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a b s t r a c t

The electroencephalography (EEG), which is a method for monitoring the brain signals, is a common
method used to diagnose the epileptic seizures. In this study, some features are presented for the
classification of the brain signals. These features are based on the texture and structure of the brain
signals in the phase space representation (PSR). Due to the resonance property, the data are elliptical
in the phase space. Therefore, the mentioned features are based on the calculations of the data density
in the ellipses.

In the first method of feature extraction, the radius values of the ellipses are assumed based on the
normal distribution feature. In the two other methods of the presented features, the radius values of
the assumed ellipses are calculated by the optimizer. These methods of feature extraction are based on
the incremental ellipses and intersecting ellipses, respectively. The density of the data in the assumed
ellipses is given to the k-nearest neighbor as a feature to classify the epileptic seizure and seizure-free
EEG signals.

The intended method was implemented and investigated on two databases of the Bonn university
of Germany and the neurology and sleep center of New Delhi. The results indicate that the proposed
features are strong tools for separation and diagnosis of this type of signal and have higher accuracy
compared to the other classic and updated methods. The extraction speed of the presented features
was higher in the test phase compared to the other methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The diagnosis of epilepsy disorder is one of the most used
actions in the medical and neurology field [1]. Generally, the
epilepsy is described as a disorder in the central nervous sys-
tem, caused by a sudden and severe discharge of the brain neu-
rons [2,3]. Around one percent of the people in the world have
epilepsy [4]. Researchers are looking for a reliable solution for
the prediction and diagnosis of epileptic seizures by examining
the EEGs of patients with epilepsy [5,6].

There are waves with very high frequencies and heights higher
than the mV range in the epileptic seizure step [7]. These fast and
high waves, which are the characteristics of the epileptic seizure,
are called a spike [8–10]. These spikes are the main indices
for the presence of the epileptic seizures. There are methods
based on the feature extraction techniques to diagnose these
spikes from the brain electroencephalograph automatically. These
techniques are divided into four groups, including time-domain,
frequency-domain, time–frequency-domain, and the nonlinear
signal analysis method [4].
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Assuming the EEG signals being stationary, the time-domain
and frequency-domain features are used to diagnose and classify
the epileptic seizures [4,11,12]. Methods that are based on the
Linear Prediction (LP) and Fractional Linear Prediction (FLP) are
developed for the diagnosis of the epileptic seizures in the EEG
signals [12,13]. Principal Component Analysis (PCA) using the
enhanced cosine radial basis function neural network method is
developed in [11] for the diagnosis of the seizures.

The time–frequency methods based on non-stationary EEG
signals are developed in [14–17]. In [18], the simulation of time–
frequency analysis is presented for classification of the sections of
the epileptic seizure brain signals, and short-term flourier trans-
form and several time–frequency distributions are used to calcu-
late the Power Spectrum Density (PSD) of each section. In [19–
25], the analysis and classification methods for EEG epileptic
signals are considered based on the wavelet transform and multi-
wavelet transform. Also, some features, which use the wavelet
coefficient for classification of healthy and epileptic persons, are
extracted based on the Euclidian distance in the phase space
reconstruction [26]. The studies have shown that the nonlinear
parameters, like the approximate entropy (ApEn), are useful for
diagnosis and identification of the epileptic seizure brain sig-
nals [27]. The reason is the approximate entropy values decrease
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sharply at the time of an epileptic seizure. This value has a signifi-
cant relationship with the simultaneous discharge of large groups
of neurons [28]. The Lyapunov exponent can present consider-
able details about the changes in the EEG activity and simplify
the early diagnosis of epilepsy [21,29]. The fractal dimension
parameter is effectively used to track the chaotic nature of the
EEG signals for the diagnosis of epileptic seizures [30]. Features
obtained by the complexity analysis and spectral analysis of the
EEG signals are effectively used to diagnose epilepsy [31].

Methods that are based on empirical mode decomposition
(EMD) are developed for the analysis of the nonlinear and non-
stationary EEG signals to diagnose and classify the epileptic
seizures in the EEG signals [32]. In [3], the empirical mode
decomposition is used to obtain the intrinsic mode functions
(IMFs). Then, these IMFs are transferred to the phase space.
Two horizontal and vertical ranges indicating the extent of data
in each IMF is selected as a feature using the 95% confidence
ellipse method. These features are applied to the LSSVM classifier.
Therefore, the matrix of features gives only information about
the total extent of the signal in the phase space to the classifier.
It does not transfer any information about the area density and
the manner of expansion. Also, the usage of the EMD method
for decomposing the signal has processing and timing costs. This
cost is applied while there is no significant difference between
implementing this feature extraction method in the IMFs and the
main signal.

In this work, three types of features are considered for the
classification of the brain signals and diagnosing epilepsy. These
features are calculated by the main signal map in the phase space
representation. Usually, phase space representation techniques
require computation of the time lag and embedding dimension
parameters for every signal [33,34]. However, a constant lag is
considered in this work. The used phased space is a 2D space
with Vk and Vk+1 axes. In this space, signals are elliptical. Now,
with the assumption of the ellipses with different radiuses, the
number of points in each one of ellipses (the internal density of
the ellipses) is stated as the new feature. The difference between
these three types is in the manner of calculating the radiuses of
the ellipses. Each method is more mature and better than the
previous methods.

In the first method, the characteristics of the Gaussian distri-
bution of data is used. In the next two feature extraction methods,
an optimizer is used to calculate the optimal radiuses. These
two methods obtain the overlapping and intersecting ellipses,
respectively.

Eventually, the rate and accuracy of the proposed method
are compared with the other conventional methods of epilepsy
diagnosis.

2. Proposed method

2.1. Dataset

In this study, two independent EEG datasets are used for the
evaluation of the efficiency of the proposed methods. Particularly,
the first dataset was registered in the Bonn University [35], and
the other one, which is called the second dataset, was obtained
from the Neurology and Sleep Center of the Hauz Khas, New
Delhi [36].

One of the most well-known databases, which is being used
in most of the studies for the automatic diagnosis of epilepsy
in the EEG signals, is the database that is used in [35]. This
database consists of five groups, including F, N, O, Z, and S. Each
group composed of a hundred single-channel samples of EEG
signals with a length of 6.23 s a sampling rate of 61.173 Hz that
are separated from the continuous electroencephalography. The

groups Z and O consist of the samples of healthy persons in a
relaxed state with eyes open (Z) and closed eyes (O). The groups
N and F are samples of the patients in the seizure-free intervals.
The group S consists of the electroencephalography signals of
the patients during seizures, which are recorded using the EEG
device. All of the used signals are recorded using a 128-channel
system. A sample of each group is shown in Fig. 1.

The artifacts of this dataset are eliminated by visual exami-
nation using a band-pass filter with the frequencies from 40 to
53 Hz. Four categories, including S–Z, S–N, S–F, and S–ZNOF, are
considered to diagnose the epileptic and healthy signals accord-
ing to the mentioned explanations.

The second dataset that belongs to the Neurology and Sleep
Center of New Delhi consists of EEG signals of ten patients with
epilepsy [37]. These signals were recorded by a Grass Telefactor
Comet AS40 amplification system and 16 gold-coated electrodes.
The position of the electrodes was in accordance with the 10–20
standard. The sampling rate was 200 Hz. The signals were filtered
using the band filter with the cut-off frequencies of 5.0 Hz and
70 Hz.

The dataset was divided into three sections, including pre-ictal
(subset A), inter-ictal (subset B), and ictal (subset C), and each
subset consists of 50 sections. The length of each section is 12.5
s, which is in accordance with 1024 samples. An example of each
section is shown in Fig. 2. The categories of A–C, B–C, A–B, and
AB–C are used to evaluate the efficiency of the proposed features
in the classifier.

2.2. Phase space representation

In comparison with the uneven spaced time series, the usage
of linear methods has the following problems. First, it fails to
diagnose the dynamic state and its structure, and second, it does
not represent much information about the dynamic state. Also, it
does not distinguish noise from chaos [38].

The applications of the reconstructed phase space (RPS) and
the chaos theory have attracted much attention from scientists
of medical sciences, physicists, mathematicians, and engineers [3,
22,39–41]. The phase space is reconstructed based on the delay
coordinated. Since a nonlinear dynamic system cannot be divided
into smaller parts and solve each one of them separately, the
whole system should be studied and investigated all together.
The reconstructed phase space (RPS) is a very useful tool for the
extraction of the nonlinear dynamic state of the signal. Phase
space representation of a signal provides an intuitive image of the
evolution of the dynamic behavior of the signal during the time.

The electroencephalograms can be written as a vector of time
series, VK = {v1, v2, . . . , vN}, where N is total number of data
points and vi is the ith element of the time series [42]. The phase
space is reconstructed by its pathway, which can be stated as
below:

YK = (VK , VK+τ , . . . , VK+(d−1)τ ) (1)

where, K = 1, 2, . . . ,N − (d − 1)τ , τ is the delay value, and
d is the number of selected dimensions [43]. VK+i is a vector
with data points of differences between original corresponding
data point and its ith next data point and it can be shown as
VK+i = {v1−v1+i, v2−v2+i, . . . , vN−i−vN}. The dynamic behavior
of the signal used in the proposed method is considered to be two
dimensional, and the phase space is reconstructed based on τ =
1 [42]. In this case, signal converts to two vectors (dimensions),
which the second vector is a right-shifted VK by one value and
subtracted from VK .
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Fig. 1. Sample of S, Z, N, O, F classes in Bonn University dataset.

Fig. 2. Sample of A, B, C classes in Hauz Khas dataset.

2.3. Feature extraction and the proposed algorithm

According to previous studies, phase space can present diag-
nostic features for the classification of the epileptic and healthy
signals. It is demonstrated that the sinusoidal signals can generate
an elliptical pattern in the phase space [39]. Therefore, due to the
oscillating nature of the signals, it is expected for the EEG signals
to have an elliptical pattern in the phase space [3]. A sample of
phase space representation diagram for the brain signals is shown
in Fig. 3.

The principal component analysis is used to calculate the
center of this elliptical pattern. This nonlinear transition transfers
the center of the signal phase space diagram to point zero, and

also makes the angle of the diagram with the horizon line zero.
Then, assuming a number of ellipses with different radiuses with
the center of the figure, the signal data density in these ellipses
can be considered as a feature. In order to calculate the radiuses
of the optimal ellipses, the datasets are divided into two sections,
including training and testing.

Three innovational methods are considered to apply the el-
lipses to the training dataset, which is explained in the next
section. After calculating the optimal radius of the ellipses, these
radiuses are applied to the testing dataset. The number of data
in each signal, which is in the assumed ellipse, is given to the
classifier as a feature, according to the selected innovational
methods.
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Fig. 3. EEG signal in 2D phase space representation.

The classifier used in this work is the classic k-nearest neigh-
bor classifier with Euclidian distance and neighbor number (k) of
1, which is one of the most basic types of classifiers. This classifier
is used to show the capabilities of the stated feature extraction
and its power compared to the other feature extraction methods
that use more complex classifiers. In order to obtain an unbi-
ased evaluation of the classification performance, 10-fold cross
validation is used to evaluate the precision of the classification.

2.3.1. Gaussian elliptic density (Gaussian ED)

Most of the natural phenomena have a Gaussian distribution
feature. The importance of this distribution is due to the con-
sistency of many of the calculated values during natural and
physical oscillations around a constant value with the values
calculated by this distribution. The probability density function
of this distribution is as below:

n (x; x, σ ) =
1

σ
√
2π

e
− 1

2

(

x−x
σ

)2

(2)

where x is the mean data, and σ is the standard deviation of the
data [44].

One of the remarkable properties of the Gaussian distribution
is the manner of data distribution in it. Fig. 4 shows this distribu-
tion well. For a normal distribution, the values with distances less
than the standard deviation from the average are about 68.27%

Fig. 4. Distributed of data in Gaussian model.

Fig. 5. Distribution of horizontal and vertical axes of signal in phase space
representation..

of the set. However, this value for two standard deviations from
the average is around 95.45%, and for three standard deviations
is 99.73%.

In this method, all of the training data signals of each class is
transferred to the phase space. Then, the standard deviation of
each one of the classes is separately calculated in the horizontal
and vertical direction of PSR. The distribution of a signal in dataset
is specified in the vertical and horizontal axes of Fig. 5, where the
red diagram is the semi Gaussian distribution of the signal in the
vk+1 axis, and the blue diagram is the semi Gaussian distribution
of the signal in the vk axis.

Eq. (3) is used to calculate the standard deviation.

σ =
√

∑

(x − x)2

n
(3)

where n is the number of data.
After transferring to the phase space, due to the application

of the principal component analysis method, the average value
of the data is a small number close to zero. Therefore, x can be
removed from this equation. The Eq. (3) is applied vertically and
horizontally, and the ascending value of the ellipse radiuses is a
multiple of the standard deviation. The radiuses of the ellipses can
be calculated by Eq. (4), where Ri

x represents the horizontal radius
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Fig. 6. Ellipses of Gaussian ED on sample data in 2D PSR.

of the ith ellipse, and σx and σy are the horizontal and vertical
standard deviation of the phase diagram, respectively.

Ri
x = i × σx , Ri

y = i × σy (4)

According to Figs. 4–6, the number of assumed ellipses is consid-
ered to be from 1 to 3, so that 99.73% of the data can be covered.
Therefore, i = 1, 2, 3.

2.3.2. Incremental elliptic density (Incremental ED)

In the method of the previous section, the value of the ellipse
radiuses is a multiple of the standard deviation which is a con-
stant value. Now, this raises this idea that what if the distance
between the ellipse radiuses is variable? This idea leads to the
implementation of a new feature extraction method. Incremental
ED is a set of the separate density of each one of the assumed
ellipses. According to the previous section, the center of the
signal diagram in the phase space is on the zero-point. In this
method, the ellipse radiuses are increased growingly. Therefore,
the perimeter of the ellipses has no intersections with each other.
The radius of the ellipse can be calculated by Eq. (5), where R

j
x

and R
j
y are the horizontal and vertical radiuses of the jth ellipse,

respectively. Since the searching range is in the positive space,
the ellipses would have no intersections but can take different
radiuses to increase a better accuracy than the first method.

Rj
x =

j−1
∑

i=1

Ri
x , Rj

y =
j−1
∑

i=1

Ri
y (5)

The problem here is that how the horizontal and vertical radiuses
should be quantified. The answer to this question lies in the pur-
pose of the extraction of this method. The radius quantifications
should be such that the fault of the classifier in the validation
dataset is decreased and minimized. To this end, the grey wolf
optimizer (GWo) is used [45].

GWo has high local optima avoidance which able to provide
highly competitive results compared to well-known heuristics
such as PSO, GSA, DE, EP, and ES. Finally this optimizer can
show high performance on semi-real constrained and real prob-
lems [45]. This optimizer iterate 200 times, where coefficient
component of ‘a’, a hyper parameter of GWo algorithm, is linearly
decreased from 2 to 0 over the course of iterations. A 2NE array
called particle is used for coding of the particles (the wolves) that
are in the searching space, where NE is the number of assumed
ellipses. 100×dimension is the number of search agents, where di-
mension is the size of particle array. These agents search in space
of candidate solutions to find optimum values for every element
of particle array in range of signals amplitude. The horizontal and
vertical radiuses of the ellipse can be calculated based on Eq. (6).

R
j
x =

j
∑

i=1

particle (2i − 1)

R
j
y =

j
∑

i=1

particle(2i)

(6)

where R
j
x and R

j
y represent the horizontal and vertical radiuses of

the jth ellipse, respectively.
The input of the fitness function is the particle and the training

data of each class. According to the particle array and Eq. (6), the
assumed ellipses are drawn on each one of the signal series, and
the number of data inside each ellipse is stored as the feature.
These features are applied to k-nearest neighbor classifier with
10-fold cross validation on train data and misclassification rate
can be considered as the output of the fitness function. The opti-
mizer should work to decrease this rate as particle quantification
in next iterations, and at the end of these iterations, the optimal
radiuses are obtained (Fig. 7).
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Fig. 7. Ellipses of incremental ED on sample data in 2D PSR.

2.3.3. Intersecting elliptic density (Intersecting ED)
In the previous section, it was mentioned that the ellipses have

no intersections. In this feature extraction method, radiuses of
the ellipses are selected randomly, and there is the possibility of
intersections in assumed ellipses. As in the previous section, an
optimizer is used for the calculation of the radiuses to increase
the accuracy of the classifier. The particle coding of the optimizer
is equal to an array named particle and is twice the size of the
ellipses. The radius of the ellipses can be calculated by Eq. (7),
where R

j
x and R

j
y are the horizontal and vertical radiuses of the

jth ellipse, respectively (Fig. 8).

R
j
x = particle(2j − 1)

R
j
y = particle(2j)

(7)

The fitness function is fed with the inputs of particle and training
data of two groups, and its output is misclassification rate for the
k-nearest neighbor with 10-fold cross validation. The grey wolf
optimizer should find particles to minimize this misclassification
in each iteration. Parameter tuning of this optimizer is the same
as part 2–3–2.

The fitness function for this method is stated in Algorithm 4.

Fig. 8. Ellipses of intersecting ED on sample data in 2D PSR.

3. Results and discussion

In this section, the proposed method of this article is evaluated
using three tests. These tests include parameter tuning of the
number of ellipses, the results of the different methods stated in
this article, and, eventually, a comparison with other methods in
terms of speed and accuracy.

3.1. First test — parameter tuning for the number of ellipses

In the previous section, the calculation of the optimal value for
radiuses in three mentioned feature extraction methods was ad-
dressed. However, no explanations were given about the number
of formative ellipses. In first method, Gaussian ED, according to
the Gaussian characteristics, about 95% of the data is supported in
the distance of 2 standard deviations from the average, and 99.7%
of data is supported in the distance of 3 standard deviations from
the average. Therefore, it is assumed that two or three ellipses are
suitable for the classifier. In order to obtain this hyperparameter,
a set of data is considered as the validation. Validation is obtained
through the training data by the 10-fold cross validation. After
calculating the radiuses of the ellipses in the training data, the
algorithm is applied to the validation data. The obtained accuracy
is given in Table 1. According to the table, number of three
ellipses has the highest average classifier accuracy, which is 89.03
percent.

In the following, two ellipses are used for classification with
this method. The matrix of features consists of two ellipses with
a radius equal to the coefficients of standard deviation in first
class training data, and two ellipses with a radius equal to the
coefficients of standard deviation in second class training data.
Which means that the matrix of features has four columns. In
the second and third feature extraction techniques, the number of
ellipses is obtained by the trial and error method on the validation
data. The number of ellipses is first tested as 2, and depending
on the data, the best number of ellipses for the Incremental ED
method is given in Table 2, and the best number of ellipses for
the Intersecting ED method is given in Table 3.

3.2. Second test — calculating the classifier accuracy

After tuning the optimal number of ellipses in the previous
section, the array set of the radius values, which was obtained
through the optimizer, is stored for each dataset, and then, is
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Table 1

Classification accuracy (%) for different number of ellipses on Gaussian ED in validation data.

Dataset 1 2 3 4 5 6 7 8 9 10

F-S 89.35 92.1 92 91.5 91.9 91.5 91.8 91.45 92.3 91.5
S–N 98.5 98.95 98.7 98.3 98.4 98.35 98.6 98.3 98.6 98.65
S–Z 97.1 97.7 98.1 98.15 98.1 98 97.95 98.05 98.05 95.97
S–ZNOF 98.5 98.48 98.4 98.44 98.34 98.48 98.42 98.36 98.38 98.48
A–B 44.5 43.1 46.4 44.43 43.2 42.6 42.8 43.5 44 43.7
A–C 87.1 87.4 87.4 87.3 87.4 88.4 88.10 87.6 87.7 87.4
B–C 99.6 100 100 99.8 99.8 99.9 100 100 99.8 99.8
AB–C 93.67 92.8 91.27 93.4 92.53 92.6 92.67 94.91 91.67 92.33
Average 88.54 88.82 89.03 88.92 88.71 88.73 88.79 89.02 88.81 88.48

Table 2

Best number of ellipses in Incremental ED.

Dataset Optimal number of ellipses

F-S 4
S–N 4
S–Z 3
S–ZNOF 3
A–B 4
A–C 3
B–C 3
AB–C 3

Table 3

Best number of ellipses in Intersecting ED.

Dataset Optimal number of ellipses

F-S 9
S–N 8
S–Z 7
S–ZNOF 9
A–B 5
A–C 10
B–C 7
AB–C 8

Table 4

Test accuracy of three method with 1-NN classifier.

Dataset Gaussian ED
acc (%)

Incremental
ED acc (%)

Intersecting
ED acc (%)

F-S 91.8 99 100

S–N 98.4 100 100

S–Z 97.7 100 100

S–ZNOF 98.28 99 99.4

A–B 46.1 95 94
A–C 87.4 98 99

B–C 100 100 100

AB–C 90.8 98.68 99.33

Average 88.81 98.71 98.97

applied to the testing data. The convergence graph of a sample
database for the optimizer is shown in Fig. 9. The accuracy of
the testing datasets for the three type of feature extraction tech-
niques is given in Table 4. It can be seen that the Intersecting
ED method is slightly superior to the Incremental ED, and both
of these methods have very higher accuracy compared to the
Gaussian ED. A sample of the phase space representation and the
ellipses applied to the F-S dataset for three methods is shown
in Fig. 10. As can be seen, Incremental ED method gives more
options for choosing ellipse radiuses compared to Gaussian ED,
and the intersection of the ellipses in Intersecting ED gives more
complexity to the model and has a higher ability in the dataset
classification.

3.3. Third test – a comparison with previous works

Finally, a comparison is made between the accuracy of the
proposed algorithm and the works done by other researchers in

Fig. 9. Convergence graph in A–B dataet with In intersecting ED.

the past. According to Table 5, for classification of the S–F dataset,
the [46] has used the EMD and the adaptive noise methods, and
reached the accuracy of 98% for separation of two classes (see
Table 6).

In the cases of S–Z and S–N, several classification methods
have reached an accuracy of 100%. For example, a classifica-
tion method based on the complex network and edge weight-
ing were discussed [47], which classified the epileptic seizures
with an accuracy of 100% using the support vector machine
classifier. In [48], the parts of the signal was broken down to
subbands using the Tunable-Q Factor Wavelet Transform. This
method has obtained the accuracy of 100% in classification. It
should be noted that the proposed method of this study has
obtained 100% accuracy in both databases.

In the two-class classification of the four types, S–ZNOF, the
proposed method has higher accuracy compared to the previous
works except for two cases. In the fourth classification, the pro-
posed method was able to diagnose the two groups of epileptic
and nonepileptic, at a reasonable rate. Even though the pro-
posed method performs slightly weaker than the method of [49]
and [50], low computational loads and high rate of the proposed
method in obtaining the optimal response can be an advantage of
the proposed method over MRBF-MPSO, GLCM+FV and SVM [49],
and make it possible to use it in the real-time systems. Another
better accuracy method, P-1D-CNN [50], has lower accuracy in
other cases of classification. Also this method is a deep learning
classifier, whereas proposed method is a feature extraction that
can be fed to various classifiers.

In [51], the EEG signals are analyzed using the EMD and the
adaptive noise methods; The different statistical features based
on sub-signals are analyzed using the artificial neural network
and obtained an accuracy of 98.87% in the classification. In [49],
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Fig. 10. Applying three methods in one F-S dataset sample.

an automatic classification method based on the multiscale radial
basis function and the fisher vector encoding is presented. The
accuracy obtained by this method is 99.53%.

For the second dataset, in [52], the classification accuracy of
around 74.6%, 79.7%, 96.5%, and 91.8% was obtained for the A–
B, A–C, B–C and A–B using the Hurst exponent value and the
Autoregressive Moving Average parameters. In [49], the classifier
has obtained the accuracies of 85.7%, 97.4%, 99.3%, and 98.2%,
respectively. In comparison, the proposed method shows better
classification performance with the results of 94%, 99%, 100% and
99.3%.

After the accuracy of the classifier, the second purpose of
presenting this feature is to increase the speed of diagnosis for the
EEG epileptic signals so that it can be used in the automatic real-
time epilepsy diagnose systems. For this purpose, the calculation
time of the mentioned features are compared with other feature
extraction methods in Table 7. All simulations executed on a
computer equipped with an Intel i7 processor and 8 Gb RAM. The
timing are calculated using ’tic toc’ command of MATLAB.

The features extracted from the wavelet transform consist
of autoregressive model coefficients of order 4 [57], Shannon
entropy values for the discrete wavelet packet transform at level
4 [58], an estimation of the second cumulant of the scaling ex-
ponents and the singularity spectrum. The mother wavelet used
in the wavelet transform is the Daubechies2. This function has
applications in biological signals.

The mentioned method of EMD is the extraction feature
method used in [3], which consists of IMFs and transfer of which
to the 2D phase space, and finally, calculation of the 95% confi-
dence ellipse as the signal feature. Four IMFs was used for each
signal.

The results indicate that the proposed method of Intersecting
ED has a higher feature extraction rate compared to other meth-
ods. Although it does not has a high training rate, the test rate is
very fast. The rates of the approximate entropy method and the

Table 5

Comparison of the proposed method with the existing methods studied on first
dataset.

Dataset Methods Acc (%)

F-S

WPE and SVM [53] 96.5
CEEMAN and LPBOOST classifier [54] 97
CEEDMAN growth curve [46] 98
MRBF-MPSO,GLCM+FV and SVM [49] 99.3
P-1D-CNN, pyramid model M5 [50] 99.4
Intersecting ED 100

S–N

WPE and SVM [53] 99.6
DTCWT+GRNN [36] 100

TQWT [48] 100

MRBF-MPSO,GLCM+FV and SVM [49] 100

P-1D-CNN, pyramid model M5 [50] 99.1
Intersecting ED 100

S–Z

WPE and SVM [53] 99.5
edge weight, LDA and SVM [47] 100

ATFFWT+FD, LS-SVM [55] 100

MRBF-MPSO,GLCM+FV and SVM [49] 100

P-1D-CNN, pyramid model M5 [50] 100

Intersecting ED 100

S–ZNOF

WPE and SVM [53] 97.38
ATFFWT+FD, LS-SVM [55] 99.2
CEEDMAN and ANN [51] 98.78
MRBF-MPSO,GLCM+FV and SVM [49] 99.53
MMSFL-OWFB based KE and SVM in 10-fold CV [56] 99.2
P-1D-CNN, pyramid model M5 [50] 99.7

Intersecting ED 99.4

empirical mode decomposition (EMD) method are very depen-
dent on the lengths of the brain signal, and the rate of feature
extraction significantly increases by increasing these lengths.

4. Conclusion

In this study, a new method was presented for feature extrac-
tion on the classification of the EEG signals. In order to obtain
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Table 6

Comparison of the proposed method with the existing methods studied on
second dataset.

Dataset Methods Acc (%)

A–B
HURST, AMA [52] 74.6
MRBF-MPSO,GLCM+FV and SVM [49] 85.7
Intersecting ED 94

A–C
HURST, AMA [52] 79.7
MRBF-MPSO,GLCM+FV and SVM [49] 97.4
MMSFL-OWFB based KE and SVM in 10-fold CV [56] 98
Intersecting ED 99

B–C
HURST, AMA [52] 96.5
MRBF-MPSO,GLCM+FV and SVM [49] 99.3
MMSFL-OWFB based KE and SVM in 10-fold CV [56] 100

Intersecting ED 100

AB–C
HURST, AMA [52] 91.8
MRBF-MPSO,GLCM+FV and SVM [49] 98.2
MMSFL-OWFB based KE and SVM in 10-fold CV [56] 98
Intersecting ED 99.33

Table 7

Comparison of the proposed method with the existing methods in mean speed
computation..

Dataset Methods speed (s)

University of Bonn
ApEn [59] 9.54
Wavelet Transform [60] 0.0481
EMD [3] 0.7482
Intersecting ED 0.0061

Neurology and
Sleep Center
of the Hauz
Khas

ApEn [59] 0.905
Wavelet Transform [60] 0.0131
EMD [3] 0.0133
Intersecting ED 0.0012

this method, first, the signals were mapped in a 2D phase space.
Then, hypothetical ellipses were considered in the phase space
representation. The number of points in each ellipse was given to
the k-nearest neighbor classifier as a feature. In order to evaluate
the efficiency of this feature, two different datasets were used.
According to the results of the previous section, this feature
extraction method has very high accuracy. Also, the rate of feature
extraction and diagnosis of the epileptic signals is considerably
high in this method compared to other conventional methods,
therefore, this method can be implemented on the real-time
epilepsy diagnosis systems, as method optimizes the radiuses by
decreasing the misclassification rate in train data. Train data for
real-time systems can be individual data from previous seizure
attacks of mentioned person or general datasets of seizure at-
tacks. Although the rate of learning in the training phase is not
very high, a faster optimizer can be used to learn the radius
values of the ellipses. Also, calculating the dimensions of the
phase space such that the resulted figure of this space becomes
a circle can be considered among the future works. By calculat-
ing the τ parameter, the central limit theorem characteristic is
completely satisfied, and the distribution of the data becomes
entirely gaussian. Therefore, the first feature extraction method,
which is the Gaussian ED, can be used for classification and totally
remove the learning phase from the optimization algorithms
and increase the rate of the training phase of the classifier. The
proposed method can be employed to EEG signal classification
such as similar disorders, BCIs, sleep stages and simply, every
single classifications with distinction of frequency and amplitude
in each class signals. Finally, this feature extraction method can
be used by other classifiers for various classification problems.
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