
Developing a K-ary malware using Blockchain
Joanna Moubarak

ESIB, USJ
CIMTI

Beirut, Lebanon
joanna.moubarak@net.usj.edu.lb

Eric Filiol
ESIEA

(C + V)O Lab
Laval, France
efiliol@netc.fr

Maroun Chamoun
ESIB, USJ

CIMTI
Beirut, Lebanon

maroun.chamoun@usj.edu.lb

Abstract—Cyberattacks are nowadays moving rapidly. They
are customized, multi-vector, staged in multiple flows and tar-
geted. Moreover, new hacking playgrounds appeared to reach
mobile network, modern architectures and smart cities. For that
purpose, malware use different entry points and plug-ins. In
addition, they are now deploying several techniques for obfus-
cation, camouflage and analysis resistance. On the other hand,
antiviral protections are positioning innovative approaches expos-
ing malicious indicators and anomalies, revealing assumptions
of the limitations of the anti-antiviral mechanisms. Primarily,
this paper exposes a state of art in computer virology and then
introduces a new concept to create undetectable malware based
on the blockchain technology. It summarizes techniques adopted
by malicious software to avoid functionalities implemented for
viral detection and presents the implementation of new viral
techniques that leverage the blockchain network.

Index Terms—Malware, K-ary Virus, Malicious program,
Blockchain, APT

I. INTRODUCTION

Computer infections hit the mainstream in recent years ex-
ploiting systems vulnerabilities and creating specific malicious
software that are penetrating organizations and governments
for damage purposes or to steal information. Also, with the
emerging new services and technologies, the marketplace
has fully-fledged to reach the cloud, the Internet of Things
(IoT) and the interconnected world adding new proliferation
environments for malware and augmenting the viral infection
risk which is assessed depending on the number of infections
and their impacts, the detection ability, the protection in place
and the capacity to disinfect and isolate a convicted system.

In 1982, a boot virus was introduced [1]. Also, the first
official virus appeared in 1983 [1] under UNIX proving that
no operating system is immune against vulnerabilities. In
1988, viruses and worms leave the laboratories. Since then,
malware evolution is exponential. The first viruses and worms
for mobile phones appeared in 2004 [2]. In 2008, Stuxnet
malware marked a turning point in the enhancement and
professionalization of the attacks and the damage they can
engender [3], [4]. Advanced Persistent Threats (APTs) became
more omnipresent from 2015, after the hack of Carbanak [5]
and Sony Pictures [6] discovered in 2014. In 2016, the Locky
ransomware hit considerably several places mainly in Europe
[7]. Also, the Mirai DDoS attacks on IoT made headlines
and derived motives for software developers to incorporate
universal security protections [8]. Recently, the WannaCry

ransomware [9] spreads laterally and a new form of the
ransomware called Petya targeted several countries worldwide
[10]. Furthermore, new Android and iOS malware are discov-
ered each day. These attacks summarize the importance of viral
threats and illustrate the evolving viral risk. For instance, the
level of risk is potentially high for targeted attacks, probably
low to medium for other actors. Furthermore, the main risk
today consists in the creation of botnets network utilized to
create several types of attacks.

Besides, antiviral industry is constantly enhancing its capa-
bilities to reduce the gap between the detection and networks
containment and always striving to mitigate the breach by
combining several analysis mechanisms and machine learning
algorithms. However, security solutions can only decrease
risks without eliminating them. In reality, the attack has more
advantages over the defender. The attacker not only always
has the initiative but he innovates constantly. As soon a
technique is deemed impossible, the attacker will try to bypass
it. Moreover, an attacker will usually seek to hide as long as
possible what he has managed to do. Furthermore, the attack
always has a lead in time [11].

This paper is the result of a prolonged survey on viral tech-
niques adopted by malware as we go through several computer
virology studies [12] [13] [14]. Also, some malware samples
were examined in real time against several analysis approaches
[15] and in the other hand, many antiviral solutions were
tested in different attack scenarios and networks. Moreover,
several blockchain architecture types [16] were considered
while developing the new malware.

The remainder of this paper is organized as follows: Section
II develops a summary of viral and antiviral techniques.
Section III concentrates on k-ary malware, followed by the
utilization of the blockchain potential to create a k-ary mal-
ware in Section IV. We conclude this paper and present our
future work in Section V.

II. TECHNICAL ANALYSIS

The threat landscape is getting more complicated and
businesses remain agile. Many challenges continue to strive
security strategies in order to add expanded detection capa-
bilities, find a solution that fits into the architectures and stay
within acceptable levels of operational risk. This section gives
an overview on viral techniques employed and exposes how
antiviral solution providers addresse those challenges.

ar
X

iv
:1

80
4.

01
48

8v
1

 [
cs

.C
R

]
 4

 A
pr

 2
01

8

A. Computer infections

Traditionally, the term computer virus is misused to gen-
erally refer offensive programs [17]. Currently, malicious
softwares are categorized depending on several viral mech-
anisms. L. Adelman [17] divided malware into two disjoint
categories: simple and Self−reproducing. Simple malware
may be alienated to logic bombs and trojan horse. This
category installs itself either in a resident, stealth or persistent
mode. Whereas, self-reproducing malware try to overlap all
or parts of its malicious code into another program. This
class encompasses viruses and worms. Computer infections,
whether simple or self-replicating, are installed on a system to
compromise the confidentiality, the integrity or the availability
of the system. Additionally, the main methods of propagation
rely on file sharing, network exchanges, P2P, emails com-
munications and downloading. Mobile computing is another
vector of propagation, including direct LAN-WAN and smart
phones connections. Recently, malware are surrounding the
IoT technology recruiting intelligent devices as zombies to
conduct attacks. The recent evolution of infective programs
has shown that the scope has surpassed the computer to
reach exotic platforms and that the threat becomes global. The
mechanisms can certainly vary for one system to another.

There are several definitions of the concept of computer
infection, but none is really complete as recent developments
are not taken into account. Attacks by computer infections
are all based more or less on social engineering. Another
important aspect of the mode of action of the infecting
programs is the presence of software vulnerabilities that make
the exploitation possible independently of the users.

B. Antiviral Techniques

Antiviral Techniques can be alienated to the following:
1) Static antiviral techniques: These techniques examine the

codes without execution.
a) Viral signatures: This technique looks for any ar-

rangement of bits and instructions that distinguishes
a particular program.

b) Spectral analysis: This technique consists in examining
the code functions and instructions.

c) Heuristic analysis: This technique studies the perfor-
mance and the behavior of a particular program based
on policies and guidelines.

2) Dynamic antiviral techniques: These techniques execute
the code for analysis.

a) Behavior monitoring: Many mechanisms to monitor the
related indicators of compromise (IOCs).

b) Code emulation: This technique loads the program into
a specific memory zone to mimic the code execution.

3) File integrity checking: This technique checks any mod-
ification in critical files.

Most efficient antiviral solutions are combining several dif-
ferent antiviral techniques to fight against malware [18]–[21].
A layered approach is the typical considered strategy. Most
vendor funnel out suspect files as they move through the stack,

reducing the number of files requiring sandbox analysis. A mix
of signatures, reputation, real-time emulation and heuristics
enhance protection and identify advanced malware. Moreover,
many security solutions has expanded deployment options with
virtual and cloud-based offerings. Antiviral solutions [18] start
to stop known threats then adds the next layer of defense
using machine learning to detect advanced malware with both
statistical analysis and behavioral analysis. Static analysis
quickly compares features against those of known threats. If
the file cannot be confidently convicted, it will be executed for
further behavioral analysis limiting the greyware and blocking
suspicious activity. Finally, convictions and IOCs are shared
for enhanced protection.

C. Anti-Antiviral Techniques

In the other hand, in order to hinder analysis, remain
undetected and persist in the network, typically malware use
passive and active self-defense mechanisms [17], [22], [23]:

a- Stealth techniques: The ability to deceive any surveillance
of the system by reflecting the image of a normal behavior
in order to persuade the absence of any infection.

b- Polymorphism: The ability to modify all or part of its
own code to prevent any equivalent patterns.

c- Code rewriting: The capacity to modify the code into
corresponding functions.

d- Applying encryption techniques: The procedure of mask-
ing the code to complicate the cryptanalysis .

e- Code armouring: A number of mechanisms aiming to
interrupt, delay or avoid the analysis and make the
detection burdensome.

f- Obfuscation: The fact to store codes in obscured ways
to make forensics more challenging. In a τ -obfuscation
approach, the procedures remains effective for a given
time or for a certain trigger.

g- Disrupting antiviral solutions: Many techniques aiming
to modify the functioning of antiviral tools and to block
specific security queries.

h- Packing: The process of compressing a software out-
comes in a new altered sequence of bytes.

i- Anti-debugging techniques: Many techniques aiming to
prevent analysts, obtaining context, attaching files and
reversing code and able to detect emulation and virtual
machines execution.

j- Steganography: The concealment of the viral payload
inside another file or image.

However, these adopted techniques have many limitations
and they are obviously apprehended by most antiviral solu-
tions. First, these mechanisms usually require the combination
of several techniques. Furthermore, they are difficult to imple-
ment and manage. Moreover, some of these techniques may
modify the code by adding random instructions or delay the
analysis but the final result is the same and the encryption
procedures remain unchanged. Besides, malware are 100%
of viral information in a single file. Thus, by analysis, we
can speculate their operations. There are endless ways to
conceive malware. At the moment, designing a truly advanced

malware, which will circumvents the known protections, is a
difficult and highly competent task. In the rest of this paper,
we will present a new approach of malware conception using
blockchain and based on the k-ary concept.

III. THE K-ARY MALWARE

This section presents a new category of malware denoted
k-ary malware. As an alternative of holding the whole instruc-
tions constituting a malicious program in one file, this category
encompasses k separate chunks which constitute a partition of
the full code. Each of these programs holds only a subdivision
of the instructions and reflects a regular uninfected program.

A. k-ary malware definition

The K-ary malware was introduced initially in 2007 [24]
and has been later validated by several proof-of-concepts
(POCs) [24], [25]. The formalization of this new type of
malware is generalized from Cohen’s model using another
approach based on vector Boolean functions in order to
study softwares interactions. The modalization has proved
that simple and polymorphic/metamorphic infections are one
way or another correspondent due to the fact that the full
information is accessible after the first step of infection.
Whereas, the interesting element in k-ary malware consists
in the segregation of information.

Essentially, a k-ary malware is a combined virus where the
viral payload is separated and distributed into k different files
[24]. Each part looks like an innocent executable file and do
not generate any indication of compromise (IOC). Two main
categories of k-ary codes exists [17]:

(i) Class I code: The k parts are working sequentially. Three
subcategories are to be considered depending on the
relation between the several parties. The execution of
these k files can be dependent from the others files (A
subclass), no part is denoting the other (B subclass)
or semi-dependent from their execution (C subclass).

(ii) Class II code: The k parts are working in parallel. Thus,
all chucks have to be available and active in the system
at the same period.

Furthermore, the k-ary malware are represented in Van
Wijngaarden grammars defining the selection of the malware
parts [26]:

αRmγ ⇔ {∃ω ∈ (α⊗ γ)|ω ∈ C(Gm)}

If the result of the selection function ⊗ of two files α and γ
is a part of the code C generated by the malware m then it is
a k-ary code.

B. Complexity

While Cohen [12] and Adleman [27] analyzed viruses with
analogy to Turing machines and recursive functions and a
generalized model for malicious behavior have been defined
in [28] and [29], these studies do not reflect new malware
interactions. For instance, the formalization of combined
viruses have been well studied in [30]. Furthermore, it has

been demonstrated that the problem of detecting a k-ary
malware is NP-complete [31] [32] and that the presence of
all codes in memory in Class II codes and Class I (A and
C subclasses) constitutes a flaw, except when using a joint
rootkit technology. On the other hand, in [26], the automatic
generation of K-ary codes have been detailed, sustaining their
detection difficulties and their complexity. Also, in [33], k-ary
codes were modulated through Join Calculus and have been
demonstrated to be undecidable, except for a calculus fragment
not inevitably applicable.

Therefore, given the NP-completeness of k-ary codes detec-
tion, in order to explore the feasibility of a truly undetectable
malware, we will use the concept of combined viruses using
the blockchain network.

C. Implementations

Multiple proof-of concepts confirmed the complexity of
combined viruses for OpenOffice in win32 and Linux envi-
ronment [32].

Moreover, the different subclasses were validated in serial
(4 ≤ k ≤ 8) [11] and in parallel (k = 4) [11]. For instance,
each part has been able to regenerate the missing codes under
different nomenclatures.

Furthermore, a k-ary virus was implemented in Python [34]
in order to share a secret key utilized to decipher the viral
payload. The first use case randomly divided the key between
the different parts. However, this method necessitates the
availability of all parts in order to retrieve the payload. Another
solution consisted in adopting Shamir’s Secret Sharing with
Neville/Aitken’s algorithm to resolve the key and implement
the k-ary virus.

IV. THE BLOCKCHAIN POTENTIAL IN A K-ARY MALWARE

As stated previously, we will develop a k-ary malware utiliz-
ing Blockchain. This section gives an overview on blockchain
networks and their features and exposes the new k-ary malware
implementation and testing.

A. Blockchain Overview

The blockchain is a secure peer-to-peer environment used
to maintain a public ledger of transactions between parties
where trust is utilized to achieve consensus. This latter depends
on several algorithms and typically differ according to the
blockchain type and the Distributed Ledger Technology (DLT)
employed. Primarly, the blockchain is an immutable data
structure using blocks as memory units where each block is
referenced by its hash. To characterize the transactions, the
root of the Merkle tree is stored. Each block is composed by
several transactions where digital signatures and cryptographic
schemes are used to verify each transaction. Moreover, het-
erogeneous nodes are supported in the distributed network.
Each node will verify and broadcast the block until reaching
a consensus. The first miner to validate the blocks is rewarded.
Furthermore, many types of consensus algorithms assign a
penalty to misbehaving peers [35].

Fig. 1. 4-ary malware workflow

At the time of writing this paper, there exist more than 700
blockchain types and most of them are alternatives variants
of the Bitcoin blockchain. We explored this technology by
testing the three mains DLTs in the market nowadays [36]–
[38] namely Bitcoin, Ethereum and Hyperledger. Mainly, the
difference between these networks comes from the fact that
Bitcoin and Ethereum are permission-less networks whereas
all parties needs to be identified in the Hyperledger blockchain.
In addition, the concept of smart contracts, which are function
codes compiled with valid transactions, only exists in the
Ethereum and Hyperledger networks.

For a long time, the blockchain technology was associated
with the Bitcoin DLT based on the Proof-of-Work mechanism.
However, each DLT network is caracterized by its own features
and concensus algorithm.

Regardless of the DLT type, the blockchain technology
offers numerous security features.

Therefore, the building blocks offered a trusted platform
that applications are build on top [36], [37]. Some of the
blockchain’s technology applications are listed bellow:

• Proof-of-Existence: Users can verify the existence of a
particular content on the blockchain and that it has not
been modified. Cryptographic hashes, fingerprint and a
proof will be available lastingly.

• Payment Channels: Two parties can exchange transactions
ensuring settlement and censorship resistance within a
fixed deadline.

• Crowdfunding: Users can contribute for many causes and
the incremental amount will not be spent until reaching
a target.

• Event Registration: Users can register to an event or buy
tickets through smart contracts interactions.

• IoT: Many IoT applications are taking advantages of
blockchain networks in different use cases [39].

• Authentication and identification: Many companies are

Fig. 2. Node.js

leveraging DLTs for applications and entities validations
[40].

The use of blockchain has been beneficial in several ap-
plications and in different fields. However, malicious entities
took also advantages from this backbone. Cryptocurrencies
theft and the 51% problem where a self-interested miner owns
the majority of network work in a Proof-of-Work consensus
(in Bitcoin and Ethereum early releases) are typical misuses.
Moreover, cryptocurrencies are widely adopted by ransomware
infiltrators. And in some cases, malicious contents are sold
and uploaded to the blockchain encrypted and abused by the
owners of the decryption key further than other mistreated
scenarios and dark web applications. Furthermore, the Tor net-
work recently leveraged the blockchain to conduct illegitimate
activities [41]. Besides, in the next section, we will leverage
the blockchain as a main entity to create the k-ary malware.

B. Malware design

As we have seen previously, several attacks scenarios lev-
eredged the blockchain to conduct fraudulent activities [42].
Whereas, for the conception of the new viral algorithms, the
blockchain network is a crucial part of the new k-ary malware
design.

Designing a k-ary malware [34] will lead us to a key man-
agement problem to identify each node and a key generation
problem to agree on the complexity of the keys. Besides, we
need to add randomization for more efficiency. To resolve
these problems, we resorted to the blockchain technology.

Fig. 3. k1.exe transaction summary.

Fig. 4. k1.exe block summary.

In 1988, the authors of [43] proposed viruses as a solution
for handling cryptographic keys. Besides, k-ary viruses are
considered for this use case as well where the encrypted
payload is confined in one part and the secret key available in
another part [17]. As for the proposed new viral algorithms,
we have leveraged the cryptographic schemes, the hashing
functions, and the digital signatures, which characterize the
blockchain network, to develop the new k-ary malware.

The key components of the malware include a proof of
existence application (see Fig. 2) that interact with the Bit-
coin Blockchain Network through the integration of Pubnub,
Rethinkdb and Tieron platforms. A detailed tutorial for this
combination is given in [44] to which we referred to in the
implementation. Fig. 1 shows the malware workflow.

For the new k-ary algorithmic, the viral payload is splitted
in 4 different files. The first viral mechanism employed is the
auto-reproduction property generated by k1.exe. The second
k-ary file include a keylogging action. The third executable
file encompass the property to hide a specific file and the
final k-ary executable permits the auto-execution at system
startup. Alternatives or additional malicious activities can also
be used. For example, the need to interact with a command-
and-control server may also be written in a segregated file
and added to the design. Also, the auto-deletion propriety
implementation provides an interesting feature. Furthermore,
breaking up more the code can add more stealthiness. For this
POC, a 4-ary malware was tested. The next step consists in
submitting the content to the blockchain which store a record
of each file that anyone can verify its existence at any time
in the blockchain explorer (see Fig. 3 and Fig. 4). Moreover,
the hashing of each executable and the receipt that were given

Fig. 5. RethinkDB activity.

Fig. 6. k1 Execution: Auto-reproduction

by the blockchain, will be recorded in Rethinkdb 1 (see Fig.
5) through Tieron2 APIs and Pubnub3 real-time processing.
Furthermore, the ngrok service provides a secure tunnel to
connect with Tieron and receives callbacks.

In order to execute the 4-ary malware, we verify the exis-
tence of each file in the bitcoin network through the hashing
signatures and if confirmed, we execute the viral payload (see
Fig. 6). In the testing scenario, we created a class I independent
(B subclass) 4-ary malware which is the most complex class
in term of detection because no executable helps to spot the
other [17].

C. Attack

Our proof-of-concept is based mainly on the proof-of-
existence application. Therefore, in order to convict other
systems, a medium to interact with our malicious application
is needed. Phishing or other techniques can be employed
for that purpose. Besides, the core application databases and
flows subscriptions are scheduled for some period of time and
the accounts utilized are removed. This makes the attacker
anonymous.

V. CONCLUSION

According to antiviral solutions editors, they are able to
detect 99.9999 per cent of known and unknown malware.
However, in 1986, F. Cohen proved that the detection of
viruses is an undecidable problem [17].

Many defense strategies are deployed nowadays to reduce
the level of accepted risk. Primary, network traffic analysis
is used to create a baseline for ordinary network flows and
spot anomalies. Also, full-packet capture mechanisms are
deployed for better visibility, reporting and network forensics.

1An open-source database with real time capabilities.
2A helper platform to manage blockchain requests.
3A data stream network.

Furthermore, payload and behavioral analysis in sandboxes are
considered for advanced malware discovery. Moreover, appli-
cation containment approaches are employed through agents
to exclude potential offensive programs in containers and
intercept their malicious activity. Finally, many agents are used
for data collection and endpoints monitoring using intelligence
to provide efficient protection and incident response. To fight
against computer infections, several combination approaches
are essentials to eliminate potential intrusions. Also, solu-
tions integration is crucial for management, insight, activities
linking and security coverage. Although these solutions are
essentials, their scope of operation is limited. Furthermore, the
usefulness of the behavioral detection and the will to obtain a
lower probability as well as the compromises and algorithmic
choices may completely inhibit the essential property of the
detection. The fundamental lever is the human factor and the
security policies in place. According to the theory of com-
putability, some problems are not calculable and the problem
of viral detection is one of the undecidable problems.

In this paper, we utilized the Blockchain in order to explore
the feasiblity of a new undetectable malware. We based our
malware on k-ary codes which have been demonstrated to be
NP-complete. We have developed a 4-ary malware and tested
it in real time where each chunk of the code interacts with
the Bitcoin network to be validated and to make sure that it
belongs to our malicious software. Therefore, the blockchain
network provided an elegant solution to retrieve the multiple
parts of the malware, making sure of their authenticity and
integrity without worrying about the generation, the manage-
ment and the storage of the keys.

The next step consists in leveraging smart contracts func-
tions to enhance our k-ary malware and add more complexity.
Besides, we will tackle its formalization and validate it in real
time against advanced and sophisticated endpoints protections.

REFERENCES

[1] K. Zetter, “Nov. 10, 1983: Computer ’Virus’ Is Born,” https://www.
wired.com/2009/11/1110fred-cohen-first-computer-virus/, 2009, [On-
line; accessed 11-November-2017].

[2] T. M. Chen and J.-M. Robert, “The evolution of viruses and worms,”
Statistical methods in computer security, vol. 1, 2004.

[3] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[4] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[5] R. Abreu, F. David, and L. Segura, “E-banking services: Why fraud is
important?” 2016.

[6] A. Peterson, “The sony pictures hack, explained,” The Washington Post,
vol. 1, 2014.

[7] L. Constantin, “New locky ransomware version can operate in offline
mode,” 2016.

[8] R. Dobbins, “Mirai iot botnet description and ddos attack mitigation,”
Arbor Threat Intelligence, vol. 28, 2016.

[9] A. Greenberg, “The wannacry ransomware hackers made some real
amateur mistakes,” 2017.

[10] R. Richardson and M. North, “Ransomware: Evolution, mitigation and
prevention,” International Management Review, vol. 13, no. 1, p. 10,
2017.

[11] É. Filiol, Techniques virales avancées. Springer, 2007.
[12] F. Cohen, “Computer viruses: theory and experiments,” Computers &

security, vol. 6, no. 1, pp. 22–35, 1987.

[13] G. Hoglund and J. Butler, Rootkits: subverting the Windows kernel.
Addison-Wesley Professional, 2006.

[14] M. E. Russinovich, D. A. Solomon, and A. Ionescu, Windows internals.
Pearson Education, 2012.

[15] J. Moubarak, M. Chamoun, and E. Filiol, “Comparative study of recent
mea malware phylogeny,” in Computer and Communication Systems
(ICCCS), 2017 2nd International Conference on. IEEE, 2017, pp.
16–20.

[16] J. Moubarak, E. Filiol, and M. Chamoun, “Comparative analysis of
blockchain technologies and tor network: Two faces of the same reality?”
in CSnet , 1st Cyber Security in Networking Conference. IEEE, 2017.

[17] E. Filiol, Computer viruses: from theory to applications, 2006.
[18] McAfee, “Powerful advanced threat detection,” 2015.
[19] PaloAlto, “Next Generation Firewall,” 2017.
[20] FireEye, “Endpoint,” 2017.
[21] Kaspersky, “Endpoint Security for Business,” 2017.
[22] E. Filiol, “Malicious cryptology and mathematics,” in Cryptography and

Security in Computing. Intech, 2012.
[23] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”

in Broadband, Wireless Computing, Communication and Applications
(BWCCA), 2010 International Conference on. IEEE, 2010, pp. 297–
300.

[24] E. Filiol, “Formalisation and implementation aspects of k-ary (mali-
cious) codes,” Journal in Computer Virology, vol. 3, no. 2, pp. 75–86,
2007.

[25] M. Dalla Preda and C. Di Giusto, “Hunting distributed malware with
the κ-calculus,” in Fundamentals of Computation Theory. Springer,
2011, pp. 102–113.

[26] G. Gueguen, “Van wijngaarden grammars, metamorphism and k-ary
malwares,” arXiv preprint arXiv:1009.4012, 2010.

[27] L. M. Adleman, “An abstract theory of computer viruses,” Advances in
Crypto, 1998.

[28] Z. Zuo and M. Zhou, “Some further theoretical results about computer
viruses,” The computer journal, vol. 47, no. 6, pp. 627–633, 2004.

[29] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “On abstract computer
virology from a recursion theoretic perspective,” Journal in computer
virology, vol. 1, no. 3, pp. 45–54, 2006.

[30] E. Filiol, “Metamorphism, formal grammars and undecidable code
mutation,” International Journal of Computer Science, vol. 2, no. 1,
pp. 70–75, 2007.

[31] Filiol, “Malware of the future,” 2015.
[32] D. de Drézigué, J.-P. Fizaine, and N. Hansma, “In-depth analysis of

the viral threats with openoffice. org documents,” Journal in Computer
Virology, vol. 2, no. 3, pp. 187–210, 2006.

[33] G. Jacob, E. Filiol, and H. Debar, “Formalization of viruses and malware
through process algebras,” in Availability, Reliability, and Security, 2010.
ARES’10 International Conference on. IEEE, 2010, pp. 597–602.

[34] A. Desnos, “Implementation of k-ary viruses in python,” Hack. lu, 2009.
[35] G. O. Karame and E. Androulaki, Bitcoin and Blockchain Security.

Artech House, 2016.
[36] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-

rencies. ” O’Reilly Media, Inc.”, 2014.
[37] A. Bahga and V. Madisetti, “Blockchain applications: A hands-on

approach,” 2017.
[38] I. Cloud, “Blockchain,” https://console.bluemix.net/catalog/services/

blockchain/, 2017.
[39] Postcapes, “Blockchains and the Internet of Things,” 2017.
[40] LTP, “22 companies leveraging blockchain for identity management and

authentication.”
[41] BlockchainBlog, “Blockchains and the Internet of Things,” https://blog.

blockchain.com/tag/tor/, 2017, [Online; accessed 12-November-2017].
[42] H. Patel, “Blockchain-ware: Next stage of malware evolution.” 2017.
[43] J. Riordan and B. Schneier, “Environmental key generation towards

clueless agents,” Mobile agents and security, vol. 1419, pp. 15–24, 1998.
[44] Pubnub, “Build a Proof of Existence Service in the Blockchain.” 2017.

#
#
#
#
#
#

