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Abstract4

In this work, a zone economic model predictive controller is proposed for the operation of a5

boiler-turbine generating system. The control objective is to optimize the operating economics6

while satisfying the power generation demand from the grid. First, the considered boiler-turbine7

system is introduced and the economic performance indices are formulated. Then, a moving8

horizon estimator (MHE) is designed to provide state estimates for the controller in virtue of9

its ability in dealing with nonlinearities and constraints. Subsequently, an economic model10

predictive control (EMPC) design integrated with a zone tracking objective is proposed for the11

boiler-turbine generating system. Extensive simulations under different scenarios illustrate the12

effectiveness of the proposed EMPC design compared with the conventional set-point tracking13

model predictive control.14
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1 Introduction16

With more penetration of renewable energy into the electricity supply network, it is necessary17

for conventional coal-fired power plants to participate in frequency adjustment and peak regulation18

for the safety and stability of the whole power grid [1]. Due to the randomness and uncertainty19

in the power generated from renewables, the operation of power plants nowadays is faced with20

new challenges including frequent and large demand variations. The coordinated control system21

(CCS) plays a vital role in the stable and economic operation of a power plant, wherein its main22

responsibility is to drive the boiler-turbine-generator system as one entity and harmonize the slow23

dynamics of the boiler with the fast dynamics of the turbine and the generator especially during24

significant load changes [2]. In the operation of a power plant, it is important that the power25

output meets the demand from the grid while maintaining other important variables like main26

steam pressure and main steam temperature within their desired ranges [3].27

One common control strategy adopted in the control of boiler-turbine systems is the classical28

proportional-integral-differential (PID) control [4–8]. Different advanced control strategies have29

also been investigated in the literature, including active disturbance rejection control [9], sliding30

mode control [10, 11], feedback linearization control [12–14], and model predictive control [15–20].31

Among these control strategies, model predictive control (MPC) has become one of the most pre-32

vailing techniques in the area of boiler-turbine coordinated control due to its distinct advantages33

in dealing with multi-input and multi-output systems and constraints. Different MPC algorithms34

have been investigated including dynamic matrix control [15], multi-model predictive control [16]35

and nonlinear model predictive control [17], and their variations. In [18], a T-S fuzzy stable model36

predictive tracking controller is developed for a 600 MW oil-fired drum-type boiler-turbine gener-37
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ating unit to achieve offset-free tracking of the predetermined power and pressure set-points while38

guaranteeing the input-to-state stability. In [19], a computationally efficient nonlinear model pre-39

dictive controller is developed by online successively linearizing the local state-space model. In40

[20], an improved linear extended state observer (ESO) is synthesized with a fuzzy model predic-41

tive controller to enhance its disturbance rejection ability by actively estimating and compensating42

unknown disturbances and model-plant mismatch.43

On the other hand, with the increasing worldwide concern of energy shortage and environment44

conservation, recent researches pay more attention to the economic operation of boiler-turbine45

systems, such as minimization of fuel consumption and pollution, maximization of system life cycle46

and economic profits. To achieve economic operation of a boiler-turbine system, the classical two-47

layer hierarchical control architecture is usually employed [21, 22]. In the architecture, economically48

optimal steady-states are first calculated through real-time optimization (RTO) in the upper layer49

[22–24]. The optimal set-points are then transferred to the regulatory controller in the lower layer50

to track the given set-points. However, it is recognized that this two-layer architecture may lead to51

sub-optimal or even unreachable set-points [25]. One way to overcome these issues is to integrate52

the two layers into one single layer wherein a general economic cost is directly optimized at each53

sampling time. The resulting control scheme is referred to as economic model predictive control54

(EMPC). Significant efforts have been devoted to the theoretical analysis [26, 27] and application55

research [28, 29] of EMPC in recent years.56

In a boiler-turbine system, the power output set-point, termed as unit load demand, is usually57

determined by the grid dispatch and the corresponding throttle pressure set-point is obtained from58

a fixed power-pressure nonlinear mapping [22], which defines the unit’s operating policy in the59

whole power operating range and remains unchanged. The power output and throttle pressure60

set-points determined through this method cannot take into account the trade-off between different61
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economic objectives, or even unreachable in the presence of significant plant variations or unknown62

disturbances. In the operation of the boiler-turbine system, the primary task is to satisfy the power63

demand from the grid in real time while reducing the operational costs. Therefore, the unit load64

demand tracking requirement should be met first compared with other economic considerations65

such as the minimization of fuel usage and throttle loss. Motivated by these considerations and66

inspired by [30–32], an economic MPC with zone tracking design is proposed for boiler-turbine67

systems in this work. First, the studied 300 MW coal-fired drum-type boiler-turbine system and68

its model are introduced, and four common performance indices are formulated. Then, a moving69

horizon estimator (MHE) is employed to provide state estimates for the subsequent controller de-70

sign due to its distinct ability in dealing with system constraints and nonlinearities. Subsequently,71

a novel economic MPC with zone tracking design is proposed to optimize the operating economics72

while satisfying the power generation demand from the grid in real time. To achieve this, a zone73

tracking cost, which penalizes the distance between power output and the demand target zone,74

is incorporated into the existing EMPC framework. The conventional two-layer tracking MPC75

is also introduced for comparison purpose. The simulation results under different scenarios have76

demonstrated that the proposed EMPC provides a more flexible way to handle the economic opti-77

mization problem of the boiler-turbine system in the presence of system nonlinearities, constraints,78

and disturbances.79

The remainder of this paper is organized as follows: a detailed description of the studied 300MW80

boiler-turbine system along with its sixth-order nonlinear dynamical model and the control problem81

formulation are presented in Section 2; Section 3 introduces the design of MHE and conventional82

tracking MPC, and Section 4 provides the design details of the proposed economic MPC with a83

zone tracking objective. Extensive simulations have been conducted in Section 5 to verify the84

performance of the proposed EMPC over conventional tracking MPC in load demand tracking,85

4

Jo
ur

na
l P

re
-p

ro
of



economic performance optimization and disturbance rejection. Finally, some conclusions are drawn86

in Section 6.87

2 System description and performance indices88

2.1 System description89

In this work, we consider a 300 MW coal-fired drum-type boiler-turbine system as shown in Fig.90

1. This system works following a water-steam Rankine cycle. The raw coal in the coal bunker is91

first transmitted to the mill through the coal feeder and ground into pulverized coal. The pulverized92

coal is then blew into the boiler furnace and burns there after blended with preheated air. On the93

steam side, the water flows through the downcomer to the water wall and is heated to saturation94

condition due to the radiation energy from coal combustion. The saturated steam-water mixer95

then enters the steam drum, where the steam is separated from the water and flows into the high96

pressure cylinder after heated by superheater. The exhausted steam of high pressure cylinder is97

then reheated by reheaters and fed into the middle and low pressure cylinders. The steam turbine98

is connected to a generator to produce electricity. The exhaust steam discharged from the low99

pressure cylinder condenses to water in a condenser, which is pumped back to the drum after100

heated by the economizer and continues the circulation.101

Based on mass and energy balances, a sixth-order nonlinear model shown below can de developed102
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Figure 1: Schematic of the coal-fired drum-type boiler-turbine unit.

to describe the dynamics of the above boiler-turbine system [33]:103

q̇f =
1

c1
[uB(t− τ)− qf ]

Ḋb =
1

c2
(k1kcqf −Db)

ṗb =
1

c3

(

Db − k2
√
pb − pT

)

ṗT =
1

c4

(

k2
√
pb − pT −DT

)

ṗ1 =
1

c5
(k3µT pT − p1)

ḊT =
1

c6
(k4p1 −DT )

(1)

where qf (t/h) is the mass flow rate of the pulverized coal blowing into the furnace, Db (t/h) is104

the steam evaporation rate in the drum, pb (MPa) is the drum pressure, pT (MPa) is the throttle105

pressure, p1 (MPa) is the governing stage pressure, DT (t/h) is the turbine inlet steam mass flow106

rate. uB (t/h) denotes the fuel feed rate and µT (%) is the throttle valve opening. τ (s) is the time107

delay of the coal mill, ci (s) (i = 1, . . . , 6) are time constants of the coal mill, water wall, drum,108
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superheater, nozzle chamber and reheater, respectively, kc is the coal heat value coefficient and ki109

(i = 1, . . . , 5) are parameters depending on operating conditions.110

2.2 Performance indices and control problem formulation111

For the boiler-turbine system, two important output variables are the power output Ne (MW)112

and the throttle pressure pT (MPa). The power output depends on the turbine inlet steam mass113

flow rate as Ne = k5DT . Two common manipulated inputs are the fuel feed rate uB and the114

throttle valve opening µT . Let us define the state vector as x = [ qf Db pb pT p1 DT
]T , the115

manipulated input vector as u = [ uB µT
]T , and the process output vector as y = [ Ne pT ]T .116

Then the boiler-turbine model can be described by a compact nonlinear state-space model as117

follows:118

ẋ(t) = f(x(t), u1(t− τ), u2(t))

y(t) = h(x(t))

(2)

The boiler-turbine system is a complex thermodynamic system. A few factors make the optimal

operation of this process challenging. First, there is a time delay in the fuel feed as a result of coal

grinding process (i.e., the time delay in u1) which may lead to large pressure variations during

load changes. Second, there exists strong coupling between the relatively fast valve-power path

and the slower fuel-pressure path. Furthermore, the nonlinearity of the system and the typical

wide operating range also intensify operation challenges. Four common performance indices for the

operation of the boiler-turbine system are shown below:

J1 = u1 (3a)

J2 = u2 (3b)

J3 = y1 (3c)
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J4 = ‖y1 − Euld‖2 (3d)

wherein Euld is unit load demand (MW) from the power grid, J1 represents the coal consumption,119

J2 represents the steam valve opening which is negatively related to the steam valve throttle loss120

resulting from main steam flowing through the half-open throttle valve, J3 represents the power121

output generated by the turbine, and J4 represents the load tracking error. In order to take into122

account these four economic performance indices for operation optimization and overcome the123

aforementioned control difficulties, an economic MPC integrated with a zone tracking objective is124

proposed for the boiler-turbine system in this work.125

3 MHE and conventional tracking MPC126

In this section, we introduce MHE and the conventional tracking MPC. We propose to use127

MHE for state estimation purpose since it can handle nonlinear systems and can take into account128

constraints [34, 35]. The tracking MPC will be compared with the proposed economic MPC with129

zone tracking.130

3.1 Design of MHE131

For the boiler-turbine system, the measured outputs are the power output Ne and the throttle132

pressure pT . It can be verified that the entire system state is observable based on these output133

measurements. In the proposed economic MPC design, the entire system states are needed. This134

makes the design of a state estimator necessary.135

To proceed, we first discretize the continuous-time system (2) and write it in the following form136
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taking into account process and measurement noise:137

x(k + 1) = F (x(k), u1(k − d), u2(k)) + w(k)

y(k) = H(x(k)) + v(k)

(4)

where x(k) ∈ R6 is the system state vector at sampling time tk = t0 + k△ with k being a non-138

negative integer, t0 denoting the initial time instant and △ being the time interval between two139

consecutive sampling instants; y ∈ R2 is the system output vector; function F and H are the140

corresponding discretized version of f and h in (2), respectively; d is the number of discretization141

periods in the time delay and is assumed to satisfy d = τ/△; w ∈ R6 and v ∈ R2 denote the142

process disturbance vector and measurement noise vector, respectively. It is assumed that the143

system inputs (u1, u2) are held constant over each sampling period; that is, u1 and u2 are piecewise144

constant functions with a sampling time the same as △. It is also assumed that the process145

disturbance w and measurement noise v are two mutually uncorrelated Gaussian noise sequences146

and are with zero-mean and covariance matrices Qw and Rv, respectively.147

MHE is an online optimization based approach. At a sampling time, it provides an estimate

of the trajectory of the system state within an estimation window by solving a least squares type

optimization problem based on the system model and the most recent few measurements and

manipulated inputs. It requires that the previous measurements and manipulated inputs are stored.

Specifically, at a sampling time tk, the MHE optimization problem is formulated as follows:

min
x̂(k−Nm),{ŵ(j)}k−1

j=k−Nm

k−1
∑

j=k−Nm

‖ŵ(j)‖2
Q−1

w
+

k
∑

j=k−Nm

‖v̂(j)‖2
R−1

v
+ ‖x̂(k −Nm)− x̄(k −Nm)‖2

Π−1
k−Nm

(5a)

s.t. x̂(j + 1) = F (x̂(j), u1(j − d), u2(j)) + ŵ(j) j = k −Nm, ..., k − 1 (5b)

v̂(j) = y(j) −H(x̂j(j)) j = k −Nm, ..., k (5c)
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x̂(j) ∈ X j = k −Nm, ..., k (5d)

ŵ(j) ∈ W j = k −Nm, ..., k − 1 (5e)

In the above optimization, x̂, ŵ and v̂ represent the estimates of x, w and v, respectively; Nm148

represents the size of the estimation window. It is assumed that the previous manipulated inputs149

(u1(j − d), u2) (j = k − Nm, . . . , k − 1) and output measurements y(j) (j = k − Nm, . . . , k) are150

available within the estimation window. X and W denote constraints on system states and distur-151

bances, respectively. The arrival cost term ‖x̂(k −Nm)− x̄(k −Nm)‖2
Π−1

k−Nm

summarizes the prior152

information within the period (t0, tk−Nm
) with Πk−Nm

calculated as follows [36]:153

Πk+1 = Qw +Ak

(

Πk −ΠkC
T
k (R +CkΠkC

T
k )

(−1)CkΠk

)

AT
k (6)

where Ak and Ck are the Jacobian matrices at tk calculated as follows:154

Ak =
∂F (x(k), u1(k − d), u2(k))

∂x(k)T
, Ck =

∂H(x(k))

∂x(k)T
(7)

In the optimization problem, Eq. (5a) represents the cost function to be minimized with x̂(k−155

Nm) and {ŵ(j)}k−1
j=k−Nm

as the decision variables; Eqs. (5b) and (5c) are system model equations;156

and Eqs. (5d) and (5e) denote system state and disturbance constraints. At each sampling time157

tk, optimal state estimate x̂∗(k −Nm) and process disturbance estimate sequence {ŵ∗(j)}k−1
j=k−Nm

158

can be obtained through solving the optimization problem. Therefore, an estimate of the state159

trajectory x̂∗(j) (j = k − Nm, . . . , k) can be calculated based on system model Eq. (5b). Then160

current state estimate x̂∗(k) is fed to the proposed economic MPC. At next sampling time tk+1,161

the estimation window is moved forward by one sampling period, and then state estimate x̂∗(k+1)162

can be obtained.163
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3.2 Design of tracking MPC164

The conventional tracking MPC will be compared with the proposed economic MPC design. For

the tracking MPC, the conventional two-layer control structure is used. In the upper RTO layer,

a steady-state economic optimization is performed to determine the optimal tracking set-points.

The set-points are then sent to the lower layer MPC. In the RTO layer, we consider a weighted

summation of the performance indices introduced in Section 2.2 to find the optimal set-points.

Specifically, the RTO optimization problem is formulated as follows:

min
xs,us

α1J1 + α2J2 + α3J3 + α4J4 (8a)

s.t. f(xs, u1,s, u2,s) = 0 (8b)

umin ≤ us ≤ umax (8c)

xmin ≤ xs ≤ xmax (8d)

wherein α1, α2, α3 and α4 are the corresponding weights for J1, J2, J3 and J4, respectively. In165

this optimization problem, the decision variables are the optimal operating steady-state state and166

input vectors, Eq. (8a) is the objective function, Eq. (8b) is the steady-state model of the system,167

Eqs. (8c) and (8d) are the constraints on the system state and input vectors, respectively. By168

solving this nonlinear optimization problem, the economically optimal operating point (xs, us) can169

be found for a given unit load Euld, and the corresponding output set-point can be determined170

based on the output equation and transferred to the lower layer tracking MPC.171

In the lower layer, a nonlinear output-feedback tracking MPC controller is designed to track the

optimal set-points from RTO layer to improve the load-following capability of the boiler-turbine
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system. The tracking MPC is formulated as follows:

min
u(k),u(k+1),...,u(k+Np−1)

Np
∑

i=1

(y(k + i)− ys(k + i))T Q (y(k + i)− ys(k + i))

+ (u(k + i− 1)− us(k + i− 1))T R (u(k + i− 1)− us(k + i− 1)) (9a)

s.t. x(k + i) = F (x(k + i− 1), u1(k + i− 1− d), u2(k + i− 1)) i = 1, . . . , Np

(9b)

y(k + i) = H(x(k + i)) i = 1, . . . , Np (9c)

x(k) = x̂(tk) (9d)

umin ≤ u(k + i− 1) ≤ umax i = 1, . . . , Np (9e)

dumin · △ ≤ u(k + i− 1)− u(k + i− 2) ≤ dumax · △ i = 1, . . . , Np (9f)

xmin ≤ x(k + i) ≤ xmax i = 1, . . . , Np (9g)

where Np is the prediction horizon, △ is the sampling time, ys(k+ i) and us(k+ i) are the optimal172

output and input set-points from the RTO layer, Q and R are the weighting matrices on the outputs173

and control inputs respectively, and x̂(tk) is the state estimate from MHE at time tk.174

In this optimization problem, Eq. (9a) is the quadratic cost function penalizing the deviations175

of the system outputs and inputs from the optimal set-points, Eqs. (9b) and (9c) are the model176

constraints, Eq. (9d) defines the initial condition of the optimization problem at time instant tk,177

Eqs. (9e) and (9f) are the physical constraints on the actuator amplitude and increment respectively,178

and Eq. (9g) is the state constraints for safety reasons. After solving this optimization problem at179

time tk, the optimal input sequence {u∗(k), u∗(k + 1), · · · , u∗(k + Np − 1)} can be obtained, and180

the first control input u∗(k) is then applied to the system. At next sampling time tk+1, the MPC181

is reinitialized with an updated state estimate from the MHE and computes another optimal input182
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sequence.183

4 Proposed economic MPC with zone tracking184

For the boiler-turbine coordinated control system, the primary task is to track the unit load

demand from the grid as close as possible, while keeping the throttle pressure in an acceptable

range. Usually, the throttle pressure is set in a set-point calculated from a nonlinear power-

pressure mapping or a static multi-objective optimization problem. However, since load condition

of a boiler-turbine system changes often, a predetermined set-point at a given load may not be

optimal any more, or even unreachable. Moreover, system economics during transient operation

have never been considered. In order to take into account the system economic performance during

daily operation while always prioritizing load demand tracking, an EMPC with zone tracking is

proposed. In the proposed design, a zone tracking cost is incorporated into the EMPC framework

to realize unit load demand tracking for improved economic performance. The proposed EMPC

optimization problem is formulated as follows:

min
u(k),...,u(k+Np−1)

ε(k+1),...,ε(k+Np)

Np
∑

i=1

‖y(k + i)− ε(k + i)‖2S + (α1u1(k + i− 1) + α2u2(k + i− 1) + α3y1(k + i))

(10a)

s.t. x(k + i) = F (x(k + i− 1), u1(k + i− 1− d), u2(k + i− 1)) i = 1, . . . , Np (10b)

y(k + i) = H(x(k + i)) i = 1, . . . , Np (10c)

x(k) = x̂(tk) (10d)

umin ≤ u(k + i− 1) ≤ umax i = 1, . . . , Np (10e)

dumin · △ ≤ u(k + i− 1)− u(k + i− 2) ≤ dumax · △ i = 1, . . . , Np (10f)

xmin ≤ x(k + i) ≤ xmax i = 1, . . . , Np (10g)
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yL(k + i) ≤ ε(k + i) ≤ yH(k + i) i = 1, . . . , Np (10h)

wherein ε(k) is the slack variable introduced to realize zone tracking control with weighting matrix

S defined as S = diag([α4, 0]) ; yL(k) and yH(k) define the lower and upper bound of the target

zone for the controlled variables respectively and can be defined as:

yL(k + i) = ys(k + i)− δ(k + i) i = 1, . . . , Np (11a)

yH(k + i) = ys(k + i) + δ(k + i) i = 1, . . . , Np (11b)

wherein ys(k) corresponds to the original optimal set-points and δ(k) represents the relaxation value185

from the original set-points. By setting δ(k) to zero, the tracking zone of the proposed EMPC will186

become a set-point line. On the other hand, the set-point tracking objective can be relaxed to187

a zone tracking objective by setting δ(k) to a non-zero value. In this way, the output variations188

within the target zone are ignored, the system is therefore less sensitive to model mismatch and189

uncertainties, and the overall system becomes more robust.190

In this optimization problem, Eq. (10a) is the optimization objective function consisting of191

both zone tracking cost and economic considerations of the boiler-turbine system, Eqs. (10b)192

- (10g) are the model constraints, initial state, actuator and state constraints respectively, Eq.193

(10h) represents the zone constraints of the slack variables. At each sampling time tk, both the194

optimal input sequence {u∗(k), u∗(k +1), · · · , u∗(k+Np − 1)} and optimal slack variable sequence195

{ε∗(k+1), ε∗(k+2), · · · , ε∗(k+Np)} are calculated simultaneously with the predetermined δ(k) by196

solving this optimization problem and the first control input u∗(k) is then applied to the system.197

At next sampling time tk+1, the proposed EMPC is reinitialized with an updated state estimate198

from the MHE and computes another optimal input sequence.199
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Table 1: Model parameters

Static functions Dynamic constants

k1 = 2.46q0.230f τ = 43

k2 = 42.51p0.956b c1 = 22
k3 = 0.0083 c2 = 380
k4 = 74.7 c3 = 4057

k5 = 0.86D−0.148
T c4 = 5101

c5 = 5
c6 = 5

5 Simulation results200

In this section, we apply the proposed EMPC to the boiler-turbine system and compare its201

performance with the conventional tracking MPC. The optimization problems (MHE, RTO, MPC202

and EMPC) are solved using IPOPT in Python (version 2.7) based on CasADi (version 3.4.5) - a203

software framework to facilitate the implementation and solution to optimal control problems using204

automatic differentiation [37].205

5.1 System parameters and constraints206

For the boiler-turbine system in Eq. (2), model parameters used in the simulations are given207

in Table 1. The lower and upper limits of the manipulated inputs are umin = [ 0 0 ]
T and umax =208

[ 150 100 ]
T , respectively. The lower and upper limits of the changing rates of the two manipulated209

inputs are dumin = [−0.3 −0.2 ]
T and dumax = [ 0.3 0.2 ]

T , respectively. The lower and upper limits210

of system states are xmin = [ 0 0 0 0 0 0 ]
T and xmax = [ 150 1200 25 20 20 1200 ]

T , respectively.211

The lower and upper limits of the two system outputs are ymin = [ 0 0 ]
T and ymax = [ 400 20 ]

T ,212

respectively.213
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5.2 State estimation using MHE214

First, the state estimation performance of the MHE scheme introduced in Section 3.1 is illus-215

trated. It is assumed that the two outputs are measured every △ = 5s and the measurements216

are immediately available to the state estimator. We consider that the system is at initially a217

steady state xs1 = [ 78.9 530.1 14.9 14.0 7.1 530.1 ]
T and the corresponding steady-state input is218

us1 = [ 78.9 61.2 ]
T . We consider that the boiler-turbine system is affected by both process dis-219

turbance and measurement noise. Specifically, the process disturbance sequence w is generated220

following normal distribution with zero mean and standard deviation 0.008xs1 to represent a typi-221

cal noise condition in actual operations and is bounded between −0.016xs1 and 0.016xs1. Random222

noise sequence v is Gaussian white noise with zero mean and standard deviation 0.002ys1 in which223

ys1 is corresponding steady-state output.224

The MHE parameters Qw and Rv are usually chosen as the covariance matrices of the process225

disturbance w and measurement noise v, respectively. Following this guideline, in this work, Qw =226

diag(
[

(0.008xs1(1))
2, (0.008xs1(2))

2, (0.008xs1(3))
2, (0.008xs1(4))

2, (0.008xs1(5))
2, (0.008xs1(6))

2
]

),227

Rv = diag(
[

(0.002ys1(1))
2, (0.002ys1(2))

2
]

). The initial guess of the states in the MHE is 1.2xs1, and228

Π0 represents the confidence in the initial guess and is chosen as diag([0.22 0.22 0.22 0.22 0.22 0.22]).229

The selection of MHE window length Nm is based on extensive simulations. From simulations, it230

was found that when Nm is larger than 6, the estimation performance does not improve obviously.231

Therefore, Nm is chosen to be 6. To illustrate the estimation performance of the MHE, a set of232

rectangular wave input signals are applied to the nonlinear boiler-turbine system. The resulting233

trajectories of state estimates given by the MHE and the actual states are shown in Fig. 2. From234

Fig. 2, it can be seen that the MHE can obtain overall very good state estimates of the boiler-235

turbine system. Most of the estimates are very close to the actual values except that there exists236

some relatively larger state estimation errors in the estimates of x1 and x2. This is due to the fact237
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Figure 2: Trajectories of the actual states (blue solid lines) and state estimates by the MHE (orange
dashed lines).

that the degree of observability of x1 and x2 are relatively lower based on the output measurements238

of x4 and x6. The MHE will be used in combination with the tracking MPC and the economic239

MPC in Section 5.5.240

5.3 Results of load-tracking capability tests241

For the boiler-turbine system, generating the required electricity within the required time in242

response to power grid dispatch is always the top priority. Therefore the load-tracking capability243

of the proposed EMPC is first verified in this section where fast load demand changes in wide244

operation range are considered. In this set of simulations, it is assumed that the entire state vector245
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is measured and available to the controllers.246

The conventional two-layer tracking MPC is used for comparison. In the optimization prob-247

lem Eq. (8), α1 and α4 are positive while α2 and α3 are negative since it is favorable to have248

reduced coal consumption J1, small load tracking error J4 and increased steam valve opening J2249

and increased power output J3. The values of these weights are selected basically according to the250

importance of their corresponding terms in the overall objective function. Compared with other251

weighting parameters, α4 is chosen to be relatively bigger to ensure that tracking of the given load252

demand (minimizing the tracking error in J4) is always given the priority. Therefore, the weighting253

parameters are chosen as: α1 = 0.1, α2 = −0.3, α3 = −0.2 and α4 = 1. Based on Eq. (8),254

optimal steady-state reference state and input trajectories according to changing demand are ob-255

tained. For the tracking MPC, the sampling time is △ = 5s, the prediction horizon is Np = 120 to256

cover most of the dynamics of process. The weighting matrices Q and R represent the importance257

of output tracking and input tracking respectively. We focus more on tracking the given power258

output and main steam pressure set-points; therefore, they are chosen as: Q = diag([200, 400]),259

R = diag([1, 1]). For the proposed EMPC, the prediction horizon Np and sampling time △ are260

chosen to be the same as the tracking MPC, and the weighting parameters α1, α2, α3 are the same261

as in Eq. (8). The relaxation value δ(k) in the zone tracking cost is chosen as [0 0]T in this section262

and its corresponding penalty matrix is chosen as S = diag([1, 0]) in order to achieve accurate263

tracking of unit load demand.264

Simulations are conducted under two typical cases, of which the first case is to add sequential265

ramp changes to the unit load demand. Initially, the power output is 210.0 MW and the throttle266

pressure is 10.2 MPa. At t = 400s, the unit load demand begins to decrease from 210.0 MW to267

150.0 MW with the load ramping rate of 7.5 MW/min and then begins to increase from 150.0 MW268

to 180.0 MW at the rate of 3 MW/min at t = 2400s. Accordingly, the throttle pressure set-point269
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decreases from 10.2 MPa to 6.9 MPa at t = 400s and then increases from 6.9 MPa to 8.5 MPa270

at t = 2400s. The resulting output variables and control variables of the two control schemes are271

shown in Fig. 3. It can be seen from Fig. 3 that the power outputs of both the proposed EMPC272

and the tracking MPC can track the unit load demand closely in both the load decreasing and273

increasing periods. The inverse response of the throttle pressure of the proposed EMPC and the274

tracking MPC are basically the same in the load decreasing period except that the EMPC arrives at275

the output reference trajectory more quickly. However, in the load increasing process, the throttle276

pressure of EMPC can follow the optimal pressure reference trajectory very tightly while there277

exists an offset between the throttle pressure of the tracking MPC and the corresponding reference278

trajectory.279
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Figure 3: Reference trajectories (red dashed lines), output trajectories (left plot) and input trajec-
tories (right plot) under the EMPC (orange dashed lines) and under the tracking MPC (cyan solid
lines) in the presence of ramp changes in the unit load demand.

In the second case, we consider step changes of the unit load demand. Initially, the power280

output is 210.0 MW and the throttle pressure is 10.2 MPa, then at t = 400s a step change of -30.0281

MW is added to the unit load demand, and the throttle pressure set-point decreases from 10.2 MPa282

to 8.5 MPa accordingly. The resulting output variables and control variables of the two control283

schemes are shown in Fig. 4. As can be seen from the figures, the power output of EMPC decreases284
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Figure 4: Reference trajectories (red dashed lines), output trajectories (left plot) and input trajec-
tories (right plot) under the EMPC (orange dashed lines) and under the tracking MPC (cyan solid
lines) in the presence of step changes in the unit load demand.

to the final steady-state at the maximum speed in response to the sudden decrease in the unit load285

demand, and the throttle pressure also settles down to the steady-state value more quickly than the286

tracking MPC. To quantitatively account for the system economic performance, the summation of287

economic performance index Jeco along the simulation time are calculated as follows:288

Eeco =

Nsim
∑

i=1

Jeco(i) =

Nsim
∑

i=1

− (α1u1(i) + α2u2(i)) + α3y1(i)) (12)

wherein Nsim is the simulation time, Jeco (Eeco) represents system economic profits and a larger289

Jeco (Eeco) value means better economic performance. The resulting performance indexes of the290

EMPC and the tracking MPC in both cases are summarized in Table 2, and the ratios of Eeco of291

the EMPC to that of the tracking MPC in all cases are also displayed. From this set of simulation,292

we can see that the proposed EMPC shows similar tracking performance and achieves slight (0.26%293

to 0.45%) improved economic performance compared with the tracking MPC for load tracking.294
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Table 2: Economic performance of controllers in the load-following capability tests.

Eeco 400− 1600s (Case 1) 1800 − 3100s (Case 1) 400 − 1400s (Case 2)

EMPC 12753.9 (1.0026) 14113.1 (1.0033) 11142.9 (1.0045)

MPC 12720.4 (1) 14067.2 (1) 11092.8 (1)

5.4 Results of EMPC with different δ values295

During the load changing of boiler-turbine systems, unit load demand tracking requirement is296

not as strict as steady-state condition and tracking errors between the load demand and the actual297

power output can be maintained within a small range. To take into account this consideration,298

the set-point tracking of load demand during the transients can be relaxed to a zone tracking299

objective to obtain more economic performance. This can be realized by setting δ to a non-zero300

value in Eq. (11), where δ represents the permissible relaxation value from the original set-points.301

Therefore, different relaxation values δ are tested with the proposed EMPC in this section to verify302

the economic performance improvement. We consider a ramp decrease in the unit load demand303

from 210.0 MW to 150.0 MW with the load ramping rate of 7.5 MW/min starting from t = 400s,304

and the throttle pressure set-point decreases from 10.2 MPa to 6.9 MPa accordingly. The proposed305

EMPC with different relaxation values δ = [0 0]T , δ = [3 0]T , δ = [6 0]T , δ = [9 0]T are tested.306

Other simulation parameters of the proposed EMPC and the tracking MPC are the same as in307

Section 5.3. In this set of simulations, it is also assumed that the entire state measurements are308

available.309

Figure 5 shows the simulation results of the proposed EMPC with different relaxation values310

during a typical ramp load decrease process. As can be seen from Fig. 5, all of the EMPC controllers311

can decrease power output to the set-point within the required time while keeping throttle pressure312

variations in an acceptable range. It is noted that when the first element of δ is not zero, which313

means the power output is controlled in an predefined operating zone rather than a set-point, the314
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Figure 5: Reference trajectories (red dashed lines), output trajectories (left plot) and input trajec-
tories (left plot) under the proposed EMPC with δ = [ 0 0 ]T (orange dashed lines), δ = [ 3 0 ]T (
blue dashed lines), δ = [ 6 0 ]T (green dashed lines), and δ = [ 9 0 ]T (purple dashed lines), and
output trajectories under the tracking MPC (solid cyan lines).

Table 3: Eeco of the propsoed EMPC with different δ values

δ [ 0 0 ]T [ 3 0 ]T [ 6 0 ]T [ 9 0 ]T

Eeco 15958 (1.0022) 16129.9 (1.0130) 16287.3 (1.0229) 16419.3 (1.0312)

resulting power output is apt to lie in the upper bound of the zone, and the decreasing rate of all the315

power outputs are the same as the desired ramping rate. Moreover, the throttle pressure under the316

EMPC with the largest relaxation value δ is the fastest to arrive at new steady-state. Table 3 lists317

Eeco of all the EMPC controllers with different relaxation values during 400-1900s, as well as their318

ratio to Eeco of the tracking MPC (15923.2). It is obvious that the economic performance increases319

with the increase of the relaxation value δ. The economic performance enhancement reaches up to320

3.12% when the relaxation value is chosen as δ = [ 9 0 ]T . This is because that when increasing the321

allowable operating zone of power output during the load changing process, the proposed EMPC322

gains more degree of freedom to optimize the economics. From this set of simulations, we can323

see that the proposed EMPC with zone tracking provides a more flexible framework for improved324

economic performance.325
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5.5 Results of EMPC subject to coal quality variation326

In this section, we consider the effects of a very common disturbance - the variation of coal327

quality - in the operation of boiler-turbine systems. The variation of coal quality is related to the328

coal heat value coefficient kc. First, we evaluate the performance of the proposed EMPC and the329

tracking MPC subject to the coal quality variation disturbance assuming that the entire state vector330

is measured. Figures 6 and 7 show the evolution of the system economic cost under the proposed331

EMPC and the tracking MPC in the case of kc = 1.2 and kc = 0.8, respectively. In Fig. 6, the332

lower surface represents the steady-state relation between system economic performance index Jeco333

and the two control inputs in the nominal case (kc = 1). In the figure, the red dotted straight line334

denotes steady states at 80% load, and the red star point (103.77, 100.0, 67.64) at the end of the335

line denotes the economically optimal steady-state operating point. The upper surface represents336

the relation between Jeco and the two inputs in the steady-state when the kc value changes to 1.2,337

in which the blue dotted straight line denotes steady states at 80% unit load, and the blue star338

point (89.48, 100.0, 69.07) represents the corresponding optimal steady-state operating point.339

Here, we consider such a scenario: initially we have a type of coal with kc = 1 and the system340

is operating at the corresponding optimal steady-state operating point (red star), then due to341

variation of coal quality, kc changes to 1.2. Note that this change/disturbance is unknown to the342

controllers. Note also that this disturbance makes the coal heat efficiency higher and is indeed a343

favorable disturbance that leads to increased power generation. In such a scenario, the red dotted344

curve represents the evolution of Jeco when the system is controlled by the proposed EMPC, and345

the blue dotted curve represents the evolution of Jeco when the system is controlled by the tracking346

MPC. Since the coal quality variation is unknown to the controllers, the new optimal operating347

point (blue star) is unreachable for both of the two controllers. However, since the disturbance is348

favorable, the proposed EMPC does not try to reject the disturbance as quickly as possible. Instead,349
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Figure 6: The evolution of economic cost of the system under the proposed EMPC (red dotted
line) and the tracking MPC (blue dotted line) in the case of kc = 1.2.

the EMPC drives the system state back a new steady-state operating point slowly. However, the350

tracking MPC still tries to reject the disturbance quickly and keeps the system close to the new351

steady-state operating point. It is obvious that the proposed EMPC settles at a point (red triangle)352

that is much closer to the new optimal steady-state operating point than that of the tracking MPC353

(blue dot), thus better economic performance can be obtained by the propsoed EMPC.354

When the variation in coal quality makes kc = 0.8, the heat coefficient decreases and the355

disturbance is not economically favorable. In this case, both the proposed EMPC and the tracking356

MPC try to reject the disturbance quickly and drive the system back to a new steady-state operating357

point. In Fig. 7, the red dotted curve represents the evolution of Jeco under the proposed EMPC,358

and the blue dotted curve represents the evolution of Jeco under the tracking MPC. It can be seen359

that both controllers give similar trajectories.360

24

Jo
ur

na
l P

re
-p

ro
of



40
100.5

50

130

60

Je
co

100
120

70

Valve position(%) Coal flux(t/h)

80

11099.5
100

99 90

Figure 7: The evolution of economic cost of the system under the proposed EMPC (red dotted
line) and the tracking MPC (blue dotted line) in the case of kc = 0.8.

Table 4: Eeco of controllers under different kc with state measurements

Eeco kc = 1.2 kc = 1.1 kc = 0.8 kc = 0.9

EMPC 27357.55 (1.0222) 27254.0 (1.0138) 25936.6 (1.0009) 26570.7 (1.0005)
MPC 26763.38 (1) 26882.2 (1) 25914.2 (1) 26556.9 (1)

The performance index Eeco values under a set of kc values are summarized in Table 4. As361

can be seen from the table, when kc increases, the proposed EMPC obtains obvious economic362

performance enhancement compared with the tracking MPC, and the performance enhancement363

becomes larger with the increase of kc. On the other side, when kc decreases, the proposed EMPC364

behaves similarly to the tracking MPC and obtains very close economic performance to that of the365

tracking MPC.366

Since disturbances also have a noticeable effect on the state estimation performance of MHE, the367

economic performance of MHE based EMPC is also studied in this section. Table 5 summarizes368
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Table 5: Eeco of controllers under different kc with state estimates

Eeco kc = 1.2 kc = 1.1 kc = 0.8 kc = 0.9

EMPC 29450.3 (1.1244) 28261.4 (1.0650) 24605.8 (0.9634) 25840.7 (0.9798)
MPC 26192.5 (1) 26537 (1) 25541.3 (1) 26372.9 (1)

Eeco under different kc values in this case. Compared with Table 4, the economic performance369

enhancement of the proposed EMPC when kc > 1 is larger than the case when the entire state370

vector is measured. However, when kc < 1, the economic performance of the EMPC is slightly371

worse than that of the tracking MPC. This may be due to that when kc increases, system state372

estimates are smaller than actual states except x1, but larger than their original steady-state states.373

Since this model mismatch is unknown to the controllers, the proposed EMPC will still try to drive374

the system to the original optimal steady-state by decreasing u1 and u2. The decrease in u1, u2375

and y1 of the MHE-based EMPC will be smaller than that of the EMPC with state measurements,376

leading to a smaller decrease in Jeco. Therefore, the economic performance loss of the MHE-based377

EMPC will be less and hence it can obtain better economic performance than the EMPC with state378

feedback, and vice versa if kc decreases.379

In addition to the coal quality variation, a mismatch in the parameter k3 is also considered to380

further evaluate the performance of the proposed EMPC. k3 is the proportional coefficient between381

governing stage pressure and the product of throttle valve opening and main steam pressure. In this382

model, k3 is considered as a constant; however, it may vary with the turbine operating conditions.383

Therefore economic performance evaluation of the proposed EMPC and tracking MPC with state384

measurements are conducted with step increases and decreases in k3. The results are summarized in385

Table 6. It shows that when k3 increases, the proposed EMPC obtains similar economic performance386

as the tracking MPC, while when k3 decreases, the proposed EMPC obtains 2.14% more economic387

performance.388

26

Jo
ur

na
l P

re
-p

ro
of



Table 6: Eeco of controllers under different k3 with state measurements

Eeco k3 = 0.00913 k3 = 0.00747

EMPC 27504.5(0.9989) 24527.3 (1.0214)
MPC 27533.8 (1) 24014.0 (1)

6 Conclusions389

In this paper, a novel EMPC with zone tracking is proposed for the boiler-turbine coordinated390

control system to account for system economics during the transients while always prioritizing391

unit load demand tracking. Extensive simulations were carried out to compare the performance392

of the proposed EMPC with a conventional two-layer tracking MPC. From the simulations, we393

see that the proposed EMPC has very close load-tracking capacity compared with the tracking394

MPC. However, the proposed EMPC provides a more flexible framework due to the integration of395

a zone tracking objective. It can be used to obtain more economic benefits by tuning the size of the396

tracking zone. Further, when there is variation in the coal quality, the proposed EMPC can give397

much improved economic performance especially when only output measurements are available.398

Overall, the proposed EMPC with zone tracking provides an attractive control alternative to the399

conventional tacking MPC.400
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