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Abstract

Lowering joint torques of a robotic manipulator enables lowering the energy it uses as well as increase in the longevity of

the robotic manipulator. This article proposes the use of evolutionary computation algorithms for optimizing the paths of
the robotic manipulator with the goal of lowering the joint torques. The robotic manipulator used for optimization is

modelled after a realistic six-degree-of-freedom robotic manipulator. Two cases are observed and these are a single

robotic manipulator carrying a weight in a point-to-point trajectory and two robotic manipulators cooperating and moving

the same weight along a calculated point-to-point trajectory. The article describes the process used for determining the

kinematic properties using Denavit–Hartenberg method and the dynamic equations of the robotic manipulator using

Lagrange–Euler and Newton–Euler algorithms. Then, the description of used artificial intelligence optimization algorithms

is given – genetic algorithm using random and average recombination, simulated annealing using linear and geometric

cooling strategy and differential evolution. The methods are compared and the results show that the genetic algorithm
provides best results in regard to torque minimization, with differential evolution also providing comparatively good

results and simulated annealing giving the comparatively weakest results while providing smoother torque curves.
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Introduction

To achieve movement, the torque of robot manipulators

actuator (e.g. an electrical motor) needs to be higher than

the inertial torsion of the joint the actuator is moving.1,2

The movement requires use of energy directly proportional

to the actuator torque. Successfully minimizing the actuator

torque, which is dependent on the joint trajectory, will

mean that the movement of the robotic manipulator

requires less energy, as well as prolong the work life of the

robotic manipulator.3

It is possible to define the problem of joint torque opti-

mization in a way that makes it possible to use artificial

intelligence (AI) methods, namely the evolutionary
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computing optimization methods, in an attempt to achieve

the lower amounts of actuator torque.4–6

Related work

Garg and Kumar7 show that optimization of robot manip-

ulator paths in regard to joint torque is possible using a

genetic algorithm (GA) in the case of simple robotic manip-

ulators with two degrees of freedom (DOFs), and the

authors propose that similar method can be used for a more

complex robotic manipulators. Kazem et al.4 show the

application of a GA on a three-link (redundant) robot arm

for point-to-point planning. The paper demonstrated that

the GA is an effective method of optimization in that case,

capable of achieving multi-objective optimization. Albert

et al.5 have applied GA to optimize joint angles of a three-

link planar manipulator system in regard to path control and

accuracy in a point-to-point pick-and-place situation. The

paper concludes that GA is applicable when dealing with

complex path control – giving improved search speed and

approximate solution. Sharma et al.3 attempt to optimize a

point-to-point path, interpolated with a fourth-order poly-

nomial, in regard to energy consumed by the robotic

manipulator and travelling time with upper limit on the

torque. Furthermore, the paper compares the results of a

GA with a geometric approach to path planning. The results

show a drop in energy consumed when using the path plan-

ning with a GA. Wei et al.8 show the usage of evolutionary

algorithms for the development of collective behaviours,

specifically task allocation. Authors propose a two-step

scheme for task partitioning and allocation to overcome

problems presented by the bootstrapping and deception

problems. The results obtained by authors show that the

proposed approach leads to better performance in compar-

ison with conventional evolutionary robotics approach.

Abu-Dakka et al.9 evaluate the efficiency of the time and

trajectory smoothness optimization by a multiple popula-

tion GA using analysis of variance test. Authors conclude

that the approach of using a multiple population GA is valid

and produces results quickly. Larsen et al.10 show the appli-

cation of evolutionary algorithms and rapidly exploring

random trees (RRT) with various parameters on a robot

system with KUKA KR210 and KUKA R3100 robots on

a common axis to calculate collision-free paths. The results

show superior results when using evolutionary algorithms

in comparison with sampling methods, as well as conclud-

ing that the results gained using GA are superior to ones

gained with RRT. Wei et al.11 use deep Q-learning AI

algorithm to develop end-to-end control policies for robotic

swarms. It is shown that use of such techniques enables

development of control policies using fewer computation

resources, especially in cases with large solution spaces. El

Haiek et al.12 show the trajectory planning of a three-DOF

spherical robot with evolutionary algorithms in regard to

the minimization of travel time and joint travelling dis-

tance. The path is point-to-point and interpolated using

polynomial interpolation. Based on the results, by using

GA the robot can successfully find an optimal, collision-

free, trajectory while minimizing the time and the length of

the trajectory.

This article observes the usage of three different

algorithms

� GA (in two different configurations) which is an

algorithm based on natural evolution,13,14

� simulated annealing (SA) (in two different config-

urations) which is an algorithm based on the metal

annealing process15,16 and

� differential evolution (DE), an algorithm inspired by

the differential equations.17,18

The above algorithms are heuristic space search algo-

rithm, designed to search the solution space in an attempt

to find the optimal solution. Unlike the deterministic

methods, like an extensive search of the solution space,

the algorithms used do not guarantee the solution to be the

optimal solution, but they often provide good solutions

significantly faster in comparison with deterministic

methods.19,20 This article is based on research done in

‘Optimization techniques applied to multiple manipula-

tors for path planning and torque minimization’ by Garg

and Kumar,7 and attempts to apply the modified tech-

niques on to a more complex case – using a robotic manip-

ulator with six DOFs, as opposed to a robotic manipulator

with two DOFs.

Hypothesis

To summarize the novelty of this article, the idea is to

investigate

� the possibility of evolutionary computing algo-

rithms implementation for optimization of robot

manipulator trajectory with respect to minimization

of joint torques in cases of complex robotic manip-

ulators and

� performance comparison of multiple AI algorithms

on solving trajectory planning of complex robot

manipulators with minimization of joint torques.

This article compares the results and execution times of

aforementioned algorithms and their configurations in two

cases – a single robotic manipulator and two cooperating

robotic manipulators, both for point-to-point path planning.

Research methodology

In this section, the methodology of the research article will

be presented. First, the cases studied in this article will be

described, followed with the description of algorithms used

to calculate the kinematic and dynamic robotic manipulator

equations, followed by the description of algorithms used

for optimization.
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Cases

This article observes two cases: a single robot manipulator

with six DOFs (Figure 1) and two such manipulators work-

ing cooperatively by following the same path (Figure 2).

Cooperating robotic manipulators are often used in indus-

trial applications.10,21 In both cases, the method is validated

using ABB IRB 120 robotic manipulator. In observed

cases, robotic manipulators are transporting a prismatic

shaped object with weight of 2 kg along the calculated path.

For path planning, all joints of robotic manipulators start

the movement in a position of 0 radian, and finish the

movement in 1 radian. The robotic manipulators are sta-

tionary at the beginning and the end of the movement mak-

ing their starting linear and angular velocities as well as the

linear and angular accelerations equal zero.7,22

Robot manipulator dynamics

To determine the dynamic equations, two different algo-

rithms are used – Lagrange–Euler (L-E) and Newton–Euler

(N-E). Both algorithms should produce the same results

and can be used to check the validity of the calculated

results.23–25 First step in determining the dynamics of the

robotic manipulators is calculating the kinematic matrix.

This is also needed for determining the inverse kinematic

equations which are necessary for determining the path of

the second robotic manipulator in the case with two coop-

erating robotic manipulators.26

Kinematics. Kinematics are determined using the Denavit–

Hartenberg (D-H) method. The D-H method sets the

orthonormal coordinate systems in each joint of the

robotic manipulator, in such way that axis zk (where k is

a counter determining the joint) matches the axis of move-

ment of the joint k.27 Once all the coordinate systems are

positioned, the parameters qk , dk, ak and ak are determined

and they are placed in the homogeneous transformation

matrix for the joint28–30

T k
k�1 ¼

CY k
�Cak

SY k
Sak

SY k
akCY k

SY k
Cak

CY k
�Sak

CY k
akSY k

0 Sak
Cak

dk

0 0 0 1

2

6

6

6

4

3

7

7

7

5

ð1Þ

Because of the size of the equations, the shortened

trigonometric format is used. When using this format,

the trigonometric functions are written using only the

first letter of their name, so sine is written as S and

cosine as C. In addition, the arguments of the functions

are written as indexes – so sin a1ð Þ becomes Sa1
. If all

the arguments are marked with the same letter, for

example q1 and q2, then only the indexes of the vari-

ables can be used, for example sin q1ð Þ becomes S1 and

cos q2ð Þ becomes C2. If the argument consists of multiple

variables, then it can be written as sin q1þ q2ð Þ ! S12 or

cos q3� q4ð Þ ! C3�4.

The homogeneous transformation matrix of the robot

manipulator is calculated as a product of matrices of each

joint using

T tool
base ¼

Y

k

k�1

T k
k�1 ¼ T 1

0T
2
0 . . . T

n�1
n�2T

n
n1
: ð2Þ

The resultant matrix is formatted as

T tool
base qð Þ ¼

R qð Þ p qð Þ

vT1 s

� �

ð3Þ

where R qð Þ ¼ r1 r2 r3½ � is tool orientation matrix

(3� 3), with r1 being the perpendicular vector, r2 being

movement vector and r3 being the approach vector; p(q)

is the tool end position, vT1 being perspective vector

(usually 0 0 0½ �)31 and s being scaling coefficient (usu-

ally 1).32,33

The inverse kinematics equations can be extracted

from the homogeneous transformation matrix, where the

Figure 1. Case 1: single robotic manipulator.

Figure 2. Case 2: two cooperating robotic manipulators.
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position of the tool is defined with the vector w, with w

defined with34

w ¼
w1

w2

� �

¼
x y z½ �T

F Y C½ �T

" #

ð4Þ

where x, y and z are tool positions in the tool configuration

space and F,Y andC are Euler angles (spin, nutation and

precession).35,36Vectors w1 and w2 are defined from homo-

geneous transformation matrix given in equation (3) with

equations shown in37

w1 ¼ p qð Þ ð5Þ

and

w2 ¼ r3 ð6Þ

L-E algorithm. L-E algorithm is an iterative method of deter-

mining the differential equations defining the joint torque

of the robotic manipulator.22,38

The L-E algorithm defines the differential equations

per26,39

X

n

j¼1

Dij qð Þqj

h i

þ
X

n

k¼1

X

n

j¼1

Ci
kj qð Þqkqj

h i

þ hi qð Þ þ bi qð Þ ¼ ti

ð7Þ

where i represents the robot manipulator link,
Pn

j¼1 Dij qð Þqj

h i

represents the inertial forces and

moments,
Pn

k¼1

Pn
j¼1 Ci

kj qð Þqkqj

h i

represents Coriolis

forces, hi qð Þ is the effect of the gravity on the robotic

manipulator, bi qð Þ is the friction within the robotic manip-

ulator and ti is the moment of the actuator.40

Before the start of L-E algorithm, additional starting

values need to be set. Those values are

T 0
0 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
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6

6

4

3

7

7

7

5

ð8Þ

D qð Þ ¼

0 0 0

0 0 0

0 0 0

2

6

4

3

7

5
ð9Þ

and i ¼ 1; where i is the counter that determines which

joint of the robotic manipulator are the values being calcu-

lated for in the given step, where i is 1 for the joint next to

the base of the robotic manipulator.

The first step in L-E algorithm is the determination of

homogeneous coordinates of the link the calculation is

being done for Dci, as well as the tensor of inertia Di qð Þ
using

Di qð Þ ¼

Ixx Ixy Ixz

Iyx Iyy Iyz

I zx I zy I zz

2
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7

5
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ð
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ð
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ð10Þ

The next step is calculating the vector zi�1 qð Þ as

zi�1 qð Þ ¼ Ri�1
0 qð Þ�i3 ð11Þ

Then the matrix of a complex homogeneous transforma-

tion is calculated as a product of transformation matrices

for all the joints between the base and the current link as

T i
0 ¼ T i�1

0 qð ÞT i
i�1 qð Þ ð12Þ

The matrix T i
0 allows for calculating the position of the

centre of mass coordinates for the link i in relation to the

coordinate system of the base of the robotic manipulator

per

ci qð Þ ¼ H 1T
i
0 qð ÞDci ð13Þ

where H1 is defined as

H 1 ¼

1 0 0 0

0 1 0 0

0 0 1 0

2

6

4

3

7

5
ð14Þ

The tensor of inertia in relation to the base coordinate

system is also determined as

Di qð Þ ¼ Ri
0 qð ÞDi0 R

i
0 qð Þ

� �T
ð15Þ

Final step in the first part of the L-E algorithm is calcu-

lating the Jacobian matrix. The Jacobian matrix connects

the infinitesimal movements of the manipulator joints to

the infinitesimal movements of the tool and is defined using

J i qð Þ ¼
Ak qð Þ

Bk qð Þ

" #

ð16Þ

where matrices A and B are respectively defined with

Ai qð Þ ¼
@ci qð Þ

@qi
. . .

@ci qð Þ

@qi
0 . . . 0

" #

ð17Þ

and

Bi qð Þ ¼ q1z
0 qð Þ . . . qiz

i�1 qð Þ 0 . . . 0
� �

ð18Þ

With these matrices calculated, the manipulator tensor

of inertia can be determined as

4 International Journal of Advanced Robotic Systems



D qð Þ ¼
X

n

i¼1

Ai qð Þ
� �t

mi A
i qð Þ

� �

þ Bi qð Þ
� �T

Di qð ÞBk qð Þ
n o

ð19Þ

When the manipulator’s tensor of inertia has been cal-

culated, the value of the counter i is increased by one. If i is

smaller or equal to n, where n is the number of joints of the

robotic manipulator, the algorithm returns to the beginning

of the process. If i is greater than n, the L-E algorithm

proceeds with the second iterative part.

The beginning of the second iterative part is resetting the

value of i to 1. Then, for the joint given by i, the speed

connectivity matrix is calculated as

Ci
kj ¼

@Dij qð Þ

@qk
�

1

1

@Dkj qð Þ

@qi
; 1 � i; j; k � n ð20Þ

The gravity influence vector is calculated as

hi qð Þ ¼ �
X

3

k¼1

X

n

j¼1

gkmjAk i
j qð Þ

� �

; 1 � i � n ð21Þ

Furthermore, the friction is determined as

bk _qkð Þ ¼ bvk _qk þ sgn _qkð Þ bdk þ bsk � bdk
� �

exp
� _qkj j

E

� 	� �

ð22Þ

With this, all the necessary values are calculated and the

L-E equation for the given link can be determined using

ti ¼
X

n

j¼1

Dij qð Þ€qj

h i

þ
X

3

k¼1

X

n

j¼1

Ci
kj qð Þ _qk _qj

h i

þ hi qð Þ þ bi qð Þ

ð23Þ

The counter i is increased. If the value is smaller or

equal to n, the algorithm returns to the first step of second

iterative part and the calculation is repeated for the given

link. If the value of i is greater than n, the L-E algorithm is

finished.

N-E algorithm. N-E algorithm is a recursive method used to

calculate the dynamic differential equations. It has two

parts: the calculation ‘forward’ in which the linear and

angular speeds and accelerations are calculated, and the

calculation ‘backward’ in which the forces and momenta

acting upon the link are calculated.41 In the calculation

‘forward’, the values are calculated for the links in the

direction from the base of the robotic manipulator towards

the tool, while in the calculation ‘backward’ the values are

calculated from the direction from the tool to the

base.22,42,43 This is illustrated in Figure 3.

Before starting the calculation, the starting values need

to be set to T 0
0 ¼ I , f nþ1 ¼ �f tool, nnþ1 ¼ �ntool,v0 ¼ 0,

dv0=dt ¼ �g, !0 ¼ 0, d!0=dt ¼ 0 and counter i ¼ 1.

When these values are set, the algorithm progresses into

its first part – calculation ‘forward’.

The first part of the calculation ‘forward’ is the same as

the start of the first iterative part of L-E algorithm in which

the vector zi�1 is determined as

zi�1 ¼ Ri�1
0 �i3 ð24Þ

The next step is the calculation of the angular speed as

!k ¼ !i�1 þ xi
dqi
dt

� 	

zi�1 ð25Þ

where xi is defined as

xi ¼ 1; for revolutional joint

xi ¼ 0; for linear joint

�

ð26Þ

Then the value of angular acceleration is calculated per

_!i ¼ _!i�1 þ xi
d2qi
dt2

� 	

zi�1 þ !i�1 �
dqi
dt

zi�1

� 	� �

ð27Þ

As in the L-E algorithm, the complex homogeneous

transformation matrix is determined

T i
0 ¼ T i�1

0 T k
i�1 ð28Þ

followed by the vector Ds as

Dsi ¼ H 1 T i
0 � T iþ1

0

� �

i4 ð29Þ

Final part of calculation forward is calculating the linear

acceleration using

dvi

dt
¼

dvi�1

dt
þ

d!i

dt
� Dsi þ !i � !i � Dsi

� �

þ 1� xið Þ
d2qi
dt2

zi�1 þ 2!i � _qiz
i�1

� �

2

4

3

5

ð30Þ

Figure 3. The illustration of N-E algorithm.44N-E: Newton–Euler.
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After the linear acceleration is calculated, the counter i

is increased by one. If the value of i is lesser than n, the

calculation repeats for the next link. If the value is greater

than n, the algorithm proceeds to the calculation ‘back-

ward’. Calculation ‘backward’ is started by calculating the

vector rk

Drk ¼ H 1T
k
0 Dck � i4
� �

ð31Þ

and the tensor of inertia of the robotic manipulator link

given by i in relation to the base of robotic manipulator

Dk ¼ Rk
0D

0
kðR

k
0Þ

T ð32Þ

Then the forces and the momentum acting upon the link

given by i are calculated as

f k ¼ f kþ1 þ mk

dvk

dt
þ

d!k

dt

� 	

� Drk þ !k � !k � Drk
� �

� �

ð33Þ

and

nk ¼ nkþ1 þ Dsk þ Drk
� �

� f k � Drk � f kþ1 þ Dk

d!k

dt

0

@

1

A

þ !k � Dk!
k

� �

ð34Þ

The final calculation is determining the value of the

joint actuator momentum using the equation

tk ¼ xkðn
kÞTzk�1 þ 1� xkð Þðf kÞTzk�1 þ bk _qkð Þ ð35Þ

The value of i is then lowered by one. If the value of i is

larger than zero, the calculation ‘backward’ is repeated for

the next joint. If the value of i is zero, the base of the robotic

manipulator has been reached and the N-E algorithm is

finished.

Used algorithms

In this article, five different algorithms were utilized and

these are:

� GA with average recombination,

� GA with random recombination,

� SA with linear cooling strategy,

� SA with geometric cooling strategy and

� DE.

Used algorithms will be discussed in this chapter.

All of the above are evolutional computing algorithms,

which are based on performing the iterative method on a

certain population of agents to achieve an optimal result

from the solution space. Solution space is defined as the n-

dimensional mathematical space containing all the possible

solutions to a given problem,45,46 with each solution having

a value calculated with a fitness function defining how well

does the given solution satisfy the conditions given for

solving the problem.47,48 Each agent is a point in the solu-

tion space – an instance of a solution containing genotype

data. Genotype is the simplified representation of the

solution to the given problem which is the phenotype

of the problem.49 In this article, phenotype is the move-

ment of the robotic manipulator through the space, while

the genotype is the parameters of equations that describe

the movement of the robotic manipulator. A group of

agents upon which the optimization is performed is

called the population50,51 and each iteration of the evo-

lutionary algorithm is called a generation.52 All algo-

rithms end when an end condition53,54 is fulfilled. End

condition is usually fulfilled after a certain amount of

generations have passed or when there was not a change

in the best achieved value of fitness function for a cer-

tain amount of generations.55 All algorithms are run

with population of 20 agents for the period of 50

generations.

Genetic algorithm. GA is an optimization algorithm that imi-

tates the process of biological evolution using the mechan-

isms of crossover and mutation.55,56

Crossover is a mechanism in which the new agent

(child) is created by randomly choosing two existing agents

from the population (parents) and generating the values of

parameters of the child agent from the values of parameters

of parent agents. The idea of crossover is that by generating

new agents, and consistently keeping the better fitting

agents in the population, through the recombination of

agents, the optimal solution will be found.56 The wish is

for the crossover to result in the better fitting gene which

will replace a worse fitting agent currently in the popula-

tion. If the new agent is not of a higher quality, then the

current gene is kept.57,58

There are multiple ways to cross the agent’s parameters

to generate a new agent. In this article, two mechanisms are

used: random recombination and average

recombination.59,60

When using the average recombination, the values of

child agent’s (gc) parameters (ai) are calculated as the aver-

age value of the parameter of the parent agents (gA and gB).

This is given as

gc ¼

a1 ¼
gA � a1 þ gB � a1

2

:

:

:

an ¼
gA � an þ gB � an

2

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð36Þ

In the case of random recombination, the parameter val-

ues of the child agent are randomly chosen between the

appropriate parameter values of the two parent agents, as
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gc ¼

a1 \ gA � a1; gB � a1f g

:

:

:

an \ gA � an; gB � anf g

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð37Þ

Mutation is the process in which an agent’s para-

meters are randomly chosen from the solution space and

the agent created in that way replaces an agent in the

population, with no attention paid to the fitness function

values – so a worse mutated agent can replace the better

one.45 The mutation mechanism is necessary to avoid

the stagnation that can happen when only the crossover

mechanism is implemented. It allows the GA to move

away from the situation where all the agents are in the

local optimum of solution space and give it ability to

find the global optimum.61 Mutation is used in a low

amount of cases (1% of the iterations), as opposed to the

crossover which is used comparatively often (80% of the

iterations).62,63

The described procedure of GA is shown in Figure 4.

Simulated annealing. SA is an optimization algorithm

inspired by the process of metal annealing. The SA

algorithm has a system temperature which lowers,

according to the cooling strategy, through the algorithm

iterations.64,65 The algorithm selects a solution from the

neighbouring solution space to the current solution and,

if that solution is better, replaces the current solution

with it. The system temperature determines the likeli-

hood of the algorithm accepting the worse solution. The

likelihood of the worse solution being chosen is propor-

tional to the system temperature. This is usually imple-

mented by generating a random value in the possible

temperature range and accepting a worse solution if that

value is lower than the current temperature. This

mechanism serves a similar purpose as the mutation

mechanism does in the GA. This gives the SA algorithm

the capability to select a different solution if the current

solution is located in the local minimum of the solution

space.66,67

The likelihood of choosing a worse solution at some

point of the algorithm execution can be configured by

choosing a cooling strategy.68 Two strategies are used in

this article - linear as shown

tk ¼ t0 � ak ð38Þ

and geometric strategy as

tk ¼ t0�b
k ð39Þ

where k is the current algorithm iteration, tk is the current

system temperature, t0 is the starting system temperature

and a and b are cooling factors which determine the speed

at which the system cools.69 The process which SA algo-

rithm uses to find the optimal solution is shown in Figure 5.

In this article, the starting temperature of the SA algorithm

is set to 100, with the coefficient a for linear cooling strat-

egy being set to 1, and coefficient b for geometric cooling

strategy being set to 0.5.

Differential evolution. DE is an AI optimization algorithm,

which uses differential equations as the inspiration. This

algorithm is particularly fitting for the solution spaces that

are not smooth and have interruptions.70,71 DE algorithm

creates a new agent by combining three agents using

gy ¼

a1 ¼ ga � a1 þ F� gb � a1 � gc � a1ð Þ

:

:

:

an ¼ ga � an þ F� gb � an � gc � anð Þ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð40Þ

Figure 4. Flow chart of GA. GA: genetic algorithm.

Baressi Šegota et al. 7



where F is a constant that determines how distant the new

solution will be in the solution space from a randomly

selected agent ga, and has a value in range F 2 h0; 2�.72,73

Three agents are randomly picked from the popula-

tion and the values of new agent are calculated. If the

value of the new agent is better than the agent in the

current iteration, it replaces the current agent.70 Unlike

SA algorithm, DE does not have a mechanism which

allows it to select a worse solution, nor does it have a

mechanism similar to mutation such as can be seen in

GA. DE avoids stagnation by having a large search area

(configured by parameter F).74 A larger value of the

parameter F will give a larger search area, but will

increase the time it takes for the algorithm to converge

to a solution, while the smaller value will cause a faster

convergence to a solution, but it will be more likely the

found solution will be a local instead of a global opti-

mum. In this research, parameter F is set to 1.2, which is

the starting value used in most research.71 The process

of DE algorithm is shown in Figure 6.

Agent construction

In the cases observed in this article, the phenotype of the

robotic manipulator movement is represented with a para-

meter of the equation describing that movement as75–77

q qð Þ ¼ at4 þ bt3 þ ct2 þ dt þ e ð41Þ

Parameters b, c, d, and e can be removed from the equa-

tion if the following conditions are observed22,77: the start-

ing time is zero (ts ¼ 0s) and the movement lasts 2 s

(tf ¼ 2s) the robotic manipulator joints move from 0 radian

to 1 radian (q 0ð Þ ¼ 0 rad, q 2ð Þ ¼ 1 rad), it starts move-

ment as stationary – the starting speeds and accelerations

are zero (v tsð Þ ¼ 0 m/s, dv
dt

tsð Þ ¼ 0 m/s2, ! tsð Þ ¼ 0 rad/s,
d!
dt

tsð Þ ¼ 0 rad/s2) and it ends the movement stationary –

the ending speeds and accelerations are equal to zero

(v tfð Þ ¼ 0 m/s, dv
dt

tfð Þ ¼ 0 m/s2, ! tfð Þ ¼ 0 rad/s,
d!
dt

tfð Þ ¼ 0 rad/s2).

The parameter e is eliminated using the condition that

the starting joint angle equals 0

Figure 5. Flow chart of SA. SA: simulated annealing.

Figure 6. Flow chart of DE algorithm. DE: differential evolution.
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t ¼ 0

q 0ð Þ ¼ 0

q 0ð Þ ¼ a�04 þ b�03 þ c�02 þ d�0þ e

q 0ð Þ ¼ e ) e ¼ 0

ð42Þ

Parameter d can be eliminated by the derivation of equa-

tion (41) to get the equation describing the angular joint

velocity and using the starting condition of initial angular

joint velocity being 0

! tð Þ ¼
dq

dt

! tð Þ ¼ 4at3 þ 3bt2 þ 2ct þ d

t ¼ 0

! 0ð Þ ¼ 0

! 0ð Þ ¼ 4a�03 þ 3b�02 þ 2c�0þ d

! 0ð Þ ¼ d ) d ¼ 0

ð43Þ

Second derivation of equation (41) is the expression for

the joint’s angular acceleration is derived. If the condition

that the initial joint’s angular acceleration is zero is used,

the parameter c is eliminated per

d!

dt
tð Þ ¼

d2q

dt2

d!

dt
tð Þ ¼ 12at2 þ 6bt þ 2c

t ¼ 0
d!

dt
0ð Þ ¼ 0

d!

dt
0ð Þ ¼ 12a�02 þ 6b�0þ 2c

d!

dt
0ð Þ ¼ 2c ) c ¼ 0

ð44Þ

Parameter b can be defined using

b ¼
1

2t3f

�

20�q 1ð Þ � 20�q 0ð Þ � 8�! 0ð Þ þ 12�! 1ð Þð Þtf

� 3
d!

dt
0ð Þ �

d!

dt
1ð Þ

� 	

t2f

�

ð45Þ

By inserting the starting and ending conditions, para-

meter b can be eliminated per

b ¼
1

2�13
20�1� 20�0� 8�0þ 12�0ð Þ�1� 3 0� 0ð Þ�12
� �

b ¼
1

2
�20 ) b ¼ 10

ð46Þ

making it equal to a constant.

With these parameters eliminated, the only remaining

parameter is parameter awhich will describe the movement

of each joint of the robotic manipulator.

In the case of the single robotic manipulator, the

joint movements are described by six parameters ai,

where i is the joint number. Since this is the parameter

used for optimization, it can be referred to as optimiza-

tion parameter. In the case of two robotic manipula-

tors, the joint movements need to be calculated using

the inverse kinematic equations. The values of vector w

are calculated according to equations (4) to (6). Vector

w contains the equations containing values of all six

joints. The joint variables (q1, q2, q3, q4, q5 and q6) can

be extracted from these equations which gives a set of

six inverse kinematic equations that define the joint

values as function of the end-effector position in space

(vector w).78–80 By entering the values of vector w into

these inverse kinematic equations, it is possible to get

the values of joint variables needed to achieve the

position described by vector w. Hence, if the joint vari-

able values of the first robotic manipulator (q11, q
1
2, q

1
3,

q14, q15 and q16) are determined from the optimization

parameters ai, the direct kinematic equations (5) and

(6) can be used to determine the position of end-

effector in the space, defined by vector w.21,38 Using

the inverse kinematic equations to determine the joint

variables of second robotic manipulator (q21 wð Þ, q22 wð Þ,

q23 wð Þ, q24 wð Þ, q25 wð Þ and q26 wð Þ) will result in the end-

effector position of the second robotic manipulator fol-

lowing the positioning of the first robotic manipulator,

enabling cooperative behaviour.39,76,78 This process is

shown in Figure 7.

That means that in both observed cases generating

only a single set of parameters ai (one for each joint)

is necessary, as those will be used for determining the

movement of the first robot and the second robotic

manipulator’s movement will be determined by the

movement of the first, which gives the genotype shape

defined by

g ¼ a1; a2; a3; a4; a5; a6f g ð47Þ

where ai is part of the interval

ai 2 �10; 10½ � ð48Þ

Fitness function

To be able to determine how well does each agent solve a

problem, it is necessary to define a fitness function which

will provide a value describing it.

In this instance, the fitness function is defined as the sum

of the total torsion on each point of the trajectory, where the

total joint torque is defined as the sum of joint torques on

Baressi Šegota et al. 9



each joint of the robotic manipulator(s).7 This is defined by

the equation

f gð Þ ¼
X

M

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

t2i

s

; ð49Þ

where M is the number of points in the trajectory, n is the

total number of joints of the robotic manipulator and ti is

torque of the ith joint. Squaring each torque and taking the

square root of their sum in each step of the trajectory pro-

vides the absolute value of all joint torques acting on the

robotic manipulator.

Since the observed cases in this article have 20 points in

their trajectory and n is either 6 (in the case of a single

robotic manipulator) or 12 (in the case of the two cooperat-

ing robotic manipulators), the fitness function for each of

the two cases can be defined for the case with the single

robotic manipulator as

f gð Þ ¼
X

20

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 þ t22 þ t23 þ t24 þ t25 þ t26

q

; ð50Þ

and for the case with two cooperating robotic manipu-

lators as

f gð Þ ¼
X

20

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t211 þ t212 þ t213 þ t214 þ t215 þ t216

q

þ
X

20

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t221 þ t222 þ t223 þ t224 þ t225 þ t226

q

:

ð51Þ

Results

The result of the D-H method can be written in the follow-

ing form

T 6
0 ¼

T 00 T 01 T 02 T 04

T 10 T 11 T 12 T 14

T 20 T 21 T 22 T 24

T 30 T 31 T 32 T 34

2

6

6

6

4

3

7

7

7

5

ð52Þ

where

T 00 ¼ S1S4 þ C1C4C23ð ÞC5 � S5S23C1ð ÞC6

þ S1C4 � S4C1C23ð ÞS6

ð53Þ

T 10 ¼ S1C4C23 � S4C1ð ÞC5 � S1S5S23ð ÞC6

� S1S4C23 þ C1C4ð ÞS6

ð54Þ

T 20 ¼ � S5C23 þ S23C4C5ð ÞC6 þ S4S6S23 ð55Þ

T 30 ¼ 0 ð56Þ

T 01 ¼ � S1S4 þ C1C4C23ð ÞC5 þ S5S23C1ð ÞS6

þ S1C4 � S4C1C23ð ÞC6

ð57Þ

T 11 ¼ �S1C4C23 þ S4C1ð ÞC5 þ S1S5S23ÞS6

� S1S4C23 þ C1C4ð ÞC6

ð58Þ

T 21 ¼ S5C23 þ S23C4C5ð ÞS6 þ S4S23C6 ð59Þ

T 31 ¼ 0 ð60Þ

T 02 ¼ � S1S4 þ C1C4C23ð ÞS5 � S23C1C5 ð61Þ

T 12 ¼ �S1C4C23 þ S4C1ð ÞS5 � S1S23C5 ð62Þ

T 22 ¼ S5S23C4 � C5C23 ð63Þ

T 32 ¼ 0 ð64Þ

T 03 ¼ � l4S1S4S5 � l4S5C1C4C23 � l4S23C1C5

� l1S23C1 þ l3C1C2 þ l5C1C23

ð65Þ

T 13 ¼ � l4S1S5C4C23 � l4S1S23C5 � l1S1S23

þ l3S1C2 þ l5S1C23 þ l4S4S5C1

ð66Þ

T 23 ¼ � l3S2 þ l4S5S23C4 � l5S23 � l4C5C23

� l1C23 þ l2
ð67Þ

T 33 ¼ 1 ð68Þ

In the results, the algorithms used are given shortened

names: GA-A represents the GA with average recombina-

tion, GA-R represents the GA with random recombina-

tion, SA-L represents the SA algorithm with linear

cooling strategy and SA-G represents SA with geometric

cooling strategy.

The comparison of results between algorithms is given

in Table 1. The best results and shortest execution times are

shown in bold in the table for emphasis. In Table 1, �D

represents the average over multiple runs of the difference

between the best fitness value from the initial randomly

Figure 7. Process of allowing calculating the second robotic
manipulator joint values to achieve cooperative behaviour.
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picked population and the best fitness value from the final

optimized population, D ¼ f gp1

� �

� f gp50

� �

.

In Figure 8, a drop in the fitness function value is shown,

which was calculated using equation (49), as is expected –

considering this is an optimization problem which has the

goal of lowering the value of fitness function which repre-

sents the total joint torques of robotic manipulators. The

fitness shown is the fitness function value of the best agent

in the population of 20 agents in the given generation. The

initial drop to a better solution happens in the first few

generations, with a further drop down before the 30th gen-

eration. The last drop of the fitness function value happens

around the 35th generation and then it stays at the lowest

optimized value. Figure 8 shows a significant drop in the

fitness function value, most probably due to a rather sub-

optimal initial randomly selected solution.

In Figure 9, the joint trajectory after the optimization

process is shown. It can be seen that the joints start at the

position of 0 radian and end in the position of 1 radian. The

calculated joint trajectories are smooth, without any sudden

jumps and changes that would cause large differences in

joint torques or generate sudden movements of the robotic

manipulator.

Figures 10 and 11 show the resultant trajectories of

joints of robotic manipulators in the case with two coop-

erating robotic manipulators. The joint trajectories for the

case of two cooperating robotic manipulators have been

shown on two separate figures for easier viewing. Trajec-

tories of both robotic manipulators show smooth curves.

Figure 12 shows the change of joint torque on each joint

of the robotic manipulator. It can be seen that in the optimal

case found in this particular optimization run, the joint

torque shows a drop into negative values followed by a

smooth raise. The smooth changes in the joint torques like

these have shown to be common when using SA algo-

rithms. The joint torque of the second joint exhibits the

highest rise, caused by the robotic manipulator configura-

tion where the second joint is placed under most stress.

Figures 13 and 14 show the change of joint torques on

the first and second robotic manipulator. As with the joint

trajectories for dual manipulators, the joint torques have

been split into two figures for easier viewing. Some sudden

changes can be seen in the direction of the joint torques

(observe 14 at 0.5 s). This is prominent with the use of GA

and DE for the optimization process. The sudden changes

Table 1. Result comparison between used algorithms and their
execution times in both observed cases.

Single manipulator Dual manipulators

�D Nm �t m:s �D Nm �t h:m:s

GA-A 104.78 02:28 86.09 05:55:43

GA-R 177.96 02:17 54.84 06:50:38
SA-L 70.25 20.16 36.79 10:56:49
SA-G 100.82 08:20 14.94 17:03:10
DE 165.49 02:18 63.44 05:58:40

GA-A: genetic algorithm with average recombination; GA-R: genetic algo-
rithm with random recombination; SA-L: simulated annealing with linear
cooling strategy; SA-G: simulated annealing with geometric cooling strat-
egy; DE: differential evolution.

Figure 8. Example of the change of the fitness function through
the generations for a case with a single robotic manipulator.

Figure 9. Joint trajectory for the case of a single robotic
manipulator.

Figure 10. Joint trajectory for the case of a cooperative robotic
motion for first robotic manipulator.
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like these are also especially prominent on the second robotic

manipulator for which the joint angles are determined using

inverse kinematics as opposed to the first manipulator for

which the joint angles are determined using equation (41).

On both robotic manipulators, joint torque of the second

robotic manipulator joint shows the highest torque, which is

caused by the robotic manipulator configuration.

Discussion

The results show a successful decrease in the total joint

torque in the robotic manipulator in comparison with the

initial randomly selected parameters. The best results and

the fastest execution time are shown by the GA using aver-

age recombination for the dual cooperating manipulator

and random recombination for the case with the single

manipulator. The DE shows good results in both cases,

having better results than the average recombination GA

in the single manipulator case and better results than the

random recombination algorithm in the dual manipulator

case. DE shows fast execution times in both cases, compa-

rable with the GA. SA shows mixed results, with the linear

cooling strategy showing the weakest results in both cases.

The SA with geometric cooling strategy shows results com-

parable with the average recombination GA (although sig-

nificantly weaker compared to the random recombination

GA) in the single manipulator case, but it shows the weak-

est results in the dual manipulator case. SA shows the long-

est execution time necessary to complete optimization,

with the linear cooling strategy being the longest running

algorithm of all compared in this article. The results con-

sistently show that the largest joint torque is the torque of

the second joint of the robotic manipulator (t2). These

large torque values are caused due to the configuration of

the robotic manipulator where the second joint has most

stress placed on it during the movement of the robotic

manipulator. This can be observed when optimizing with

all used algorithms, and is especially pronounced when

optimizing with DE. Large values of joint torques near the

end of the trajectory that sometimes happen are caused by

the fact that the end conditions guarantee the robotic

manipulator ending its movement in the defined position,

making it harder to optimize the trajectory near the end of

Figure 11. Joint trajectory for the case of a cooperative robotic
motion for second robotic manipulator.

Figure 12. Change of joint torques over the trajectory for the
case of a single robotic manipulator.

Figure 13. Change of joint torques over the trajectory in the
case of a cooperative robotic motion for the first dual robotic
manipulator.

Figure 14. Change of joint torques over the trajectory in the
case of a cooperative robotic motion for the second dual robotic
manipulator.
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the movement. It is important to note that, despite provid-

ing the weakest improvements in regard to the amount of

total joint torque lowered, the SA (in both configurations)

is the only algorithm that provides results with the smooth

torque and joint curves in almost all instances. The curves

provided by the GA have a tendency to show sudden

changes in joint torque, which can negatively impact the

durability of the robotic manipulator, while the ones pro-

vided by the DE have a tendency to have one of the joints of

the robotic manipulator have a high torque, with very low

joint torques on the other joints. While this does result in a

low total joint torque, it might not be appropriate depending

on the robotic manipulator used. This points towards the

SA being the best algorithm for producing a smooth joint

torque curves after the optimization.

Conclusion

The results show a successful optimization in both

observed cases using evolutionary algorithms. The best

results among the used algorithms are provided using GA

with random recombination for single robotic manipulator

and with average recombination for dual cooperating

manipulators. DE has also shown good results in compar-

ison with other algorithms. For the objectives optimized in

this article, SA shows the worst results. But, the generated

results are not optimal in regard to the smoothness of the

curves, where SA shows the best results in comparison with

other algorithms used, and stress placed on second joint of

robotic manipulator(s). This article shows successful appli-

cation of evolutionary algorithms on the problem of path

optimization of the realistic six-DOF robotic manipulator,

where earlier research had only shown application on sim-

pler manipulators. In practice, this means that by applying

evolutionary algorithms to perform optimization on the

planned paths, the amount of energy used for the robotic

manipulators to perform work could be lowered, as well as

the longevity of the robotic manipulators raised due to less

damages caused by the torsion developed in the joints dur-

ing the movement. The work done in the article does come

with certain limitations. First is that the dynamic model

used is not general. While this means the optimization

results are high quality for the used robotic manipulator,

it also means that to apply the algorithms described on a

different robotic manipulator entire dynamics need to be

recalculated to be used for optimization. Additionally, this

article describes methods as used on the point-to-point

planning, and do not apply to widely used continuous path

planning – which would require the way joints values are

calculated to be adjusted. Future work could concentrate on

multi-objective optimization that would attempt to lower

the joint torques as one objective, and provide a smooth

curve as the other and more equal joint torque distribution.

Additionally, future work could concentrate on wider para-

meter variations, friction implementation and continuous

path planning. Instead of using the recommended algorithm

parameter values, such as they were in this article, perfor-

mance of algorithms could be tested with different varia-

tions of their parameters in an attempt to increase the

performance further. Friction, as mentioned, was not

included in the model used in this article, because of com-

plexity of determining the appropriate friction model. Fric-

tion in the manipulator could be modelled using different

approaches, and the influence of them on the optimization

process measured. Finally, while point-to-point path plan-

ning has wide applications, modifying the algorithm to

perform optimization over continuous paths could provide

wider application for this research.
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