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Abstract: The healthcare industry is being transformed by the Internet of Things (IoT), as it provides

wide connectivity among physicians, medical devices, clinical and nursing staff, and patients to

simplify the task of real-time monitoring. As the network is vast and heterogeneous, opportunities

and challenges are presented in gathering and sharing information. Focusing on patient information

such as health status, medical devices used by such patients must be protected to ensure safety and

privacy. Healthcare information is confidentially shared among experts for analyzing healthcare and

to provide treatment on time for patients. Cryptographic and biometric systems are widely used,

including deep-learning (DL) techniques to authenticate and detect anomalies, andprovide security

for medical systems. As sensors in the network are energy-restricted devices, security and efficiency

must be balanced, which is the most important concept to be considered while deploying a security

system based on deep-learning approaches. Hence, in this work, an innovative framework, the deep

Q-learning-based neural network with privacy preservation method (DQ-NNPP), was designed

to protect data transmission from external threats with less encryption and decryption time. This

method is used to process patient data, which reduces network traffic. This process also reduces the

cost and error of communication. Comparatively, the proposed model outperformed some standard

approaches, such as thesecure and anonymous biometric based user authentication scheme (SAB-

UAS), MSCryptoNet, and privacy-preserving disease prediction (PPDP). Specifically, the proposed

method achieved accuracy of 93.74%, sensitivity of 92%, specificity of 92.1%, communication overhead

of 67.08%, 58.72 ms encryption time, and 62.72 ms decryption time.

Keywords: healthcare; deep learning; privacy; Internet of Things (IoT); Q-learning; data transmission

1. Introduction

The Internet of Things (IoT) utilizes IP-based communication for connecting the Inter-
net with sensors and a multitude of devices. For instance, healthcare sectors with the IoT
can achieve remote monitoring, early diagnosis, treatment, and prevention [1]. Moreover,
objects or people was furnished with sensors, such as radio-frequency identification (RFID)
tags, and actuators in IoT to monitor the status. The RFIDs tags or personal medical de-
vices of patients can be read, located, recognized, and controlled using IoTapplications [2].
Several smart applications and services can overcome the challenges faced by individuals
and the healthcare industry [3] by using the dynamic abilities ofthe IoT to connect objects
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toobjects, devices tomachines, patients tomachines, patients todoctors, doctors tomachines,
mobiles tohumans, sensors tomobiles, and tags toreaders. Machines, humans, dynamic sys-
tems, and smart devices are intellectually connected to ensure the efficiency of ahealthcare
system [4]. In general, theIoT structure comprises 3 layers, namely, the network, perception,
and application layers. The perception layer is responsible for collecting healthcare data
using several devices [5]. The network layer consists of wired, wireless, and middleware
systems, and progresses and transfers the input from the perception layer. When designed
efficiently, transport protocols can improve the efficiency of data transmission, decrease the
consumption of energy, and ensure privacy and security [6]. The application layer combines
the sources of medical data and offers medical services that satisfy the needs of the user on
the basis of the current situation and demand. Privacy and security information related to
patients isthe most essential concept in an IoT-based environment [7]. Data security can be
achieved by securely storing and transferring data, ensuring integrity, authenticity, and va-
lidity. Data privacy is achieved when data are accessed only by authorized individuals [8].
On the basis of demands, purposes, and needs, protection strategies can be reasonably
developed. Although widelyused IoT devices can help in improving the health of patients,
securing and protecting human information must be achieved at the same time. As attacks
have increased on next-generation systems, IoT devices are susceptible to both unknown
and known attacks [9]. Data that flow from the IoT domain to the cloud and visualization
domains arealtered at several points in thecloud hierarchy. Conventional systems based
on signature or machine-learning approaches are not capable of dealing with the current
situation due to the frequent occurrence of unknown attacks. Deep neural networks (DNNs)
can detect a virtualized communication network failure by recognizing the normal data
flow and reconstructing it forhigher accuracy [10]. However, the major challenge faced with
these models is that more training timeis required for complex DNNs in the core clouds
compared to existing traditional methods. Hence, it is necessary to develop innovative
approaches that reduce the training time without compromising detection accuracy.

The contribution of this work is as follows:

• Constructing a systematic framework using the deep Q-learning method for processing
patient data, which further reduces traffic in a network.

• Adoptingciphertext-policy attribute-based privacy preservation (CPABPP) for gener-
ating both a public key (PK) and a master key (MK).

This paper is organized as follows. Section 1 describes the background of the Internet
of Things (IoT) in healthcare, security and privacy issues, and the role of deep learning in
the security field. In Section 2, the literature of reported privacy preservation methods in
healthcare IoT is reviewed. Section 3 explains the proposed privacy preservation method
by constructing a system model. In Section 4, experimental analysis is given with graphs
by comparing three standard methods. Lastly, Section 5 presents the conclusion and future
research directions.

2. Related Works

The authors in [11] utilized advanced artificial-intelligence approaches to develop a
model that preserves data privacy in the cloud. This model involves two main stages: the
sanitization and restoration of data. The process of sanitization is based on generating an
optimal key using the hybridmetaheuristic Jaya-based shark smell optimization (J-SSO)
method. A multi-objective function was derived having parameters such ashiding ratio,
degree of modification, and ratio of information preservation to generate the optimal key.
Asecure and anonymous biometric-baseduser authentication scheme (SAB-UAS) wasdevel-
oped in [12] thatsecurely ensures communication in the healthcare industry. Results proved
that an imposter does not act as a genuine user for accessing or cancelling ahandheld smart
card. A forward privacy preservation scheme waspresented in [13] for healthcare systems
based on IoT. This scheme involved trapdoor permutation for changing the status counter,
makingit hard for anadversary to determine the valid status counter of the record with
only the client public key; thiswas developed in [14]. A modified deepresidual network
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wasdesigned in [15], in which newsmooth pooling layers weredefined to leverage the
performance of the model. The researchers also suggested a method to recognize human
activities in an IoT cloud environment, thereby enabling users to create situations on the
basis of their actions at house. An architecture of function as a service (FaaS) was involved
to solve the problem of scalability, whereby every function was executed in a distinct
container. The privacy-preserving disease prediction (PPDP) method wasdeveloped in [16]
to efficiently encrypt andstore patients’ medical data in the cloud server for further process-
ing. Prediction models were trained with thesingle-layer perceptron learning method. An
optimal deep-learning-based secure blockchain (ODLSB)-enabled intelligent IoT model for
healthcare diagnosis waspresented in [17]. This model involved 3 mainprocess: secured
transaction, the encryption of hash values, and medical diagnosis. From theobtained re-
sults, manyfeatures were formed with higher sensitivity (92.75%), accuracy (93.68%), and
specificity (91.42%). Varying-structure fractional-order chaotic-system synchronization
with varying order was presented in [18]. The theory of Lyapunov stability wasutilized to
establish synchronization betweenthe response system and fractional-order drive system.
The process of encrypting and decrypting major data signals is executed by utilizing the
principle of n-shift encryption. The simulation results showed the effectiveness of the theo-
retical approach. A secure FaBric block chain-established data transmission approach in
industrial IoT was explained in [19]. This approach utilizes the blockchain-based dynamic
mechanism of secret sharing. This technique improves the rate of transmission and rate of
packet receiving by 12% and 13%, respectively. Furthermore, this approach can achieve
abetter management of sharing and decentralization. A distributed secure outsourcing
scheme wasimproved in [20] by utilizing a crypto-deep neural network. This technique
possesses a web server, cloud server, cloud agent, anddata center. Im-personalization
attacks are handled by crypto-deep neural network cloud security (CDNNCS). A nearly
10% reduction in packet loss wasobtained from the results of CDNNCS, and a 5% increase
in response time compared to the existing approach. A privacy-preserving hierarchical
fuzzy neural network wastrained in [21] with atwo-stage optimizationalgorithm, and
the hierarchy’slow-level parameters werelearnt with a model depending on the familiar
method ofalternating-direction multipliers, whichdoesnot expose local data to other agents.
Higher levels of hierarchy coordination areprocessed by another method of optimization
that is quickly converged. The overall procedure’s scalability andspeedare not altered
by problems ofgradient vanishing, such asbackpropagation models. The efficiency of
the proposed technique wasdemonstrated by classification and regression approaches
based on simulation. For IoT-enabled healthcare, thedeep-learning-based preservation
of privacyand a system of data analytics waspresented in [22]. At the userend, raw data
aregathered, and the private information of users is separated in the zone of privacyiso-
lation. At the cloud end, health-associated informationanalysis, with noprivate dataof
users and fragile security components, is conducted depending on the convolutional neu-
ral network (CNN). Efficiency and robustness wereproven by experimental analysis. A
novel Q-learning-based transmission process forschedulingwasdeveloped in [23], utiliz-
ing deep learning for the IoT for solving the issuefor achieving the suitableplan for the
transmission of packets withvarious buffers byseveral channels for the maximization of the
throughput of system. A Markov decision process-dependent technique is computedfor
describing the system’stransformation of state. This method produces enhanced packet
transmission with lower power consumption and packet loss. An intelligent trust cloud
management approach waspresented in [24]. A trust cloud update technique wasdevel-
oped for theadaptive and intelligent management of the trustapproach belonging to an
open wireless medium. Results demonstrated that thisapproachcan efficiently introduce
uncertainty intrustproblems, and accuracy for the detectionof malicious deviceswas im-
proved. A cascade-learning-embedded vision inspection method of rail fastenersbasedon a
deep convolutional neural network (DCNN) waspresented in [25]. A convolutional neural
network (CNN) is used forfaulty fastenerdetection. Extensive experiments wereconduct-
edto demonstrate this method’sperformance. Experimentalresults showed that this method
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realized average precision and recall of95.38% and 98.62%, respectively, on a fast detecting
mechanism, which is highly more efficient than the physical operation.

Although the review of related works reveals that much focus has been directed to
developing security and privacy models for the healthcare sector, improved security and
privacy areyet to be achieved. Conversely, several privacy systems are not suitable for
providing effective security measures. To overcome these problems, a deep Q-learning-
based neural network wasemployed with the privacy preservation method (DQ-NNPP) in
this work, which is discussed below.

3. System Model

Private patient data, which are essential for hospital applications, are uploaded in
centralized locations. Then, machine-learning techniques utilize thesedata to extract unique
patterns for developing models. When such private data become visible to the members
of the company or if the company dataset is hacked, insider and outsider threats occur,
respectively.

As shown in Figure 1, the constructed model applies neural-network techniques for
maintaining the security and privacy of healthcare information. Here, several intermediate
attacks are encountered by the system; hence, unauthorized access to the cloud storage
must be eliminated. Once user data are obtained, for every request, features are extracted
and stored to analyze malware activities and issues related to security and privacy. From
these features, the quality value of data can be determined with the use of feature states,
and their corresponding actions help to determine the data quality.

 

Figure 1. System architecture of privacy preservation method in IoT healthcare infrastructure.

3.1. Deep Q-Learning-Based Scheduling and Data Transmission

Input = [a1 to f1, a2 to f2 . . . .an to fn] signifies the system state’s information, and a + b
indicates the neuron number in the layer. The output layer representing the information of
the selection action is illustrated in Figure 2, which contains the channel (m) in communica-
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tion mode j and buffer k with a + b + J neurons. The hidden layer is composed of several
layers, and the number of neurons is estimated using Equations (1) and (2):

N(h) =
√

n(i) + n(o) + Con. (1)

W = {
(

wij

)

€(n ∗m)} (2)

where n(i), n(o), and N(h) are the numbers of the input, output, and hidden layers, re-
spectively; Con indicates a constant limited in Con [1,10]; and wij represents the weight
between the i-th visible and j-th hidden cells. For the process of encoding and decoding,
the logistic sigmoid function is used as a transfer function. The cost function is defined by
L(x) [23], as shown in Equation (3):

L(x) = arg min ∑
n

i=1

xi− fi

2
+ J(m) (3)

where J(m) is the weight decay that reduces the weight, thereby preventing overfitting
during training. To update the weight and bias vector, the rules in Equations (4) and (5) are
used:

W(k + 1) = W(k) − β (4)

B(k + 1) = b(k) − β (5)

where the learning rate is denoted by β. The residual error’sbackpropagation is δ, which is
given in Equations (6) and (7):

∆im = ∆im + 1×Wij× fm (6)

A = {bi€Rn} (7)

where bj is the bias threshold of the j-th visible cell. Consider that the visible and hid-
den layers follow Bernoulli distribution; then, the order of (v,h) is represented as shown
inEquation (8):

E(v, h |θ ) = −∑ ni = 1aivi −∑ mj = 1bjhj −∑ ni = 1 ∑ ni = 1viwijhj (8)

where θ = {Wij, ai, bj}, and the energy function indicates the estimated energy in every node
of the visible and hidden layers.

System Model for Security

Here, the security for medical record datasets, and preserving the privacy of patients
and hospitals is achieved. This model contains a trusted authority (TA), hospitals with
healthcare professionals, patients (user), and a server, as shown in Figure 3.

The roles of each entity in the system model are described below:

• TA generates the parameters and deals with registration.
• Hospitals supply patients’ medical information to the servers.
• The userqueries the doctors with the source and destination stage.
• Interaction between servers generates a portion of the clinical pathway, which in

turn is returned to the user. Multiple interactions are allowed to occur with other
interactions instead of between the hospital and user, thereby effectively reducing the
local communication overhead and computational cost. In this model, the data (k = 1, 2,
3, . . . , m) of medical datasets include details of the patients, such as name, age, gender,
expenses, other indices, medication, and the time of appointments. These details are
shared and protected by the ciphertext-policyattribute-based privacy preservation
approach. On the basis of these privacy policies, the server creates an integrated
directional connected network.
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Figure 2. Data scheduling from patients using deep Q-learning.

 

 
 
 
 

Figure 3. System model for securable data transmission to the healthcare provider.

3.2. Key Generation on Ciphertext-PolicyAttribute-Based Privacy Preservation (CPABPP)

The data owner executes the setup algorithm, which comprises three steps.
Step 1: the CP-ABE setup algorithm is applied, obtaining a few security parameters as

input; a public key (PK) and a master key (MK) are generated.
Step 2: the functional encryptionsetup algorithm is applied, which uses a few security

measures as inputs to produce a functional master key (MKF) andfunctional public key
(PKF).

Step 3:The key-generating algorithm KeyGen(MK,S) of functional encryption is ap-
plied, where function f(i) is taken as the input to generate a functional secret key SK[f(i)] as
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the output, here i = 1, 2,..., n. f(i) is described as fi(S) = ssi(KeyGen(MK,S)),where ssi(s) is
a function that produces the share as (n, k) secret sharing is applied on secrets. Once the
setup algorithm is executed, data users and the i-th authority receive PKF and SK [fi] sent
by the data owner over the secure channel, respectively. In this process, a large number of
subkeys are used, which are precomputed before the process of decryption or encryption.
The P-array contains 18 to 32 bit subkeys: P1, P2, ..., P18.

Algorithm 1 for generating subkeys:

Algorithm 1 Algorithm for generating subkeys

1: Input—plain text

2: Output—subkeys

3: Strings(x) = P1, P2, P3 . . . Pn

4: if

5: A = P1(XOR) P2

6: (n = P1; n + 1 > P1)

7: B = P2(XOR) P3

8: (P2 = n; P2 < n + 1)

9: C = P3(XOR) P4

10: (n = P1; n + 1 > P1)

11: N = Pn(XOR) Pn

12: (P1 = n; P1 < n + 1)

13: end if

14: Y*Z* (A mod E) = K1

15: X*Z*(B mod F) = K2

16: Y*X*(C mod G) = K3

17: α2 (Y*Z*(A mod E)) = βK1

18: α2 (X*Z*(B mod F)) = βK2

19: α2 (Y*X*(C mod G)) = βK3

20: end

Encryption Process

ParameterAis assigned a positive integer value, such that A 6= k× 257, where k ranges
from 1 to n. Consider an array T taking values from 0 to 255, and thus a total of 256 unique
integers. A new array R is obtained on the basis of A and T that follows linear mapping [26]
as given in Equation (9):

R(i) = mod((A× (T(i) + 1)), 257) (9)

where i ranges from 1 to 256. T(i) takes values from 0 to 255; positive integer A satisfies
A 6= k × 257, and k takes up an integer greater than 0. (A/257) and (T(i) + 1)/257 yield non
integer values, such that they are not exactly divisible by 257. Thus, mod ((A × (T(i) + 1)),
257) is nonzero. Consider R(i)←R(i) − 1; then, R(i) ranges from 0 to 255, where iis1 to256.
The 1D array R = {R(i)} is then transformed into a 2D matrix Rb, which is the initial S-box.
The tent–logistic mapis then repeated Ltimes togenerate a chaotic series with lengthL. The
sensitivity of the chaotic series is improved, as the first (L-256) elements are discarded from
the actual chaotic series, therebyobtaining a new chaotic series with length 256 denoted as
X. By sorting X, J = {J(1), J(2), ..., J(256)}, an index array, is obtained. As the chaotic series is
nonperiodic and ergodic, it certainly gives J(i) 6= J(j), provided that I 6= j.

C. Communication with diagnosed patients
A unique ID is generated by each hospital on the basis of logic and node distance, as

shown in Equation (10):

di(Hi, Hj) =
∑p,q∈{Hi∪Hj−Hi∩Hj}

(xHi
pq + x

Hj
pq)

∑pq∈Hi∪Hj
(xHi

pq + x
Hj
pq)

(10)
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where Hi and Hj are nodes with IDs of Hi(id) and Hj(id), respectively; p is the source; and
q is the destination. Data privacy is secured in a decentralized way [27] using a randomized
approach for two nodes of hospitals, as shown in Equation (11):

Hr[(R0) ∈ S] ≤ exp(∈) ·Hr
[(

R′
)

∈ O
]

(11)

where R and R0 represent adjacent data records, and O indicates the set of data received
as output. R ∈ S achieves data privacy, but for several hospitals, Laplace is put into local
training model mi, as shown in Equation (12):

→
m1 = mi + Laplace(s/ ∈) (12)

where s stands for sensitivity; and ∈ indicates the total cost for transmission. For the
preservation of data privacy in hospitals, encryption is provided on every data by public
and private keys (PKi, SKi). MAE estimates every transaction and broadcasts Hj via
MAE (mi) and MAE (Hj). Every record of the approved transaction is maintained in the
distributed ledger. MAE is given in Equation (13):

MAE(m i) =
1

n

n

∑
i=1

|yi − f(x i)| (13)

where n indicates the total number of users; and xi indicate the communication and
transaction cost, respectively. Sharing personal data is a risk for data providers due to some
specific security attacks. This can be overcomeby simply transmitting data to the user with
valid details to the requester, and preserving the data privacy of the holders. Rather than
sharing actual data, learned models alone can be exchanged by the provided data, such as
hospitals with the requester.

4. Performance Analysis

For analysis, accuracy, sensitivity, specificity, communication overhead, time of en-
cryption, and time of decryption were selected as the parameters. The proposed deep
Q-learning-based neural network with the privacy preservation method (DQ-NNPP) was
compared with three standard methods, namely, theesecure and anonymous biometric-
based user authentication scheme (SAB-UAS), MSCryptoNet, and privacy-preserving
disease prediction (PPDP) on the basis of these parameters.

Accuracy presents the ability of the overall prediction produced in this approach.
True-negative (TN) and true-positive (TP) indicate the capability of predicting the absence
orpresence of an attack. False-negative (FN) and false-positive (FP) reflect false predictions
by the used model. The formula for accuracy is given in Equation (14):

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Figure 4 illustrates the comparison of accuracy between the existing SAB-UAS, MSCryp-
toNet, PPDP methods, and the proposed DQ-NNPP method, where the Xaxis displays
the number of epochs utilized for the examination, and the Yaxis represents the obtained
accuracy values in percentages. When compared, the SAB-UAS, MSCryptoNet, and PPDP
methods achieved accuracy of 92.02%, 94.3%, and 93.04%, respectively. The proposed DQ-
NNPP method achieved 93.74% accuracy, which was 1.76% better than that of SAB-UAS,
0.7% better than that of the PPDP method, and only slightly worse (1.24%) than that of
MSCryptoNet.
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Figure 4. Comparison of accuracy.

Sensitivity estimates the efficiency of the scheduling model. It is measured as the
probability of the positive prediction of identified features, and is also termed as the
true-positive rate (TPR), as given in Equation (15):

Sensitivity =
TP

TP + FP
(15)

Figure 5 illustrates the comparison of sensitivity between the SAB-UAS, MSCryptoNet,
and PPDP methods, and the proposed DQ-NNPP method. The Xaxis presents the number
of epochs utilized for the examination, and the Yaxis shows the sensitivity values acquired
in percentages. The SAB-UAS, MSCryptoNet, and PPDP methods achieved sensitivity of
79.4%, 84.72%, and 86.42%, respectively. Comparatively, the proposed DQ-NNPP method
achieved 92% sensitivity, which was 13.4%, 8.72%, and 6.42% better than those of SAB-UAS,
MSCryptoNet, and PPDP, respectively.

Specificity is the probability of true negatives that are aptly identified, and is also
termed true-negative rate (TNR). The formula for specificity is given in Equation (16):

Specificity =
TP

TP + FN
(16)

Figure 6 compares the specificity of the existing SAB-UAS, MSCryptoNet, and PPDP
methods, and of the proposed DQ-NNPPmethod, where the number of epochs used for
analysis is given on the Xaxis, and specificity values obtained in percentages are on the
Yaxis. The existing SAB-UAS, MSCryptoNet, and PPDP methods achieved specificity of
90.7%, 91.44%, and 91.58%, respectively. In comparison, the proposed DQ-NNPP method
achieved 92.1% specificity, which was2.6% better than that ofSAB-UAS, 1.34% better than
that of MSCryptoNet, and 1.48% better than that of the PPDP method.
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Figure 5. Comparison of sensitivity.

Figure 6. Comparison of specificity.

Communication overhead (C) is the ratio of the total packets (Npack) transmitted
from node x to node y in less time. The formula for communication overhead is given in
Equation (17):

Npack

∑
0

x→ y (17)

Figure 7 illustrates the comparison of communication overhead between SAB-UAS,
MSCryptoNet, PPDP, and the proposed DQ-NNPP method. The Xaxis displays the number
of epochs utilized for analysis, and the Yaxis gives the communication overhead values
obtained in percentages. The SAB-UAS, MSCryptoNet, and PPDP methods achieved a
communication overhead 64.62%,65.24%, and 66.76%,respectively. In comparison, the
proposed DQ-NNPP method achieved67.08% communication overhead, which was3.04%,
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2.24%, and 2.3% better than those of the SAB-UAS, MSCryptoNet, and PPDP methods,
respectively.

 

→

Figure 7. Comparison of communication overhead.

Time ofEncryption (E)is the time reserved by the algorithm for the conversion of
plain text (P) into cipher text (C) using asymmetric or asymmetric keys. The formula for
encryption time is defined in Equation (18):

E = Time(P→ C) (18)

Figure 8 presents the encryption time comparison between the existing methods and
the proposed method, in which the number of epochs used for analysis is given on the
Xaxis, and the encryption time values in milliseconds are on the Yaxis. When compared,
the existing SAB-UAS, MSCryptoNet, and PPDP methods achieved encryption times of 64,
62.2, and 60.52 ms, respectively. Comparatively, the proposed DQ-NNPP method achieved
an encryption time of 58.72 ms, which was 6.72, 4.4, and 2.3 ms faster than those of the
SAB-UAS, MSCryptoNet, and PPDP methods, respectively.

 

→

Figure 8. Comparison of encryption time.
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Time of Decryption (D)is the time engaged by an algorithm for the conversion of
cipher text (P) into plain text (C) using asymmetric or asymmetric keys. The formula for
encryption time is provided in Equation (19):

D = Time(C→ P) (19)

Figure 9 presents the decryption time comparison between the existing SAB-UAS,
MSCryptoNet, and PPDP methods, and the proposed DQ-NNPP method. The Xaxis
displays the number of epochs used for analysis, and the Yaxis gives the decryption time
values obtained in milliseconds. The existing SAB-UAS, MSCryptoNet, and PPDP methods
achieved decryption times of 67.48, 66.58, and 64.74, respectively. In comparison, the
proposed DQ-NNPP method achieved a decryption time of 62.72 ms, which was 5.36 ms
faster than that of SAB-UAS, 4.5 ms faster than that of MSCryptoNet, and 2.02 ms faster
than that of the PPDP method. Table 1 provides the overall comparative analysis ofall
methods.

Figure 9. Comparison of decryption time.

Table 1. Overall comparison between proposed and existing methods.

Parameters
SAB-UAS

[12]
MSCryptoNet

[14]
PPDP
[16]

DQ-NNPP
(Proposed)

Accuracy
(%)

92.02 94.3 93.04 93.74

Sensitivity
(%)

79.4 84.72 86.42 92

Specificity
(%)

90.7 91.44 91.58 92.1

Communication
Overhead

(%)
64.62 65.24 66.76 67.08

Encryption time (ms) 64 62.2 60.52 58.72

Decryption time (ms) 67.48 66.58 64.74 62.72
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5. Conclusions

Security and privacy are the most challenging issues in IoT healthcare applications.
With limited resources in IoT, existing security approaches are not appropriate. The pro-
posed deep Q-learning-based neural network with privacy preservation method (DQ-
NNPP) architecture overcomes the challenges of security and privacy threats. This paper
introduced novel ciphertext-policyattribute-based privacy preservation (CPABPP), which
combines the benefits of private, public, and master keys for designing a patient-centric
access control approach used in electronic medical sectors, thereby ensuring security and
privacy. The proposed method demonstrated superior results when compared with the
existing SAB-UAS, MSCryptoNet, and PPDP methods, achieving 93.74% accuracy, 92%
sensitivity, 92.1% specificity, 67.08% communication overhead, encryption time of 58.72 ms,
and decryption time of 62.72 ms. Future works should also include nonoptimized data
searching in a deep-learning concept to improve security.
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