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Abstract

This paper proposes a hybrid approach to face recognition based on a combination

of probabilistic neural networks (PNNs) and improved kernel linear discriminant analysis

(IKLDA). The dimensions of a sample’s features are first of all reduced, whilst retaining its

relevant information, A PNN method is then adopted to solve face recognition problems.

The proposed IKLDA+PNN method not only improves the overall computing efficiency,

but also its precision. Face recognition experiments conducted on the ORL, YALE and AR

datasets, which contain a wide variety of facial expressions, facial details, and degrees of

scale, were used to validate the feasibility of the IKLDA+PNN method. The results showed

that it can obtain an average recognition accuracy of 97.22%, 83.8% and 99.12%, across the

three datasets, respectively.

Keywords: dimension reduction; face recognition; feature extraction; kernel discriminant

analysis; probabilistic neural network.

1. Introduction

Image recognition technology [1] is used across a range of domains for a variety of appli-

cations including target recognition, identity recognition and facial expression recognition.

In the field of face recognition, a lot of research has been devoted to the development of

∗Corresponding author.
Email address: lym@zync.edu.cn (Yanmin Liu )

Preprint submitted to Neurocomputing July 25, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

effective programs for managing key problems such as image acquisition and classification

[2]. One of the oldest, simplest, but also most important of these is the nearest neighbor al-

gorithm [3, 4], which is commonly employed for face recognition, etc. The nearest neighbor

method involves first of all finding the closest training samples to a test sample.The latest

research methods for Face Recognition include fully convolutional neural network [5], deep

neural network [6] and so on.

The test sample then falls into the same class that the training samples belong to. As

the nearest sample is the most similar one, a nearest neighbor method is used to analyze and

explore which training sample is most similar to the test sample [7]. The distances between

each training sample and the test sample are calculated successively using a traditional

nearest neighbor algorithm, while the similarity between different training samples and

their underlying relationship is ignored. However, if the two training samples closest to a

test sample are very similar, the situation becomes difficult for a nearest neighbor algorithm

to handle [8].

Various methods have been used for face recognition over the past decades. The moti-

vation for the continuous work on face recognition is to obtain a method able to recognize

different angles and poses of faces accurately and efficiently. The proposed algorithm is a

complement to the traditional methods.

First of all, we propose an IKLDA algorithm, secondly the IKLDA algorithm is employed

to reduce the dimensions of sample vector, and then, we propose an IKLDA-PNN hybrid

algorithm, finally, the IKLDA-PNN algorithm is applied to address face recognition because

PNN has high classification accuracy, the combination of IKLDA and PNN algorithms is

very efficient and effective. The average accuracy achieved by the algorithm proposed in

this paper for the ORL human faces database was much better than the classic classification

algorithms, PCA+PNN, LDA+PNN, KPCA+PNN and KLDA+PNN. The IKLDA+PNN

algorithm was faster in solving the face recognition problems for the ORL and Yale databases
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than the other algorithms. The classification performance of our proposed algorithm was

better than some of the other algorithms for the AR database.

We aim to overcome the drawbacks of LDA and PNN, in addition to the severe degra-

dation in performance of the PNN algorithm under degraded conditions, thus forming the

underlying motivation of the work presented in this paper.

The main contributions of the study presented here are as follows:

1. We propose a new effective dimensionality reduction strategy, modify the total scatter

matrix St, and then formulate a new equation of optimization objective.

2. We update the objective function in order to solve feature problem. KWK = KK,

the solution of eigenvectors, KWKα = KWy = Kλy = λKy = λKKα.

3. Find the optimal value U with the method of fuzzy c-means cluster analysis.

4. We design a hybrid model of IKLDA+PNN, where IKLDA maps multidimensional

face data to the appropriate dimension space and completes the classification by PNN.

Over the remainder of the paper, Section 2 will examine related work regarding LDA

and PNN, Section 3 will present the execution steps of our proposed hybrid face recognition

algorithm based on IKLDA and PNN and Section 4 will provide the results of a simulation

experiment and discuss in detail the performance of the IKLDA+PNN algorithm. In Section

5 we will give our concluding remarks.

2. Related work

The main idea of an LDA algorithm is to project a high-dimensional pattern sample

into an optimal set of discriminant vectors so as to extract classification information and

reducing the dimensions of the feature space. After the process of projection, it should be

possible to guarantee that pattern sample has the maximum between-class distance and the
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minimum within-class distance in the new subspace. In other words, the pattern sample

should have the best separability in this space [9]. This provides an effective approach to

feature extraction. By using this method, the between-class scatter matrix of a pattern

sample can be maximized after projection and the within-class scatter matrix kept to a

minimum.

LDA is a classic statistical method that has been widely used in the fields of patient

disease prognosis, brand positioning, product management and market research and across

areas as diverse as cost minimization [10], face recognition, and machine learning. LDA

can be employed for data classification but, first of all, it needs to be trained with pre-

classified data that to establish a discrimination model. Thus, LDA needs to be considered

a supervised learning algorithm. The basic idea of LDA is projection. n-dimensional data

is projected into a low-dimensional space and groups are kept as far apart as possible, i.e. .

they are provided with maximum separability within the space. The ideal, here, is to have

a minimal within-class distance and a maximal between-class distance in any new subspace.

The goal is to work out a vector that has these maximal and minimal characteristics so that

it can form the basis of a discrimination model [11].

A key use of LDA is for the reduction of dimensions in classification problems. As

the mean vector and variance matrix of each class needs to be used, it can draw upon

the parameters used in Finite Element (FE) approaches. As a rule, a within-class scatter

matrix, between-class scatter matrix and mixture scatter matrix are used to express the

standard degree of class scatter.

LDA, also known as Fisher linear discriminant (FLD), is a classic resource for solving

pattern recognition problems. It was first introduced into the field of artificial intelligence

and pattern recognition by Belhumeur, where it is seen to be a powerful algorithm for solving

problems of face recognition [12]. LDA is particularly well-known as a high-dimensional

reduction algorithm that can be applied in a wide variety of different application areas.
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Yu and Lu [13], for instance, have used it to develop a manifold learning-based wafer map

defect detection and recognition system. Zhang et.al. [14], meanwhile, have proposed a

novel model for sparse uncorrelated LDA . In [15], LDA is used to diagnose bearing damage,

with this being further developed in [16] through the use of a novel MLDA [17] algorithm.

In recent years, LDA has often been adopted to solve dimension reduction problems

in supervised classification [18]. Here, a mean vector and variance matrix for each class

is used to express within-class [9], between-class and mixture scatter matrixes. Using the

Fisher standard, the ratio between the between-class and within-class scatter matrixes is

maximized in a low-dimensional space. It is on the basis of these characteristics that a hybrid

algorithm for face recognition will be developed in this study. The proposed technique not

only saves overall computing time, but also improves computing efficiency and precision.

PNN [19] was proposed by Specht in 1990. An exponential function used to replace the

commonly used sigmoid activation function in neural network. And then the neural net-

work used to work out nonlinear decision boundaries is created, and gradually, the decision

boundaries tend to get closer to the optimum Bayesian decision surface [20]. In[21], an

incremental learning technique by combing PNN algorithm and adjustable fuzzy clustering

method is presented. In [22], a PNN method is adopted for estimating the health of Li-ion

batteries [23]. In [24], a supervised classification method is adopted in the study.In [25],

the authors propose a PNN algorithm designed on the basis of time-series DCA. In [26],

a class of novel algorithms for the selection and adaptation of the smoothing parameter of

the PNN algorithm is put forward.

A probabilistic neural network (PNN) is a kind of neural network that is commonly

employed to solve problems of pattern classification. PNN has a statistical basis and is

equivalent to a Bayes optimal classifier in terms of classification function. Indeed, it can be

considered to be a kind of parallel algorithm evolved from minimal Bayes risk standards.

Unlike a traditional multi-layer feedforward network, which requires a BP algorithm for
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back-propagation computation,it is a fully forward computational process. It can be trained

very easily, is resistant to local convergence and has high classification accuracy. No matter

how complicated the classification problem, an optimal solution can be obtained under the

Bayes criterion as long as there is enough training data [27].

3. The proposed algorithm (IKLDA+PNN)

In this section, we proposed an improved sparse kernel linear discriminant analysis strat-

egy. To get a proper Φ, we define an inner product function (known as a reproducing kernel

Hilbert space (RKHS)) in F . This can be described as:

< Φ(X),Φ(Y) >= K(X,Y), (1)

where K(.,.) is a positive semi-definite kernel function. There are some popular frequently-

used kernel functions, such as the Gaussian kernel function

K(x, y) = exp(−||x−y||2/2σ2), the polynomial kernel function K(x, y) = (1+xT y)d, and the

Sigmoid kernel function K(x, y) = tanh(xT y + α).

SΦ
b , S

Φ
w and SΦ

t are, respectively, the between-class scatter matrix, the within-class

scatter matrix and the total scatter matrix in the feature space. They can be defined as:

SΦ
b =

c∑
k=1

mk(µ
(k)
Φ − µΦ)(µ

(k)
Φ − µΦ)

T

SΦ
w =

c∑
k=1

(
mk∑
i=1

(Φ(X
(k)
i )− µ(k)

Φ )(Φ(X
(k)
i )− µ(k)

Φ )
T

)

SΦ
t =

m∑
i=1

(Φ(Xi)− µΦ)(Φ(Xi)− µΦ)T ,

(2)

where, µ(k)
Φ and µΦ are, respectively, the centroid of the k-th class and the total centroid.

Hence, we can revise the second formula SΦ
b as follows:

SΦ
b =

c∑

k=1

∑c
i=1mi

c
(µ

(k)
Φ − µΦ)(µ

(k)
Φ − µΦ)

T
. (3)
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Here we set v to be the projective function in feature space. The corresponding objective

function is as follows:

νopt = arg max
νTSΦ

b ν

νTSΦ
t ν

. (4)

This can be solved as the eigenproblem [SΦ
b ν = λSΦ

t ν]. As the eigenvector is a linear

combination of the function Φ(Xi), there is a coefficient αi, that can be made to satisfy the

equation ν =
m∑
i=1

αiΦ(Xi).This can be proved using in the following:

αopt = arg max
αTKWKα

αTKKα
, (5)

in which the corresponding eigen-problem is KWKα = λKKα. Here, K is the eigen-

vector (Kij = K(Xi,Xj)) and W is defined as follows:

Wij =





1/mk, if xi and xj both belong to the k−th class

0, otherwise.

(6)

Each eigen-vector α corresponds to a projective function V in feature space. For every

datapoint x, it can satisfy the following formula:

< ν,Φ(X) >=
m∑
i=1

αi < Φ(Xi),Φ(X) >

=
m∑
i=1

αiK(Xi,X)

= αTK(:,X),

(7)

where, K(:,X) = [K(X1,X), ...,K(Xm,X)]T and {α1, ..., αc−1} are c − 1 eigen-vectors

of the eigen-problem with a corresponding nonzero eigen-value. The transformation matrix

θ = [α1, ..., αc−1] is an m × (c − 1) matrix and the datapoint x can be embedded into the

c− 1 dimension subspace thus, x→ z =θTK(:, x).

Here, we can set y as an eigenvector of the eigenproblem Wy = λy with a corresponding
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eigenvalue. In order to solve the eigen-problem KWKα = λKKα, if it is possible to satisfy

Kα = y, y will be an eigenvector and we can import the eigen-value Kα = y. The equation

can now be solved in the following way:KWKα = KWy = Kλy = λKy = λKKα; with α

being an eigen-vector of the eigen-problem with a corresponding eigen-value of λ. In order

to solve the above-mentioned problems, we first need to solve the eigen-problem Wy = λy

and get y. We can initially solve any α that satisfies Kα = y by saying that α = K−1y.

However, because K is a singular matrix, the original formula now needs to be amended

as follows: (K + δI)α = y; where I is an identity matrix and δ (δ ≥ 0) is a regularization

parameter.

In this study, we are putting forward a method for solving the problem of face recognition

by combining an improved sparse KLDA and PNN algorithm. The IKLDA+PNN algorithm

is shown as follows (RBF is the abbreviation of Radial Basis Function):

Algorithm 1 IKLDA+PNN algorithm.
Require: random matrix U = [uij]1 ≤ i ≤ L, 1 ≤ j ≤ N , the transmission parameter of

RBF initialization sp = 0.15, data matrix x_train, x_test, labels y_train_label
Ensure: Classifier f , y_test_predict.
1: Uopt = fuzzy_cmeans(x_train, y_train_label);
2: [eigvector, eigvalue] = SKLDA(x_train);
3: [x_train_new, x_test_new] = SKLDA.reduce_dimension(x_train, x_test);
4: construct a classifier f using PNN;
5: y_test_predict = f(x_test_new);
6: return Classifier f , y_test_predict.

4. Experiment results and discussion

Although they offer time efficiency, there are some problems with using a nearest neigh-

bor classifier (NN for short) and nearest centroid classifier. To get around these problems,

we are suggesting the use of a probabilistic neural network (PNN). In this section we present

the results of an experiment testing the viability of the approach, followed by a discussion

of the outcomes.

The hybrid algorithm was used to carry out a simulation experiment that drew upon
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several standard face databases [28].

The parameters of the experimental platform are as follows: an Intel Core i5-2410 laptop

with a 2.30 GHz processor and 4 GB of RAM. The programming language was Matlab2012a.

In addition to above settings, we also experimented with using a support vector machine

(SVM) Matlab tool in the same environment. We conducted a series of experiments using

different methods on the same device: Principal component analysis (PCA)+PNN; linear

discriminant analysis (LDA)+PNN; kernel principal component analysis (KPCA)+PNN;

kernel linear discriminant analysis (KLDA)+PNN; our proposed IKLDA+PNN; and the

SVM.

The ORL, Yale and AR face databases were used as the basis of our experiments. The

ORL database contains 400 human face images across 40 classes. The images cover all

kinds of facial expressions (including smiling/not smiling, eyes open/eyes closed) and a rich

mixture of facial details: some of them are leaning backwards or forwards or are rotated

by 20o. Each image is 32 × 32 pixels. The faces in the Yale database include normal face

images as well as images expressing sadness or happiness, surprise, and where people are

asleep or blinking. All of the images were captured under different lighting conditions.

In some of the images, people are wearing glasses. From the large-scale AR database of

human faces, we selected 1680 grayscale images covering 120 classes, with 14 images per

class. For the ORL, Yale and AR databases, if we suppose that s samples are selected from

a sample set in which each class contains n samples as training samples, then there could

beCp
q = p(p−1)···(p−q+1)

q(q−1)···1 kinds of possible combinations. The same combination was used

to judge the training samples and the test samples, so there could be Cs
n training samples.

Table 12 shows how many training samples were selected for each class from the ORL, Yale

and AR databases.

The IKLDA+PNN algorithm proposed in this paper was compared with some other

well-known algorithms: PNN [29, 30] PCA [31, 32, 33, 34], LDA [32, 35], KLDA,KPCA,
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nearest neighbor classifier (NNC) [36], center-based nearest neighbor classifier (CBNNC)

[36] and near-neighbor list (NNL) [37]. The comparative results are shown in the following

table:

The experimental simulation program selected images from the standard human faces

databases using the parameter settings proposed in [38]. The transmission parameter of

initialization radial basis function was sp = 0.1. The results comparing the algorithm

proposed in this paper with the other algorithms are shown in Tables 2, 3, 4, 5, 6, 7 and 8.

A diagram showing our proposed algorithm’s recognition rate for the ORL database is shown

in Fig.3. The recognition rate for the SVM is better than the PCA+PNN algorithm,but

its performance is significantly worse than the algorithm proposed here. Our proposed

algorithm’s recognition rate for the Yale database is shown in Fig.4. Here, it can be seen that

the recognition rate for the SVM was approximately the same as the PCA+PNN algorithm,

but, once again, it did not perform as well as our proposed algorithm. The recognition rate

results for the AR database are shown in Fig.5. Here, the proposed algorithm and the

KLDA+PNN algorithm had approximately the same recognition rate.

Table 2 shows the final recognition results. The average accuracy achieved by the algo-

rithm proposed in this paper for the ORL human faces database was much better than the

classic classification algorithms, PCA+PNN, LDA+PNN, KPCA+PNN and KLDA+PNN.

Table 3 shows the standard deviation for the final recognition results. The standard devia-

tion (std) for the ORL human faces database achieved by our proposed algorithm was much

better it was for the PCA+PNN, LDA+PNN, KPCA+PNN and KLDA+PNN algorithms.

Tables 4 and 5 give the final recognition results for five algorithms (including the one pro-

posed here) for the Yale human faces database. Table 6 and 7 provide the final recognition

results for the AR human faces database. Even if the number of samples for each class is

relatively small, the proposed algorithm still achieves a good classification result. It can be

seen in Table 3 that the performance of the IKLDA+PNN algorithm is slightly worse than
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the other algorithms for the ORL database, regardless of the number of samples for each

class. However, on the whole, its classification effect is much better than the PCA+PNN,

LDA+PNN, KPCA+PNN and KLDA+PNN algorithms.

For the AR database, the 2nd, 4th, 6th and 8th samples were selected as training

samples for each class. The remaining ones were used as test samples. Although the

proposed algorithm produced a poorer result than the KLDA+PNN algorithm for the AR

database for some samples in each class, its result was better with other samples. It can

also be seen from Table 8 that the classification performance of our proposed algorithm

was better than some of the other algorithms for the AR database. Tables 9 and 10 show

the performance (in terms of recognition rate and standard deviation) of the SVM and our

proposed algorithm for the ORL and Yale face data. Here it can be seen that, for both the

ORL and Yale face data, the recognition rate for the IKLDA+PNN was better than the

SVM, as is the standard deviation.

A time comparison over the ORL and Yale databases for each of the IKLDA+PNN and

PCA+PNN, LDKPCA+PNN, KLDA+PNN, and SVM algorithms is shown in Table 11.

A time comparison for the AR database in relation to the IKLDA+PNN and PCA+PNN,

LDA+PNN, KPCA+PNN, KLDA+PNN algorithms is shown in Table 12. We can see that

the IKLDA+PNN algorithm was faster at solving the face recognition problems for the ORL

and Yale databases than the other algorithms. When the number of training samples was

2 and 3, the IKLDA+PNN algorithm was faster than the PCA+PNN and KLDA+PNN

algorithms for the AR database, but slower than the LDA+PNN and KPCA+PNN algo-

rithms. When the number of training samples was 4, the IKLDA+PNN algorithm was faster

than the PCA+PNN, KPCA+PNN, and KLDA+PNN algorithms for the AR database, but

slower than the LDA+PNN algorithm.
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Figure 1: A part of samples of two classes in ORL database

Table 1: Number of training samples
Training sample number 2 3 4 5 6 7 8

ORL 45 120 210 252 210 120 45
Yale 55 165 330 462 462 330 165
AR 91 364 1001 2002 3003 3432 3003

Table 2: Comparison of the average accuracy between the proposed algorithm and some other algorithms
for the ORL database

training number
PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM
AA (%) AA (%) AA (%) AA (%) AA (%) AA (%)

2 64.66 78.56 64.64 79.32 77.96 66.62
3 71.23 86.04 69.14 87.05 86.83 72.52
4 75.23 90.20 73.23 91.30 91.44 75.77
5 77.61 92.62 75.89 93.73 93.95 78.47
6 79.29 94.14 78.02 95.24 95.43 80.48
7 80.78 95.08 79.64 96.28 96.35 82.19
8 81.92 95.72 81.31 96.89 97.22 83.00

Table 3: Comparison of the standard deviation between the proposed algorithm and some other algorithms
for the ORL database

training number
PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM

std std std std std std
2 3.95 2.96 3.96 2.87 2.96 3.76
3 3.80 2.22 3.76 2.28 2.47 2.96
4 3.38 2.06 3.36 2.00 2.04 3.04
5 3.15 1.93 3.17 1.78 2.00 2.96
6 3.03 1.79 2.97 1.71 1.97 3.02
7 3.36 2.10 3.43 1.76 2.01 3.28
8 3.74 2.56 3.89 2.01 2.21 3.84
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Table 4: Comparison of the average accuracy between the proposed algorithm and some other algorithms
for the Yale database

training number
PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM
AA (%) AA (%) AA (%) AA (%) AA (%) AA (%)

2 50.84 62.55 50.81 63.00 62.95 50.79
3 57.04 70.45 56.99 71.71 71.59 57.28
4 61.19 74.76 61.13 76.48 76.59 61.16
5 64.39 77.24 64.31 79.33 79.60 64.12
6 66.95 79.05 65.73 81.15 81.56 66.46
7 68.95 80.22 67.24 82.34 82.95 68.38
8 70.48 80.67 69.02 83.06 83.80 69.72

Table 5: Comparison of the standard deviation between the proposed algorithm and some other algorithms
for the Yale database

training number
PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM

std std std std std std
2 6.97 5.06 6.90 5.36 5.69 7.93
3 4.57 3.97 4.49 4.20 4.21 6.07
4 3.65 4.47 3.65 4.17 4.29 5.29
5 3.87 5.41 3.91 5.46 5.50 5.47
6 5.09 6.42 5.33 6.59 6.62 6.55
7 6.92 7.67 7.12 8.03 7.86 7.91
8 9.60 8.98 9.60 9.45 9.67 10.40

Table 6: Comparison of the average accuracy between the proposed algorithm and some other algorithms
for the AR database

training number
PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM
AA (%) AA (%) AA (%) AA (%) AA (%) AA(%)

2 80.31 84.14 77.28 87.27 87.15 81.23
3 85.14 90.01 81.76 92.99 92.89 82.34
4 87.99 92.92 84.48 95.94 95.86 85.68
5 89.95 94.44 86.32 97.53 97.46 87.31
6 91.41 95.14 87.67 98.40 98.35 89.46
7 92.50 95.42 88.65 98.87 98.85 89.94
8 93.37 95.47 89.45 99.16 99.12 94.21

Table 7: Comparison of the standard deviation between the proposed algorithm and some other algorithms
for the AR database

training number
PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM

std std std std std std
2 7.66 9.14 6.76 8.63 8.64 9.87
3 6.49 7.82 5.99 7.06 7.02 8.14
4 5.61 5.78 5.67 4.96 4.97 6.07
5 4.96 3.98 5.30 3.15 3.21 4.77
6 4.41 2.66 5.00 1.82 1.91 6.02
7 3.99 1.98 4.69 0.99 1.08 5.34
8 3.68 1.88 4.45 0.62 0.67 4.21
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Table 8: Comparison of the average accuracy between the proposed algorithm some other algorithms for
the AR database

algorithm
2 4 6 8

AA (%) AA (%) AA (%) AA (%)
PCA[7] 69.55 67.99 69.53 67.01
NNC[8] 61.24 58.41 62.33 59.06

CBNNC[8] 60.35 58.08 61.97 60.52
NNL[9] 59.99 58.68 62.97 59.89

IKLDA+PNN 87.15 95.86 98.35 99.12

Table 9: Comparison of the average accuracy and standard deviation between the proposed algorithm and
the SVM for the ORL database

training number
SVM IKLDA+PNN

AA (%)±std AA (%)±std
2 66.62±0.038 77.96±0.030
3 72.52±0.030 86.83±0.025
4 75.71±0.030 91.44±0.020
5 78.47±0.030 93.95±0.020
6 80.48±0.030 95.43±0.020
7 82.19±0.033 96.35±0.020
8 83.00±0.038 97.22±0.022

Table 10: Comparison of the average accuracy and standard deviation between the proposed algorithm and
the SVM for the Yale database

training number
SVM IKLDA+PNN

AA (%)±std AA (%)±std
2 50.79±0.079 62.95±0.057
3 57.28±0.061 71.59±0.042
4 61.16±0.053 76.59±0.043
5 64.12±0.055 79.60±0.055
6 66.46±0.065 81.56±0.066
7 68.38±0.079 82.95±0.079
8 69.72±0.104 83.80±0.097

Table 11: Comparison of time performance for the ORL and Yale databases for the IKLDA and PCA, LDA,
KPCA, KLDA, and SVM algorithms
Algorithm PCA+PNN LDA+PNN KPCA+PNN KLDA+PNN IKLDA+PNN SVM
ORL(s) 60.76 55.00 55.59 55.61 48.28 6062.70
yale(s) 78.54 77.79 78.86 78.72 76.53 1334.86
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Figure 2: Some of the samples for one of the classes in the AR database

Figure 3: Recognition rate for the six algorithms (ORL database)

Figure 4: Recognition rate for six algorithms (for the Yale database)
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Figure 5: Recognition rate for five algorithms (for the AR database)

Table 12: Comparison of time performance for the AR database for the IKLDA and PCA, LDA, KPCA,
and KLDA algorithms

Training number Algorithm Time(s)

2

PCA+PNN 17.69
LDA+PNN 13.08
KPCA+PNN 13.91
KLDA+PNN 15.57
IKLDA+PNN 14.52

3

PCA+PNN 113.14
LDA+PNN 66.51
KPCA+PNN 68.61
KLDA+PNN 79.80
IKLDA+PNN 71.23

4

PCA+PNN 513.55
LDA+PNN 224.24
KPCA+PNN 243.55
KLDA+PNN 275.04
IKLDA+PNN 229.86
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5. Conclusion

This paper has proposed a classification method for solving face recognition problems

that is based on a hybrid IKLDA and PNN algorithm. The proposed algorithm not only

saves overall computational time, but also improves the effectiveness of LDA-based face

recognition. The results of an experimental simulation have validated the algorithm’s effec-

tiveness for face recognition and classification and have demonstrated that the algorithm

can outperform other traditional algorithms in terms of average accuracy and standard

deviation when applied to the face image data held in three separate standard datasets.
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