and executes the rules
to manage local devices and sends data (environment parameters, home circumstances,
etc.) to the service agent for processing. A large number of tasks are sent from various
home agents redirected via Kafka to end service agents. These save the new information
of each smart building database and update the smart building ontology with the real-
time state of the smart building. The service agents invoke the Reasoning Engine
Module (REM) and generate decisions and new knowledge based on the current context.
At this step, the agent checks the database and ontology stored at the storage layer
(MongoDB and Jena) to provide adequate decisions for the current context. Hadoop tools

Figure 1.
Presents a multi-layer

architecture for
ISEM-SC
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deployed to manage parallel processing and achieve storage via (HDFS MapReduce).
Afterward, Service agents send commands and decisions to the end-user agents, which
instruct actuators and appliances infrastructure to change their state to reduce energy
consumption.

In addition, the service agents provide general control over the entire smart city by
verifying the total energy demand and compared with the available energy produced by the
energy supplier. Two cases appear: if the available energy is sufficient to meet the demand,
there is no intervention. Otherwise, the service agent sends the decision to all household
agents to reduce energy by modifying the operating threshold of the active appliances. In
this case, the system contributes greatly to manage peak hours, ensures an equal policy for
all consumers, and avoids energy crash. As a result, the proposed architecture achieves an
important objective by reducing energy consumption, reducing consumers’ bills, ensuring
energy availability, and saving energy production without affecting the comfort of the
inhabitants.

Smart building ontology Onto-SB
Figure 3 shows our ontological knowledge model called Onto-SB that is intended to serve
ISEM-SC architecture. It is proposed to offer a structural framework of smart building data. It
contains definitions of elementary concepts that are used and their relations. OWL used to
represent concepts and relationships employed in the ontology. Onto-SB provides a
structural framework for organizing smart building data. It contains a comprehensible
definition of most basic concepts used in smart homes and their relations. Onto-SB includes

Figure 2.
AUML sequence
diagram of ISEM-SC
architecture
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more than 200 concepts, representing humans, devices, places, environment, services, etc.
Also, SWRL is deployed to apply rules for different purposes where the structured
relationships between concepts and the formal representation of domain knowledge enable
reasoning (Degha et al., 2019).

In the following sections, we briefly introduce some Onto-SB concepts with their
description and some instances. For each attribute, we illustrate the relationship between the
concepts (Table 2).

This section is devoted to present the environment of the buildings implicated in this
study, and it emphasizes on the elements that are consuming energy (appliances and devices).
As well, we highlight the parameters influencing the energy consumption (climate data,
activities of inhabitants, etc.).

Reasoning Engine Module (REM)
This module that is integrated at the service layer is deployed to generate decisions by
using the knowledge available on smart homes. It has a vital role in the implementation
and efficiency of the proposed system. REM based on SWRL rules and represented as

Figure 3.
Presents the taxonomy

used in Onto-SB
concepts (Degha

et al., 2019)
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conditional logic, where each rule uses a conjunction of predicate clauses to a list of
executable actions. Through these rules, REM can detect energy waste and provide
measures to save energy. The inferred decisions are used to update the knowledge base
and send commands to the end-user agents, which act on the actuators installed at the
smart building to reduce energy consumption. The following figure shows some rules,
which are used to manage and monitor energy waste in the smart building (Figure 4 and
Figure 5).

Environment presentation
Our study occurred at El Oued city in Algeria. El Oued is located in the southeast of
Algeria around 600 km from the capital Algiers. It is characterized by latitude: 338, 220, 0000

Concept Description Instances Attribute Relationships

Actor Represents building
inhabitants

Mother, father, sister, child,
grandfather, etc.

Occupant
Name
Occupant
Role

Occupant Has
Activity
Occupant Has
place

Building Represents the home Home ID, location, size,
profile, etc.

Building
Name
Building Size

Building Has
Action
Building Has
Place

Appliance Represents home devices
and appliances

Light, laptop, TV, iron, air
conditioner, etc.

Appliance
Name
Appliance
Power

Appliance Has
Action
Appliance Has
Place

Place Represents the different
home places

Room, kitchen, WC, garage,
Living room, etc.

Room Size
Room Name

Place Has
Appliance
Place Has Event

Activity Represents inhabitants’
activities

Sleep, watch TV, cook, eat,
wake up, enter, etc.

Behavior
Name
Activity
Time

Activity Has
Place
Activity Has
Time

Table 2.
Smart home concepts,
instances, attributes,
and relationships

Figure 4.
SWRL rules used to
manage the energy of
appliances
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N and a longitude: 068, 510, 0000 E with 85 m elevation above sea level. A family of nine
members occupied the house (grandfather, grandmother, mother, father, and five
children), the home designed in local architecture (in our model, home with three rooms,
kitchen, bathroom, and garage). El Oued is characterized by a hyper-arid hot desert
climate with scorching and a very long summer and a short and cold winter. The average
of maximum temperatures in summer are 46–48 8C in July, it is considered as one of the
hottest cities in Algeria (Infoclimat, 2020). These characteristics engender a high-energy
demand, which is used in air-conditioning. For more than 120 days per year, the Mercury
exceeds 40 8C. In winter, temperature becomes warm in the day but cold during the night,
which requires heating sources. On most days of the year, the sky is clear, and the sun is
omnipresent; the average duration of sunstroke is about 3,978 h per year, which offer a
perfect environment for solar energy source. The relative humidity is generally low over
the year, with an annual average of around 26 per cent. The experimental home includes a
variety of electrical appliances. To get a clear view of the energy consumed in the home,
we present hereafter an example of electrical appliances and its power ratings (see
Table 3).

The following table illustrates the various sensors used in smart building and explains the
role of each one (Kertiou et al., 2018). The number of each sensor’s kind is also given. All the
sensors are set up according to the role intended for the various sensors. Every sensor
generates periodically (1 s, 5 s, 1 min, etc.) data and sends them to the local agent. The
produced measurements and detections express the various events that happened by
inhabitants or environmental changes, which directly affect energy consumption in the smart
home. The proposed system is based essentially on these data to analyze and apply the
decisions to update the knowledge base and save energy over the entire smart city (see
Table 4).

Scenarios description
To test the system, we hypothesized the following scenario: we suppose a summer day
(August 26, 2019) in El Oued city for a period of 24 h (see Figure 5). The scenario is
characterized by some properties: duration, event, actor, location, and appliance. The
sequence of events affects appliances states (turn-on/turn-off), and therefore, the energy
consumption throughout the building. Table 5 demonstrates the scenario steps.

After creating a scenario, we should know the energy consumption in each smart home.
For this reason, we calculate the rate of consumption of each appliance over the experimental
day. Table 6 presents the obtained values.

Figure 5.
The real temperature of

August 26, day
(“Infoclimat”, 2020)
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To get the total energy consumed per each appliance, we use the following formula (1):

EdiðwhÞ ¼
Xn

i¼1

ðend time di � start time diÞ3P (1)

To calculate the total energy consumed in each smart home, we apply the next formula (2):

EtðwhÞ ¼
Xn

i¼1

EdiðwhÞ (2)

Where “E” energy (Wh), “di” is appliance type, “P” appliance consumption.

Sensor Sensor function Number

Temperature sensor A device used to measure temperature (indoor/ outdoor) 12
Humidity sensor A device measures Relative Humidity in an atmosphere 10
Optical sensor Used to measures the physical quantity of light rays 16
Pressure sensor A device that senses pressure 6
Proximity sensor A device that detects the presence or absence of a nearby object 14
Open/Close Sensor Used to detect close/open objects (window, door, etc.) 32
Gas sensor A device used to detect the presence of various gases 10
Smoke sensor A device that senses smoke (airborne particulates and gases) 10

Place Electrical appliance Appliance Number Consumption W/h

Kitchen Light 2 25
Refrigerator 1 200
Dishwasher 1 1,300
Microwave 1 1,150
Electric mixer 1 300
Coffee maker 1 700
Vacuum cleaner 1 800
Ceiling fan 1 70
Air exchanger 1 370

Living room Light 3 25
Air conditioner(8000 BTU) 1 900
TV LCD 1 150
Demodulator 1 25

Room 1 Light 2 25
Air conditioner(6000 BTU) 1 700
Iron 1 850
Laptop 1 70

Room 2 Light 2 25
Air conditioner(6000 BTU) 1 700
Clock 1 5

Bedroom Light 3 25
Air conditioner(6000 BTU) 1 700
Clock 1 5
Desktop PC 1 80

Bathroom and WC Light 4 25
Washing machine 1 350
Electric shaver 1 15
Water pump 1 1,200

Garage Light 4 25
Camera 1 25

Table 4.
Illustrates the used
sensors and their roles
in the smart home

Table 3.
Illustration of used
appliances at smart
house model
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A general overview in the previous table shows that high electrical consumption is
engendered by the air conditioning (more than 55 per cent). Since the temperature
remains high throughout the day, residents prefer staying at home to avoid the high heat
outside and require a suitable temperature, which expresses the huge consumption in this
scenario.

Implementation
We used JAVA to develop the system modules and Eclipse IDE editor. To manipulate and
translate ontology to OWL, we used Prot�eg�e5 API. After creating classes with their
properties and relationships, we added SWRLTab to apply SWRL rules and SQWRL
queries, the reasoning module (it is a step to deduce new contextual knowledge based on
available contexts) that aims at deriving new knowledge by exploiting available data
and exploring the ontology context, such as (human profile, personal presence, appliance
consuming energy, etc.). This knowledge used to reduce energy consumption and
maximize resident comfort.

Moreover, Figure 6 presents JADE remote agent management GUI, which describes the
different agents created in each layer, whereas every layer holds an agent responsible for
communicating with other agents by sending a message. They can cooperate and leverage
their autonomy, modularity, distribution, and intelligence to reduce the high computational
time required to manage a large amount of data.

The environment used for the implementation is a cluster with fivemachines (Master 4 GB
Ram, 250 GB Hard-Disk, 4 Slaves 2 GB RAM, and 100 GB Hard Disk). Apache Hadoop
installed as an infrastructure in this cluster, and other frameworks, such as Kafka, MongoDB,
and Jena installed over them. Jade Platform is also installed in this cluster. In every smart
house, there is a machine with low performance (1 GB RAM and 100 GB Hard-Disk) that is
used as a client for the Big Data server, and the Jade platform is installed in this machine (see
Table 7).

The local agent in each house achieves the process concerning data collection from
devices and sensors in every house. Then, data annotation is done by using the
ontology before sending them to the service agent in synchronized mode. Afterward,
the end-user agents receive a return back message containing the command that will

Figure 6.
Presents JADE

implementation of
different agents layers.
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be executed later. If there is no message due to any reason, the local agent reacts
according to their local behavior. On the other hand, the service agent reloads the
ontology at the start-up phase, preparing to receive messages from all the houses, and
then starts to analyze the coming data by using the knowledge base and their stored
rules according to the current context. It invokes a solution for each house and sends
a message to the end-user agent, which acts in order to reduce energy consumption at
their level.

The proposed system not only provides a local energy-saving solution for each smart
home but also offers general monitoring of the entire electricity network. In this context, the
service agent uses its reasoning skills and performs a cyclical check on the ratio between
the total energy demand and the available energy offered by the supplier. When
consumption exceeds the supply, the agent service sends a message to the end-user agents
to increase the cooling threshold. After repetitive tests, energy consumption reaches an
equilibrium level and prevents a grid crash. The following algorithm demonstrates the
used strategy:

Time Events Actors location Appliances activated

00:00 a.m.-06:00
a.m.

Sleeping All Bedroom, room 1 and
2

Air conditioner

06:00 a.m.-06:20
a.m.

Weak up Mother Bedroom Lights, water pump

06:20 a.m.-06:45
a.m.

Preparing breakfast Mother Kitchen Lights, coffee maker

06:45 a.m.-07:00
a.m.

Weak up All other Bedroom, room 1 and
2

Lights, water pump

07:00 a.m.-07:20
a.m.

Take breakfast All Kitchen –

07:20 a.m.-07:50
a.m.

Preparing to go out Father,
children

Bathroom, room Lights, water pump,
shaver

07:20 a.m.-08:50
a.m.

Cleaning house Mother All Vacuum, water pump

08:50 a.m.-10:00
a.m.

Watch TV All staying Livingroom Air conditioner, TV

10:00 a.m.-11:20
a.m.

Preparing lunch Mother Kitchen Microwave, Electric
mixer,..

10:00 a.m.-11:30
a.m.

Reading books Grand father Livingroom –

11:30 a.m.-01:00
p.m.

Eating lunch All Kitchen Lights, microwave

01:00 p.m.-02:30
p.m.

Watch TV All staying Livingroom Air conditioner, TV,
lights

02:30 p.m.-03:00
p.m.

Return to home Father,
children

All –

03:00 p.m.-03:30
p.m.

Take a shower Father,
children

Bathroom Pump water, shaver,
lights

03:30 p.m.-06:30
p.m.

Repose All Livingroom Air conditioner, TV

06:30 p.m.-08:30
p.m.

Prepare/ eat dinner Mother/ All Kitchen Microwave, Electric
mixer,..

08:30 p.m.-10:30
p.m.

Watch TV/ revise
lessons

All/ children Livingroom, room
1and 2

Air conditioner, TV,
lights

10:30 p.m.-06:00
a.m.

Go to sleep All Bedroom, room 1 and
2

Air conditioner

Table 5.
Simple scenario of
daily routines in a
smart home
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Algorithm adjust total consumption
Total Powered Energy;
Total Required Energy;
ACLMessage reply;
Response response;

Cyclic Behavior (this)
{for (house in houses)

Total Required Energy 5 house. Energy Consumed;
If (Total Required Energy > Total Powered Energy)
response. Actions. add(“Decrease Air Condition:1”);

else
response. Actions. add(“Increase Air Condition:1”);
for (house in houses)

{reply.add Receiver (house.Agent);
reply.set Content (response)
reply.send();}

}

Operating device Power (W/h) Device number Operation time (m) Energy consumed (W)

Light 25 20 360 3,000
Air conditioner 9000 BTU 900 1 570 8,550
Air conditioner 6000 BTU 700 3 450 15750
Refrigerator 200 1 1,440 4,800
Dishwasher 1,300 1 90 1950
Microwave 1,150 1 80 1,533
Electric mixer 300 1 80 399
Coffee maker 700 1 50 583
Vacuum cleaner 800 1 90 1,200
Ceiling fan 70 1 210 245
Air exchanger 370 1 240 1,480
TV LCD 150 1 280 700
Demodulator 25 1 280 116
Iron 850 1 30 425
Laptop 70 1 120 140
Clock 5 2 1,440 240
Desktop PC water pump 80 1 90 120
Electric shaver 1,200 1 155 3,100
Camera 15 1 30 7.5
Light 25 1 1,440 600

Environment Machine Number Description

Environment 1 Master 1 2 CPU Core
4 GB RAM
250 GB HDD

Slave 4 1 CPU Core
2 GB RAM
100 GB HDD

Environment 2 Low performance machine In each home 1 CPU Core
1 GB RAM
100 GB HDD

Table 6.
Energy consumption in
one smart home during

the period of 24 h

Table 7.
Illustrates hardware

used for the
implementation
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Experimentation and results
To validate the proposed architecture, we look at two basic metrics. First, the rate of energy
consumption and the execution time of the tasks. Two simulation experiments have been
established for this purpose.

First simulation
The first experiment deals with energy consumption in the smart city, where we used the
previous scenario. After applying rules in several cases, the proposed approach allows
significant energy saving in various devices, such as air conditions, light, TV, water pump,
etc. To switch off the device, we use another criterion when the light or outside temperature
becomes adapted to the preferences of the inhabitant (Figure 7). For total consumption, the
system intervenes to adjust the preference threshold for reducing the total demand. Table 8
shows the energy saved in various devices by using certain rules, which give a significant
result in reducing consumption. Approximately 15.62 per cent of energy saved in this
experiment compared to the consumption of the MAS-GA system (without ontology and
Hadoop).

Figure 8 shows the obtained results in several scenarios (presented in red color) we used 20
smart houses, where the energy consumption is reduced in each case with an average of 1,300
Kw/h.

Appliance
Operation
time (m)

Energy
consumed (W )

Switch off
time (m)

Energy
saved (W )

Energy
saved Ratio %

Used
rule

Light 360 3,000 100 830 27.66 Rule 1,2
Air conditioner
9000 BTU

570 8,550 70 1,050 12.28 Rule 3,4

Air conditioner
6000 BTU

450 15750 90 2,700 17.14 Rule 3,4

Ceiling fan 210 245 25 29.16 11.90 Rule 3
Air exchanger 240 1,480 33 203.5 13.75 Rule 6,7
TV LCD 280 700 40 100 14.28 Rule 7
Demodulator 280 116 40 16.66 14.36 Rule 7
Water pump 155 3,100 2 500 16.12 Rule 5,7

Figure 7.
Appliances operating
time with and
without rules

Table 8.
Energy saved in
various appliances
with the rules used
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Second simulation
The second phase of experimentation aims to validate the treatment time criterion. For this
reason, we applied the simulation of our framework on the hypothesized cluster (5 machines:
Master with 4 GB Ram, 100 GB Hard-Disk, and 4 Slaves with 2 GB RAM, and 250 GB Hard
Disk) the selected scenarios suppose an environment in various cases: one, 5, 10, and 20 smart
houses.

For simulation purposes, it is performed by using the CloudSim software, which is a
Framework for modeling and simulating of heterogeneous environments with cloud
computing interfaces and services (Alwasel et al., 2019).

It provides the required infrastructures and capacities to evaluate and analyze Big Data
applications with MapReduce features (interactions, distributed-task, and data workflows).
We have created a data center, which contains a host with virtual machines (1 master and 4
slaves). However, each smart home is represented by a cloudlet (task). The broker allocates
and sends the tasks to the master VM in which it redirects them to the slaves’ VM. Then the
slaves execute the tasks in parallel and transmit the results. The next figure presents some of
the simulation results (Figure 9):

To evaluate the processing time, we compare the efficiency of the architecture in terms of
execution time with ICA-BEMS in different cases. Figure 10 shows the obtained results that
demonstrate the effectiveness of the proposed system (thanks to Big Data tools) and
maintains an approximately short duration (of 1 s) contrary to the evolutional duration of the
other system.

Discussion
The configuration of the simulation environment was created according to the criteria
discussed above. The obtained results clearly prove the utility of combining technologies
(ontology, Big Data, and MAS) to reduce energy consumption without affecting the
inhabitants’ comfort. These tools reduce the cost of the hardware used in each building,
ensure a high level of system availability, offer scalability to smart cities by leveraging Big
Data environment, which can process large data volume in real-time and addresses mainly
the volume and velocity challenge. It provides autonomy and reduces data flow over the
network by using MAS. Moreover, the system monitors the energy demand in peak time and
offers for the supplier a good opportunity to deal with the distribution strategy and ensure a
sustainable and long-term policy by exploiting knowledge and analyzing data history.
Therefore, it helps to reduce environmental pollution and promote environmental
sustainability (see Table 9).

Figure 8.
Energy consumption in

the smart city for
various scenarios
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Figure 9.
Simulation of
execution time
scenarios in 20
smart homes
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Conclusion
Energy management in smart cities has become one of the most critical issues emerging
in sustainability solutions. The intensive data evolution generates a huge distributed and
heterogeneous dataset, which creates a serious challenge to deal with the volume and the
heterogeneity of data. For addressing these issues, Big Data tools and ontologies
technologies have been used to achieve efficient energy saving in smart cities. In this
article, we proposed an Intelligent System for Energy Management in Smart cities (ISEM-
SC) that aims at reducing energy consumption. In this context, we reviewed first, the
background of Big Data and semantics integration followed by related work. Then, we
presented a layered architecture. The proposed system combines various technologies
(Big Data, ontology, and MAS) used to reduce energy consumption without affecting the
inhabitants’ comfort.

This framework provides several opportunities. For instance, it:

(1) Reduces energy consumption in each smart home and therefore throughout the smart
cities;

(2) Reduces hardware cost used in each building and process data in a short time;

(3) Ensures a high level of system availability;

(4) Offers scalability by leveraging Big Data environment, which can process huge data
in real-time;

(5) Provides autonomy and reduces data flow over the network by using MAS;

(6) Monitors the energy demand in peak time and avoids grid crash;

(7) Provides an effective long-term energy distribution policy;

(8) And it helps to reduce environmental pollution and promotes environmental
sustainability.

The obtained results in different scenarios show efficient energy savings with a rate of 15.62
per cent. Besides, the system maintains an approximately short duration (of 1 s) in the
processing time, unlike the evolutionary duration of the other systems.

In future work, we will focus on the capabilities provided by the Big Data, ontology, and
MAS to model an efficient architecture capable of combining energymanagement, water use,
and road traffic in smart cities. In order to convert the huge raw data into intelligent
knowledge used later by decision-makers, to provide smart sustainability and easy life for
citizens.

Figure 10.
The execution time in

various scenarios
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