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Abstract

Although a lot of work has been done in the domain, tasks scheduling and
resource allocation in cloud computing remain the challenging problems for
both industry and academia. Security in scheduling in highly distributed
computing environments is one of the most important criteria in the era of
personalization of the cloud services. Blockchain became recently a promis-
ing technology for integration with the cloud clusters and improvement of
the security of cloud transactions and access to data and application codes.
In this paper, we developed a new model of the cloud scheduler based on
the blockchain technology. Differently to the other similar models, we tried
to offload the implementation of the blockchain modules. We developed a
novel ’proof–of–schedule’ consensus algorithm (instead of ’proof–of–work’)
and used the Stackelberg games for the improvement of the approval of the
generated schedules. The developed model has been experimentally simu-
lated and validated by using the new original cloud simulator. The proposed
Blockchain Scheduler was also compared with other selected cloud schedulers.
The experiments shows that the applied approach improved significantly the
efficiency of prepared schedules, in most cases, simulator returns a schedule
with better makespan than existing individual scheduling modules.
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Preprint submitted to Elsevier December 7, 2019

                  



Keywords: Cloud Scheduling, Blockchain, Stackelberg Game, Proof of
Schedule

1. Introduction

Over the last years, scheduling problems in cloud computing remain the
challenges for both academia and industry [1]. The main difficulties can
be observed in the proper allocation of the tasks and virtual servers at the
available resources and then the efficient management of such tasks and re-
sources is the large scale of the cloud system, in which the local clusters may
work under different administrators and using different cloud technologies
and data and information transmission protocols1. Another issue nowadays
is quite wide set of the scheduling criteria – sometimes the conflicting ones.
While optimal schedule execution time and makespan are strictly related to
the expectations of the end users and resource providers (the costs calculated
for them depend on the time of calculating all submitted tasks and utiliza-
tion of the physical resources in the cloud), energy consumption and security
became the key factors of scheduling of computational tasks as well as data
and information storage and processing in modern cloud system[2]. Although
cloud computing is already not relatively new technology, the maintain of the
security at all levels (data, application, network) remains still critical, mainly
due to external data storage, communication through ’public’ internet and
’multitenancy’ of the cloud servers and administrators.

Recently, blockchain [3] is promoted as an effective and secure technology
for the online financial operations through the communication solely between
transaction network peers and without the involvement of third parties. By
using blockchain, the data can be stored in the distributed relatively small
databases instead of storing all data in a central data center. It may in-
crease the security of the whole cloud system, because most of the damages
from attacks on such databases can be easily locally prevented. Therefore,
blockchain can be successfully utilized in various areas including the financial
sector and the Internet of Things (IoT).

In this paper, we present our recent developments on the deployment of
the generic blockchain architecture and algorithms for modelling and simula-
tion of the connected distributed cloud clusters, where the secure schedules

1www.avinetworks.com/glossary/multi-cloud/
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are generated and then executed. Differently to the existing solutions (see
Sec. 2), we tried to optimize the implementation of the most important
blockchain modules and keep only the most important ones – we resigned
for instance from the time consuming ’proof–of–work’ algorithm. Our se-
cure scheduling model is based on iterative Stackelberg game [4] and de-
veloped new proof–of–schedule algorithm. The main aim of such model is
to ensures the highest possible level of security in task processing and task
execution according to the requirements of the cloud end users. We simu-
late our model through simple experiments provided with developed original
BCSchedCloudSim simulator.

Our contributions in this paper are the following:

• the development of a new generic model of the secure cloud scheduler
based on the blockchain (BC) architecture,

• the adaptation of the blockchain algorithm to the scheduling in clouds
- development of a new proof of schedule algorithm and integration with
the BC architecture,

• the development and implementation of the BCSchedCloudSim simu-
lator.

The rest of the paper is organized as follows. In Sec. 2 we compared the
work presented in this paper with related studies. Next, in Sec. 3 we define
the main types of the scheduling problems and scheduling attributes. Secu-
rity is addressed as one of the important and challenging issues in scheduling
in clouds. Sec. 4 presents the essentials of the blockchain technology and
typical architecture. In Sec. 5 we present the developed model of the secure
blockchain-based scheduler with the detailed description of proof-of-schedule
procedure. The results of simulation of the developed model and the experi-
mental comparison of the proposed scheduler with the other cloud scheduling
algorithms are presented in Sec. 7. We summarize our research and define
the directions for the further research in the domain in Sec. 8.

2. Related Work

The security problem in computational clouds has been addressed already
in many publications. Takabi et al. [5] defined the most important security
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and privacy challenges in clouds which are related to various delivery and
deployment models. An interesting survey of various security risks that pose
the threats to the cloud is presented by Subashini et al. in [6]. Asma et
al. [7] surveyed the cloud computing security issues. They classified the
cloud security problems based on the service model types. Kolodziej and
Xhafa[8], Song et. al,[9, 10], Grzonka et al.[11] proposed the security models
in scheduling computational tasks in the cloud physical resources. All their
models are based on trust level and security demand parameters, which in
fact cannot be easily determined or measured in the realistic scenarios. It
makes those scheduling models theoretical rather than applicable in real life.

Some researchers already considered blockchain as a promising technology
for supporting the cloud scheduling, especially with security as the important
criterion. Lokhandwala [12] used the decentralized blockchain network for
the efficient allocation of the resources, optimization of the consumed energy
and improvement of data security in the cloud. By using the smart contracts
[13], the data are stored in the distributed databases in the blocks. The tasks
are assigned to the data centers with the lowest load in the blocks. In the
experimental part, the author used ’Shortest Job First’ scheduling algorithm
[14] for the minimization of the waiting time of response. The author focused
on testing the blockchain network and allocation of the proper data servers
(with the proper datasets). The author observed also a high inability to
manipulate the data, which increases the security of the whole system. In
this approach however, the execution of the basic blockchain modules is time
and energy consuming, which is the weak aspect of that model.

Hong et al. in [15] discuss the problem of communication and task
scheduling among users in device–to–device (D2D) network [16]. The main
aim of their research was to reduce the average execution time of tasks
mapped onto the network resources. The authors developed an innovative
blockchain–based credit system that can be used for task scheduling to en-
force justice among D2D network users. Their system consists of two main
parts: the cooperative task scheduling to reduce the average task execution
time among users and a blockchain-based credit system to ensure fairness in
network.

Zhang et al. in [17] draws attention to the growing number of users in the
clouds and the problem of providing them services through single providers.
He proposes an approach where different providers work together to provide
a satisfactory solution to the end users. Authors consider task scheduling
across the clouds, based on genetic algorithm. They take into account the
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impact of resource distance on the completion time and cost of tasks exe-
cution, regarding customer requirements in accordance with the established
Quality of Service. In the simulation part, a comparison of the results of inter-
cloud scheduling and scheduling with a single cloud for different amounts of
tasks has been presented. As a result, they demonstrate that task scheduling
between clouds is neither the best nor the worst approach, but nevertheless
provides adequate computing resources, which are often lacking for individual
providers.

3. Cloud Scheduling Problems

The main aim of scheduling in computational clouds is efficient mapping
of tasks originated by applications or submitted to the system by the end
users to a set of physical and virtual resources available in the cloud sys-
tem [18]. The tasks and resources can be added and removed to and from
the cloud. Scheduling in computational clouds remains a challenging NP-
complete global optimization problem due to the large-scale heterogeneous
architecture of the cloud network and co–existence of local geographically dis-
persed task dispatchers and resource owners working in different autonomous
administrative domains. In particular, the well defined scheduling algorithms
in computational cloud should [19]:

• ensure that all tasks are executed withing their deadlines and generate
the expected high quality results,

• minimize the task execution times and – as the direct consequence –
should minimize the scheduling real costs calculated for the end users2,

• be aware of and prevent the temporary software failures.

Similarly to the computational grids, various types of the cloud scheduling
problems can be defined based on the specified environmental attributes, such
as the static, dynamic, fully decentralized or hierarchical cloud architectures,
and scheduling attributes [20]. The most important scheduling attributes
include:

• tasks processing policy – instantaneous vs. batch,

2This policy is usually called the ’pay-per-use’ cloud paradigm
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• interrelations among tasks – independence vs dependency.

Specification of the tasks processing policy is important in the identi-
fication of the particular scheduling problem. In the instantaneous mode,
the tasks are scheduled as soon as they are arrived at the system. In batch
scheduling, the submitted tasks are grouped into batches and the sched-
uler assigns each batch to the resources. The tasks may be independently
sent and executed in the cloud system or they can be submitted as parallel
applications with priority criteria and interrelations among the application
components (usually modelled by a Directed Acyclic Graph (DAG) [21]).

Kolodziej in [22] defined the following notation for specification of the
scheduling problems in distributed large–scale systems:

α|β|γ, (1)

where α determines the resource layer and cloud architecture type, β defines
the task processing policy, and γ specifies the scheduling criteria. Using that
notation, we may define the scheduling problem considered in this paper in
the following way:

Rm,D|b, indep|γ, (2)

where Rm denotes the independent (unrelated) machines/resources, D– de-
centralized cloud system, b – batch mode, indep independent scheduling.
The main scheduling criterion was the total execution time of the tasks in
the schedule, and additionally - makespan in the experimental section ( Sec.
7.2). Another issue is security in scheduling, which is discussed in the fol-
lowing subsection.

3.1. Security aspects in cloud scheduling

Security, among the other scheduling aspects and criteria such as high
availability of computing and data resources, optimization of the scheduling
costs paid by the end-users, energy optimization in the cloud systems and
personalization of the cloud services based on the end-users’ requirements,
is one of the most challenging problems in today’s cloud cloud systems [11],
[23]. ”security’ in cloud scheduling may be related to the various aspects
and parameters in the scheduling process. On one hand, the end users may
have some special individual requirements for the data protection and privacy
policies and the execution of their tasks in the specially protected machines.
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On the other hand, in order to guarantee the low possible costs of the task
execution and high quality results of such execution (task calculation), the
system cannot be too sensitive on the very specific individual requests of the
users, which may be sometimes in conflict with the interests of the other
cloud users. Another issue is to protect the system against the external
attacks, where the malicious software or data is injected in the system and
the generated schedule may be infected and destroyed during its execution.

A general security-aware IaaS cloud model developed by Kolodziej et al
in [8] is based on the hierarchical multi–level architecture. In this model,
security is considered as additional criterion in the scheduling process and
cloud scheduler analyzes the security requirements for the execution of tasks
and requests of the end users for trustful resources available within the sys-
tem. The system brokers analyze ’reputation’ indexes of the machines /cloud
physical resources received from the resource managers/owners and send the
allocation suggestions to the scheduler.

Fig. 1 shows the 3-level architecture of the security-aware IaaS cloud
cluster. The trust level and security demand parameters are generated by
aggregation of several scheduling and system attributes. Those parameters
depend heavily on the security policy, accumulated resource or cloud cluster
’reputation’, self–defense capability, attack history, special users’ require-
ments, and peer authentication. Fig. 2 presents the major behaviour and
intrinsic security attributes needed for the specification of trust levels of the
cloud clusters and security demand of the cloud applications (see also [10]).

Song et al. in [9, 10] have developed a fuzzy–logic trust model, in which
the scheduling attributes are aggregated into single scalar parameters, and
security demand vector and trust vector are defined. There is a trust resource
manager in the system, who maintains the status of the resources and mon-
itors the execution of tasks assigned to those resources. Additionally, the
Machine Failure Probability matrix, the elements of which, are interpreted
as the probabilities of failures of the machines during the tasks executions
due to the high security restrictions. These probabilities are calculated by
using the negative exponential distribution function (see [22] for details).

The process of matching the trust level and security demand parameters
is similar to that of a real-life scenario where users of some portals, such as
Yahoo!, are required to specify the security level of the login session.However,
the above fuzzy model and the calculation of the Machine Failure Probability
matrix are rather theoretical than practical and it is very difficult to use the
defined model in the simulation of the realistic cloud environments as well
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Figure 1: The model of secure IaaS cloud cluster
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as the realistic implementations of the developed schedulers.
Recently, the blockchain technology became the promising solution for the

improvement of the security in the cloud scheduling. The prototypes of the
blockchain cloud systems are already proposed3 4, however the integration of
the blockchain architecture and algorithms with the scheduling process to im-
prove security as the scheduling criterion remains an open research problem.
This paper presents the results of our research in this domain. We propose
a new method to find the optimal schedule based on blockchain technology.
We introduce a model of our approach and a simulator implemented for the
needs of conducting experiments and simulations.

4. Blockchain Essentials

Blockchain (BC) is a relatively new technology, which has a big potential
to be a promising methodology in solving the complex problems in high per-
formance computing systems. There are many definitions of the blockchain
architecture and technology. Most of them are based on the concept of Bit-
coin model developed by Nakamoto in [24]. Following this model, Blockchain
(BC) can be defined as a distributed ledger of records, which contains trans-
actions confirmed by the cryptographic digital signatures and are grouped
into blocks. The main features of BC can be specified as follows:

• decentralization– in BC there is no need for a central supervisor,
who maintains the data consistency,the decentralized network based
on consensus algorithms jointly confirms each transaction,

• persistency – transactions are validated, any attempt to approve
transactions that are incompatible with established policies will be
caught by confirming/mining nodes, blocks containing incorrect data
are immediately detected,

• anonymity – each user in the network is assigned a generated address
(hash), by means of which can perform operations,

3www.medium.com/eternacapital/blockchain-based-decentralised-cloud-computing-
277f307611e1

4www.guardtime.com/blog/blockcloud-re-inventing-cloud-with-blockchains
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• auditability – each transaction must refer to some previous transac-
tions, thanks to which there is a possibility to trace and verify what
has happened with the data being processed,

• transparency – transactions of any public address are available for
inspection by every user having access to BC,

• security – chain of blocks are shared, tamper-proof, and can not be
spoofed due to one-way cryptographic hash functions,

• immutability – data stored in BC are immutable, each entry in the
ledger must be confirmed by the network, it can not be a secret op-
eration; each block contains the hash of the previous block, which is
generated on the basis of the data in the block, each even a minor
change in the data will change the hash, which will cause that the
other nodes intercept the modification and reject it.

4.1. Blockchain architecture and main modules

Based on the most popular taxonomy of the blockchain systems published
by Lin et. al in [25], we can define the following three major classes of the
BC networks:

• public blockchain, in which the external users have the ability to
read and add records to the ledger,

• private blockchain network, which have an owner who determines the
access to the blocks and ability to add and confirm the BC transactions

• consortium blockchain with a pool of selected nodes, that can add
data to the chain, data reading can be open or private.

Each block in the BC usually consists of:

• block number,

• hash of the current block, which is generated from data contained
within the block, usually using the Merkle tree (see Fig. 3), which
guarantees that every change in the data in the previous blocks will
change the hash of the following blocks,

• hash of previous block,
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Data1 Data2 Data3 Data4

H1 = hash(Data1) H2 = hash(Data2) H3 = hash(Data2) H4 = hash(Data2)

H5 = hash(H1, H2) H6 = hash(H3, H4)

Root = hash(H5, H6)

Figure 3: Merkle tree

• timestamp,

• list of transactions

The example of a typical chain of blocks is presented in Fig. 4.

4.2. Security aspects in blockchain

Security in BC environment is usually related to the protection of the
transactions and data stored and transmitted in the system. Joshi et al. in
[26] defined the mayor security-related procedures in BC as follows (see also
[27]):

• defense in penetration – data protection procedures executed with
many various parameters, very difficult for breaking,

• minimum privilege – low–level access to the data,

• manage vulnerabilities – checking security vulnerabilities and patch-
ing them,

• manage risks – identification and control of risks in the environment,

• manage patches – patching faulty parts of the source code.
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Figure 4: Abstract chain of blocks

In BC systems, the procedures for data security and for the verification of
the nodes’ ability to perform specific operations are the most commonly used
security mechanisms. The method of establishing consensus in the network
ensures an appropriate level of security, for instance, in PoW [27], to hack a
network node would have to have at least 51% of computing resources which
is practically impossible [28].

4.3. Blockchain vs. traditional cloud schedulers

Most of the existing scheduling technologies and algorithms usually gen-
erate the queue or simple array of tasks for allocation on each available
machine/server separately. The end users – as the main requirement for the
scheduler–define the shortest time to complete all submitted tasks. The end
users usually do not have any additional instruments for the confirmation
that the generated schedule is optimal. In order to solve partially that prob-
lem, we propose a blockchain-based scheduler, where the generated schedules
must be approved by the neighbour nodes in the cloud cluster and the opti-
mal schedule is proposed for the end users as the result of the cloud providers’
internal agreement. Therefore, the end users cannot get the better offer from
the other providers.
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5. Secure Blockchain Cloud Scheduler

The scheduling problem considered in this paper is the batch independent
problem defined by Eq. 2 in Sec. 3. The model of the blockchain scheduler is
presented in Fig. 5. The nodes in the blockchain (BC) network communicate
with each other and define a consensus on the ’correctness of the schedule’.
Such schedule may be generated by any node in the network, that one who
will generate the schedule first will start the transaction. If most of the BC
nodes in the network confirm such ’correctness of the schedule’, the schedule
is saved in chain of blocks. It means that the schedule was approved for
the execution in the cloud or may be directly sent to the user in the case it
contains just the tasks from a given one user. The approved schedule can be
executed in an optimal time slot. Each node may generate its own schedule
and compare it with the schedule proposed by its predecessor in the defined
sequence of the BC nodes.

5.0.1. Pool of Task Managers Requests

Task Manager in the BC network is responsible for transferring the re-
quest into the request pool. Each request contains characteristics of tasks,
characteristics of virtual machines and digital signature of the Task Man-
ager. The characteristics of tasks may be defined as the number of floating
point operations or instructions needed to perform a given task. Machine
characteristics parameter is specified by the number of floating point op-
erations or instructions performed by a given machine per second. Those
characteristics parameters can be delivered by the processor manufacturer or
cloud service provider.

5.0.2. BC network Nodes

Each BC network node that want to participate in the generation of the
schedule downloads one request from the pool of requests. Then, using the
implemented in the node scheduling algorithm, the node generates a schedule
and calculates its execution time. The prepared schedule, together with other
data are placed in the transaction. Detailed data included in the transaction
are:

• id,

• sender,

• recipient,
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• signature,

• request id,

• schedule - contains an array of tasks to execute, an array of machines
together with a list of tasks to be executed on each of them and the
longest time of execution all tasks from one of the machines (it is the
completion time of all tasks in all machines).

After the generation of the schedule and transaction, the transaction is
sent for confirmation to the remaining BC nodes in the network in order
to define a consensus by using the proof-of-schedule algorithm defined in
Sec.5.1.

5.0.3. Chain of Blocks

The confirmed transaction is moved the BC block, when the consensus is
achieved for the generated schedule. Each block consists of:

• the current block hash value,

• the previous block hash value,

• a timestamp,

• the Merkle tree root hash [29],

• a list of transactions,

• the size of the block parameter - such parameter defines the minimal
number of operations or instructions within the whole block.

Having the appropriate number of transactions confirmed by the net-
work, which is specified as a global system parameter, the block is added
to the chain of blocks. A serious problem with generating the chains may
occur, when different nodes in the BC network may try to add the multiple
blocks at the same time, which could generate many variants of the chain
of blocks. The solution of such problem is usually the selection by the sys-
tem the longest chain of blocks of the confirmed transactions through the
consensus procedure.
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5.1. Proof of Schedule

In the proposed model of the BC cloud scheduler, the consensus procedure
is defined as a Proof of Schedule (PoSch) algorithm especially designed for
the secure scheduling in clouds.

Let us introduce first the following notation:

• TS = {tsi, tsi+1, . . . , tsl} – a sequence of nodes in BC network involved
in the approval of a given transaction,

• tsi – initial node in TS which starts the transaction,

• tsi+1 – first node in TS, which confirms the transaction

• I – characteristics of tasks - the number of operations or instructions
needed to execute the task,

• M – characteristics of machines – the number of operations or instruc-
tions executed by the machine per second,

• Ttsi – execution time of the schedule generated by node tsi,

• SFtsi – scheduling factor - the number of all I in the blockchain added
by node tsi,

• Ttsi+1
- exeuction time of the schedule generated by node tsi+1,

• SFtsi+1
- scheduling factor - the number of all I in the blockchain added

by node tsi+1.

The initial node tsi in the sequence TS generates a schedule by using the
specified scheduling algorithm implemented in that node (it is assumed in this
paper, that each node has the one specified scheduling algorithm, which may
be the same in the whole network or – in more general case – it can be different
in each node). The schedule is generated based on the task characteristics I
and the machine characteristics M . The schedule along with its estimated
execution time parameter is stored in the transaction record and then sent
to the other nodes for approval. The values of the following parameters
are estimated for the approval of the transaction, namely Ttsi , Ttsi+1

, SFtsi ,
SFtsi+1

. The remaining nodes tsi+1, . . . , tsl, having the schedule generated
by tsi, may follow the action of tsi and also generate their own schedules by
using the locally implemented schedulers and estimate the execution times of
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such schedules. Each node in TS confirms the schedule sent by its predecessor
in TS, which does not mean that the predecessor prepared it itself, because
it can be a schedule from the node, with whom the sending node previously
lost the game. For instance, node tsi+1 confirms the schedule generated by
the initial node tsi. Such schedule confirmation/approval can be formally
modelled by using the Stackelberg game model [22]. The game in details is
defined in the following section.

5.1.1. Stackelberg game

Stackelberg game [4] is a non-symmetric game, where one player called
leader has a privilege position and makes decisions first, when the other
players – followers – follow his actions. In our BC cloud model, the leader
will be node, which starts a transaction such as the node tsi specified in
the previous section. The follower can be the next node tsi+1 in the node
sequence TS. The node starting the transaction plays the Stackelberg game
successive with all remaining nodes in TS (a single game is provided for the
pairs of nodes: initial node –i.e. tsi – and the node tsj, where j = i+1, . . . , l).
Let us consider the Stackelberg game for the nodes tsi (leader) and tsi+1

(follower). Being the leader, the node tsi generates a schedule, which is
then sent to tsi+1 for the verification and approval.

The approval ’decision’ of the node tsi+1 can be made based on the sched-
ule execution time Ttsi delivered by the node tsi. However, tsi+1 can estimate
the time of the delivered schedule by using the local scheduling algorithm im-
plemented in tsi+1 (we will denote such time by Ttsi+1

).
In the game scenario, there are two possible pure strategies, which may

be chosen by the follower tsi+1:

• s1 - choosing option 1 – (time Ttsi)

• s2 - choosing option 2 – (time Ttsi+1
)

where s1, s2 ∈ {0, 1}

The game utility function for the follower can be defined based on the
scaling the scheduling factors, which in our model are treated as confidence
coefficients and determined based on the history of adding transactions to
blocks by given nodes. That scaling procedure is defined as follows:
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SFtsi =

{
1 if max {SFtsi+1

, SFtsi} = SFtsi
SFtsi

SFtsi+1
if max {SFtsi+1

, SFtsi} 6= SFtsi

SFtsi+1
=

{
1 if max {SFtsi , SFtsi+1

} = SFtsi+1
SFtsi+1

SFtsi
if max {SFtsi , SFtsi+1

} 6= SFtsi+1

(3)

Considering both strategies s1 and s2 and scaled confidence coefficients of
players, the utility function for the follower is defined in the following ways:

u(s1, s2, Ttsi , Ttsi+1
) = TtsiSFtsis1 + Ttsi+1

SFtsi+1
s2 (4)

In order to solve the game among the nodes tsi and tsi+1, we need to solve
the following maximization problem:





argmax
s1,s2

u(s1, s2, Ttsi , Ttsi+1
)

s1 + s2 = 1
s1, s2 ∈ {0, 1}

(5)

There are many optimization methods, which can be used for solving the
problem defined by Eq. 5. For our research, we used the simplex method
[30] and generate the optimal strategies s1 i s2. However, for simplicity, the
values of the strategies in fact can be defined as the binary values for the
node tsi+1 , i.e.:

• in the case of option 1 – Ttsi – s1 = 1 and s2 = 0,

• in the case of option 2 – Ttsi+1
– if s2 = 1 and s1 = 0.

If node tsi+1 selects the schedule generated by tsi, it sends it to the next
node tsi+2 and informs the tsi node about the schedule approval. Otherwise,
tsi+1 – being the leader – creates a new transaction with a schedule generated
by itself and sends such schedule to the node tsi+2. The game is repeated as
many times as the node receives confirmation from at least 50% of the items
in the sequence TS.
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Scheduling factors SFtsi and SFtsi+1
must be non–zero game, which means

that they must be drawn randomly, if nodes participating in the game do
not yet have such data because they are new in BC network. The initiating
node will choose its time as correct without playing the game because it has
no predecessor.

In the following subsection, we demonstrate the example of the Stackel-
berg game for the pair of nodes with an exemplary parameters.

5.1.2. Numerical results of the Stackelberg game

Let’s consider a Stackelberg game with leader and one follower. The
scheduling factor of the leader is 1500 instructions, and the schedule execu-
tion time time proposed by the leader is 15 seconds, the scheduling factor of
the follower is 8000, and the time proposed by him is 6 seconds. Using the
notation introduced in Sec. 5.1.1, the settings for the game are defined n the
following way:

• Ttsi — 15 seconds,

• SFtsi – 1500 instructions,

• Ttsi+1
— 6 seconds,

• SFtsi+1
— 8000 instructions.

Below we presented an example of the implementation of such a game
with the determination of the game utility function, which is maximized
during the game:

Scaling:

1. max{SFtsi , SFtsi+1
} = SFtsi+1

= 8000

2. SFni
=

SFtsi

SFtsi+1
= 1500

8000
= 3

16

SFtsi+1
= 1

3. un(s1, s2, Ttsi , Ttsi+1
) = 15× 3

16
s1 + 6× 1s2

The problem to be solved:
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



argmax
sn1 ,s

n
2

45
16
s1 + 6s2

s1 + s2 = 1
s1, s2 ∈ {0, 1}

(6)

Solution:





u(s1, s2, Ttsi , Ttsi+1
) = 6

s1 = 0
s2 = 1

(7)

In the above example, the follower is the game winner. It means that
the follower node will not approve the the transaction sent for verification
by the leader, but it will initiate a new transaction with its own schedule
becoming the same a leader of the new game and will disseminates it across
the network for confirmation.

5.1.3. Blocks mining

Transaction generated by a given node is confirmed, if at least 50% of the
other nodes in the BC network will approve the schedule generated by such
node. In such a case, the confirmed transaction is sent and added to the
block. The block can contain many transactions. We assume in our model,
that block can be added to the chain if the total number of operations or
instructions needed to execute the tasks within all transactions in a given
block will exceed BI, where BI is the parameter of the scheduler. In this
paper, we set BI to 100 000:

block is ready if

{ ∑n
i=1 Ii ≥ BI

BI = 100000

Each transaction in a given ock must be validated by the transaction providers.
They should use the cryptographic methods for ’signing’ the transactions.
Verification node check whether transactions are validated, or not. After
validating all transactions in the block by validators, it is added to the
chain. V alidators are the nodes that participated in the process of creating
transactions and have expressed a desire to mine blocks. A leader is elected
from the pool of validators based on its history of adding transactions to the
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blocks (scheduling factors) at a given time and is defined by the following
expression:

{
Lt = max(TF(vi,t), TF(vi+1,t), ..., TF(vi+n,t))
TF(vi,t), TF(vi+1,t), ..., TF(vi+n,t) ≤ 1

2
BWt

(8)

where

• Lt - a leader for adding the given block in the given time t

• TF(vi,t) - trust factor - the sum of all I added to the blockchain by
validator vi during time t

• BWt - the sum of all I added to the blockchain during time t

In our case, we set the value of time t to 30 days.

5.1.4. Profits for nodes

Rewarding a node for creating a transaction or participating in the process
of confirming the transaction can be arbitrary. Usually in networks based
on proof of stake, it is assumed that nodes charge a fee for the performing
specific operations. The profits for the node for creating or confirming one
transaction within an entire block NPtn can be defined as follows:

NPtn = SFtn/N ∗ 0.8 (9)

where

• SF - the number of all I in the transaction tn.

• N - the number of all nodes confirming the transaction (including the
creating node)

The node profit for mining the block NPb can be defined as follows::

NPb = SFb ∗ 0.2 (10)

where
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• SFb - the number of all I in the block

The above formulas showing the profits for nodes are a proposition and
can be freely modified, for example depending on whether the BC is private
or public.

6. Blockchain secure cloud scheduler simulator

The model of secure cloud scheduler based on the blockchain mecha-
nism defined in Sec. 5 was implemented for the experimental evaluation as
the Blockchain Secure Cloud Scheduler Simulator - BCSchedCloudSim. The
general concept of BCSchedCloudSim is presented in Fig. 6. The implemen-
tation of the most important components ofthe simulator, such as dedicated
consensus algorithm PoSch, is original without re–using of the existing so-
lutions such as Ethereum [31]. Ethereum supports the process of creating
blockchain-based systems - dApps, such as MakerDAO, Augur, CanWork
and many others [32].

6.1. MapDb database

For data storage, we used the MapDB [33] database which allows quick
saving and reading of unordered data. MapDB combines the built-in database
engine and the Java collection structure, and the data is processed as maps,
lists and queues that can be stored on disk. MapDB is an open-source sys-
tem. The sample code below shows the possible connection to the MapDb by
using the DBMaker [34] tool available in Java. DBMaker allows to simplify
significantly the whole connection procedure, cause it is in fact reduced just
to the specification of the path to the data file, which can be stored in the
blockchain (BC) network node. While the new (next) block is generated and
saved, each node on the BC network must be updated.

1 DBMaker . Maker dbConnection = DBMaker .
2 f i l eDB (path ) . fileMmapEnable ( ) . f i l e L o c k D i s a b l e ( ) ;
3 dbConnection = dbConnection . t ransac t ionEnab le ( ) ;

6.2. Networking

Communication between individual nodes in the BC network in the sim-
ulator is provided by using sockets on threads. In this approach the client
must have two information:
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Figure 6: Scheme of Blockchain Secure Cloud Scheduler Simulator working
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• server IP address,

• port number.

An example of socket-based communication is shown in Fig. 7.

socket socket

bind

listen

accept

read

write

read

Connection Requestconnect

write

read

End of fileclose

close

Client Server

Figure 7: Socket-based communication

Two main classes, Socket and ServerSocket, were used to establish the
connection. The Socket class is responsible for communication between the
server and client so that it is possible to read and write messages. In turn,
the ServerSocket class is used on the server side, the body of this class
contains accept(), which blocks the console until the client connects. Below
we present a sample of pseudocode of server and client:

Server:

1 ServerSocket s e rve rSocke t = new ServerSocket ( ’ port ’ ) ;
2 Socket c l i e n t S o c k e t = se rve rSocke t . accept ( ) ;
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Client:

1 Socket s = new Socket ( ) ;
2 s . connect (
3 new InetSocketAddress ( ’ s e r v e r IP address ’ ) , ’ port ’ ) , 100000
4 ) ;

Each node in the BC network participating in the transaction confirmation
process has a server and a client on its side. Every few seconds, each node
sends a signal to its neighbour nodes about its current activity. According to
this information, nodes send out transactions for approval only to the active
nodes. Due to the use of sockets, data exchange in the network takes place
very quickly.

6.2.1. Approval of the Transactions

The transaction is approved by using the algorithm and Stackelberg game
based module defined in Sec. 5.1.1. We used the org.apache.commons.math3
package for solving the maximizing problem with constraints defined by Eq.
5. The verification node in the BC network may accept or reject the trans-
action by using the following procedure:

1 s 1 C o e f f i c i e n t = l e a d e r . getTimeOfSchedule ( ) ∗ l e a d e r .
ge tSca l eSchedu l ingFacto r ( ) ;

2 s 2 C o e f f i c i e n t = f o l l o w e r . getTimeOfSchedule ( ) ∗ f o l l o w e r .
ge tSca l eSchedu l ingFacto r ( ) ;

3 . . .
4 Co l l e c t i on<LinearConstra int> c o n s t r a i n t s = new ArrayList<

LinearConstra int >() ;
5 c o n s t r a i n t s . add (
6 new LinearConst ra int (new double [ ] { 1 , 1 } , Re l a t i on sh ip .EQ,

1)
7 ) ;
8 s o l v e r = new SimplexSolver ( ) ;
9 s o l u t i o n = s o l v e r . opt imize ( . . . ) ;

10

11 x = s o l u t i o n . getPoint ( ) [ 0 ] ;
12 y = s o l u t i o n . getPoint ( ) [ 1 ] ;
13 i f ( y == 1) {
14 return t rue ;
15 } else {
16 return f a l s e ;
17 }
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The scaled scheduling factors of the leader and follower are used for the
calculation of the coefficients s1 and s2. Then the constraints are added and
the process of finding a solution of the maximization problem is initialized.
In the case of y = 1, the schedule generated by the follower is of the better
’quality’ than that one generated by the leader. It means that follower
won the game. In the case of win the leader (his schedule is better), leader
receives the confirmation of the transaction from the follower.

6.2.2. Simulation of blocks mining

Blocks mining simulation is based on the model defined in Section 5.1.3.
The node that participated in the generation and confirmation of most of
the transactions during the specified period of time (in our case - 30 days) is
selected from the pool of validators as a leader. The leader can validate and
add a block to the blockchain. The pseudocode below is the implementation
example of the above procedure of the leader:

1 pub l i c byte [ ] getLeader ( )
2 {
3 byte [ ] maxTrustFactorNode = null ;
4 f l o a t maxTrustFactor = 0 ;
5 f l o a t BCt = 1/2 ∗ Node . getBlockcha inTrustFactor (

numberOfDayLimit ) ;
6 for ( byte [ ] v a l i d a t o r : l i s t ) {
7 f l o a t TF = Node . getTrustFactor ( va l i da to r ,

numberOfDayLimit , t rue ) ;
8 i f (TF > maxTrustFactor && TF <= BCt) {
9 maxTrustFactor = TF;

10 maxTrustFactorNode = v a l i d a t o r ;
11 }
12 }
13 return maxTrustFactorNode ;
14 }

7. Experimental Analysis

In this section, we present the results of experiments conducted with the
BCSchedCloudSim simulator. The experimental analysis was divided into
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two parts. First we evaluate the blockchain-based scheduler in the scenario
specified in Sec. 7.1. In the second part, we compare the efficiency of the
BC-based scheduler with 4 selected cloud schedulers in Sec. 7.2.

7.1. Experimental evaluation of the BC-based cloud scheduler

The BC network was tested in the following scenario:

1. Four nodes have been defined in the blockchain network, as well as 8
transactions containing tasks and machines.

2. The node number 4 is started, which, without finding the genesis block,
deals with its generation.

3. The remaining 3 nodes are started, the role of which will be primarily
the confirmation of the transaction, the node number 1 is responsible
for their creation and broadcasting.

4. Node number 4 takes 8 transactions from the pool, prepares a random
schedule for them and broadcast them for confirmation.

5. Node 1 must obtain confirmation from at least 2 nodes (50% of the BC
network), each confirmation node prepares its own random schedule
and compares it with the one sent for verification.

6. After receiving the appropriate number of confirmations, node 1 pre-
pares a block. Each block must contain at least 100 000 number of
instruction or operations needed to execute the tasks, after collecting
the appropriate number of transactions, the block is created.

7. The leader from the pool of validators is selected which confirms the
correctness of the created block and places it in the blockchain.

7.1.1. Simulator parameters

Simulation on the proposed model were carried out on 4 nodes, respon-
sible both for confirming the transaction and for mining blocks. Each node
returns different randomly specified schedule for the transaction. Eight re-
quests described in Tab. 1 have been added to the pool of requests. Each of
values from Tasks column (I1, ..., In) represents one task and describes the
number of operations or instructions needed to execute this task, and anal-
ogously each of values from Machines column (M1, ...,Mn) represents one
machines and describes the number of floating point operations or instruc-
tions performed by this machine in 1 second. Each node is available on the
defined host and port. Tab. 2 defines the numbers of hosts with which the
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node currently has connections. The initial state we adopted in the simula-
tion is an empty chain of blocks. Together with the activation of the first
node in the BC network, block 0 (genesis block) is generated, which will then
be sent to the rest of the BC nodes.

Table 1: Pool of Task Managers Requests

No. Tasks (I1, ..., In) Machines (M1, ...,Mn)

1. (10000, 5000, 1000, 15000) (3000, 30000, 10000)

2. (8000, 1000, 40000) (3000, 30000, 2500, 20000)

3. (1000, 3000, 8000, 18000, 900) (7000, 18000, 6000)

4. (10000, 7500, 1000) (1500, 6000)

5. (20000, 4500, 3000) (8000, 6000)

6. (20000, 7500, 10000) (1000, 14000, 2000)

7. (10000, 18500, 1000) (4000, 11000, 12000, 1000)

8. (12000, 28500, 37000) (2000, 15000, 12000, 1000)

Table 2: Nodes

No. Host Port Connections

1. 127.0.0.1 7001 (2, 4)

2. 127.0.0.1 7002 (1, 3)

3. 127.0.0.1 7003 (2, 4)

4. 127.0.0.1 7004 (1, 3)

The simulation process described in this subsection was provided in three
main stages.

7.1.2. Stage 1 - Genesis Block

We activated the node number 4 without collecting transaction from the
pool. The node did not find the genesis block, so it was created according to
statically defined rules in application code. The generated Genesis Block is
shown below:
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1 {
2 ”hash” : ” a02ba163f3a02db22fdd14b310119f
3 1 a4c2f9e4a773a573f757904dd5433d4dd ” ,
4 ” previousHash ” : ”0” ,
5 ”timeStamp” : 1555428842347 ,
6 ”merkleRoot” : ”652 b 7 b 5 1 5 6 5 6 c f c 9 5 6 l l 7 a 4 2 6 8 f e f 1 f 4
7 707 aba3572a8bac81cba6561lc71b9f f ” ,
8 ” t r a n s a c t i o n s ” : [
9 {

10 ” t r a n s a c t i o n I d ” : [
11 48
12 ] ,
13 ” sender ” : [ in bytes ] ,
14 ” r e c i p i e n t ” : [ in bytes ] ,
15 ” schedu le ” : {
16 ” ta sk s ” : [ ] ,
17 ”machines ” : [ ] ,
18 ” time ” : 0 . 0
19 } ,
20 ” r ” : [ in bytes ] ,
21 ” s ” : [ in bytes ] ,
22 ”v” : [ 2 8 ] ,
23 ” outputs ” : [
24 {
25 ” id ” : [ in bytes ] ,
26 ” sender ” : [ in bytes ] ,
27 ” parentTransact ionId ” : [
28 48
29 ] ,
30 ” schedu l ingFactor ” : 0 . 0 ,
31 ”timestamp” : 1555428842347
32 }
33 ] ,
34 ” numberOfVer i f i cat ion ” : 0
35 }
36 ]
37 }

The block hash was generated using the Sha256 hash function from the
”scheduler” string. As this is the genesis block, there is no preceding block so
value of previous hash is equal to 0 and public keys of the sender and recipient
were generated randomly. One transaction that contains an empty schedule
is placed in the block. As you can see, the sender public key, recipient public
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key and digital signature are saved using bytes, which makes it easier to
implement and transfer data between nodes. On the listing, we hide values
stored in bytes due to their length [in bytes]. We have used Elliptic Curve
Digital Signature Algorithm (ECDSA) [35] to generate signature that is why
we have three arrays of bytes r, s and v to save it. The schedule includes
empty array of tasks and array of machines, the time of schedule and number
of transaction verification are equal to 0 - there is no schedule in Genesis
Block. In outputs, we have saved the sum of I within a given transaction,
which later allows us to easily calculate the scheduling factor for the sender,
which is the sum of all outputs in BC with the assigned public key of sender.

7.1.3. Stage 2 - Creating and confirming transactions

Node 4 is already running, now we are starting the rest of nodes. Nodes
2, 3 and 4 will listen to the network to confirm transactions, while node 1
will broadcast the transactions to confirm.

1 Node 1 log output :
2

3 r e c e i v i n g hb | heartbeat from another peer working on port : 7002
4 r e c e i v i n g hb | heartbeat from another peer working on port : 7004
5

6 Sending t r a n s a c t i o n to pee r s for accept . . .
7 sending tx | { . . . }
8 sending tx | { . . . }
9 . . .

It can be seen on the log output that node 1 gets signals about activity
from nodes 2 and 4. Node 3 is active as well, but it is not connected with
node 1. Node 1 gets 8 requests from the pool, prepares a random schedule
for them, generates transaction with such data and sends them to confirm.

1 Node 2 log output :
2 . . .
3

4 Checking t r a n s a c t i o n . . .
5 Time o f schedu le v e r i f i c a t i o n : 41210468 [NS ] .
6 Task execut ion time : 21 .0 seconds
7 Schedule i n c o r r e c t , t r a n s a c t i o n r e j e c t e d .
8

9 Checking t r a n s a c t i o n . . .
10 Time o f schedu le v e r i f i c a t i o n : 82199380 [NS ] .
11 Task execut ion time : 49 .0 seconds
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12 Schedule i n c o r r e c t , t r a n s a c t i o n r e j e c t e d .
13

14 Checking t r a n s a c t i o n . . .
15 Time o f schedu le v e r i f i c a t i o n : 289038093 [NS ] .
16 Task execut ion time : 26 .0 seconds
17 Schedule i n c o r r e c t , t r a n s a c t i o n r e j e c t e d .
18

19 Checking t r a n s a c t i o n . . .
20 Time o f schedu le v e r i f i c a t i o n : 12366930 [NS ] .
21 Task execut ion time : 7 . 0 seconds
22 Schedule co r r e c t , t r a n s a c t i o n v e r i f i e d .
23

24 Checking t r a n s a c t i o n . . .
25 Time o f schedu le v e r i f i c a t i o n : 232778 [NS ] .
26 Task execut ion time : 26 .0 seconds
27 Schedule co r r e c t , t r a n s a c t i o n v e r i f i e d .
28

29 Checking t r a n s a c t i o n . . .
30 Time o f schedu le v e r i f i c a t i o n : 345971 [NS ] .
31 Task execut ion time : 26 .0 seconds
32 Schedule i n c o r r e c t , t r a n s a c t i o n r e j e c t e d .
33 . . .

The node 2 receives the prepared random schedules and compares them with
its own. Each node has an empty history in BC, so the scheduling factor for
each of them is randomized. Some transactions are rejected by the node and
some are accepted. In the case of acceptance to node 1, a return message
with transaction confirmation is sent.

1 Node 1 log output :
2

3 Transact ion . . . was v e r i f i e d .
4 Transact ion . . . was v e r i f i e d .
5 . . .
6 Transact ion added to v e r i f i e d pool .
7 Transact ion . . . was v e r i f i e d .
8 . . .
9 Transact ion added to v e r i f i e d pool .

10 . . .

After obtaining confirmations from the 50% network, in this case 2 nodes,
the transaction is added to the verified transaction pool from it can be added
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to the block. The transaction will not be considered as valid until it receives
the appropriate number of confirmations. In the situation, where any of the
nodes to which the transaction was sent failed and did not respond for a long
time, it is necessary to resend the transaction to other nodes. In the case of
the simulator there are only 4 nodes, but in practice the number of nodes
in the network is much larger and is constantly changing. Due to that fact
the transaction is sent to more nodes than required, while after receiving the
right amount of confirmations, the rest of the response is ignored.

7.1.4. Stage 3 - Mining blocks

After reaching the minimum number of instructions or operations needed
to execute the tasks within all transactions from the block (100 000), the
mining process begins.

1 Node 1 log output :
2

3 Number o f ope ra t i on s or i n s t r u c t i o n s needed to execute the ta sk s
with in the c rea ted block : 127000.0

4 Transact ion s u c c e s s f u l l y added to the block .
5 Transact ion s u c c e s s f u l l y added to the block .
6 Transact ion s u c c e s s f u l l y added to the block .
7

8 Val idator s chedu l ing f a c t o r : 127000.0
9 Block mined ! ! ! : fc0c15ed4d3b0f224beee3c6b2c9d44b

10 beb0e57a20e51e2ef32af7bb7a858e0c
11 Time o f mining 8592327 [NS ] .

The node received confirmation for 3 transactions, each transaction was
confirmed by at least 2 nodes (50% of the network). Total number of all
operations or instructions needed to execute the tasks within this 3 trans-
actions is equal to 127000, so a block can be created. All transactions are
added to the block, then the trust factor is calculated for the mining node
(validator). At this moment the BC consists only the genesis block, so TF
of mining node considering the last 30 days is equal to the sum of all I from
transactions created by it within the block that is currently being mine.

The fragment of the added block is presented below, one of the three
transactions that the block contains is placed on the listing:

1 {
2 ”hash” : ” fc0c15ed4d3b0f224beee3c6b2c9d44
3 bbeb0e57a20e51e2ef32af7bb7a858e0c ” ,
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4 ” previousHash ” : ” a02ba163f3a02db22fdd14b310119f1
5 a4c2f9e4a773a573f757904dd5433d4dd ” ,
6 ”timeStamp” : 1555429630021 ,
7 ”merkleRoot” : ”5 f03029462fe8118d8ece16db7c541f
8 5 e4286cba3bf2120f1631b4934441b093 ” ,
9 ” t r a n s a c t i o n s ” : [

10 {
11 ” t r a n s a c t i o n I d ” : [ in bytes ] ,
12 ” sender ” : [ in bytes ] ,
13 ” r e c i p i e n t ” : [ in bytes ] ,
14 ” schedu le ” : {
15 ” ta sk s ” : [
16 {
17 ” id ” : 1 ,
18 ”numberOfOperations” : 10000.0
19 } ,
20 {
21 ” id ” : 2 ,
22 ”numberOfOperations” : 7500 .0
23 } ,
24 {
25 ” id ” : 3 ,
26 ”numberOfOperations” : 1000 .0
27 }
28 ] ,
29 ”machines ” : [
30 {
31 ”numberOfOperationsPerSecond” : 1500 .0 ,
32 ” tasksToExecute ” : [ ]
33 } ,
34 {
35 ”numberOfOperationsPerSecond” : 6000 .0 ,
36 ” tasksToExecute ” : [ 1 , 2 , 3 ]
37 }
38 ] ,
39 ” time ” : 8 . 0
40 } ,
41 ” r ” : [ in bytes ] ,
42 ” s ” : [ in bytes ] ,
43 ”v” : [ 2 8 ] ,
44 ” outputs ” : [
45 {
46 ” id ” : [ in bytes ] ,
47 ” sender ” : [ in bytes ] ,
48 ” value ” : −20.0 ,
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49 ” parentTransact ionId ” : [ in bytes ] ,
50 ” schedu l ingFactor ” : 18500 .0 ,
51 ”timestamp” : 1555429630021
52 }
53 ] ,
54 ” numberOfVer i f i cat ion ” : 2
55 } ,
56 . . .
57 ]
58 }

7.1.5. Discussion

Presented numerical results confirm the correctness of the implementation
and its compliance with the algorithm described in Sec. 5. In the simulation,
each node has a connection with 2 others.

At the beginning Genesis Block with hard-coded into classes string ”sched-
uler” was generated. This block contains one empty transaction (without
schedule). In the request pool, 8 requests were placed, all of them were col-
lected by node 1, which prepared random schedules, generate transactions
and sent them to other nodes for confirmation. All 4 nodes had an empty ac-
count at the moment, none of them prepared schedules that had been placed
in BC, therefore their scheduling factors during the verification process have
been chosen randomly. A correctly verified transaction had to be confirmed
by at least 2 nodes. Node 1 received such number of confirmations for 3
transactions. Examples of transaction confirmation times are shown in the
table below:

Table 3: Transaction confirmation times
No. Time in [NS]
1. 41210468
2. 82199380
3. 289038093
4. 12366930
5. 232778
6. 345971

The average transaction confirmation time is 70898936 nanoseconds, which
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gives about 0.07 seconds, so it is very short, which leads to a quick prepara-
tion of the schedule for the end customer, but it should be taken into account
that these schedules were prepared randomly. Node 1, after added confirmed
transactions to the block, obtained the appropriate amount of BI (127 000)
needed to add a block to BC. Next, from the pool of validators involved in
creating the transactions within given block (only node 1), the leader node
is selected, which proceeds to the mining process. This process is not based
on the computing power of the mining node, so it is more similar to Proof of
Stake than to Proof of Work. The application of this approach has led to the
fact that the mining process takes place very quickly and lasts about 0.009
seconds, thanks to which the energy needed to power the processing unit is
not wasted. As a result of this process, a block consisting of 3 transactions
containing the best schedules established by the network was created. The
end user can get them using his public key. Each transaction contains tasks
and machines on which they are to be executed in accordance with the iden-
tifiers of tasks placed in the tasksToExecute array.
Taking into account the results obtained, it can be clearly seen that the im-
plementation has been done correctly and the results obtained are promising.

7.2. Comparative analysis of the performances of BC-based scheduler against
to the selected cloud scheduling algorithms

The proposed scheduler has been tested and compared with individual
algorithms according to the following scenario:

1. Five different schedulers were used for task scheduling, each of them is
evaluated by the time of execution the last task from schedule (makespan).
The same data is uploaded to each scheduler.

2. The task scheduling process is run on four different schedulers. Each
of them uses a different algorithm, includes: First Come First Served
(FCFS), Hybrid Heuristic based on Genetic Algorithm (HSGA), Round
Robin (RR) and Shortest Job First (SJF) [36], [37], [38], [39].

3. The fifth one, blockchain-based task scheduling (BS) process is started.
There are sixteen nodes defined in the BC network that use the same
algorithms as the schedulers from point 2.

7.2.1. Simulator parameters

Experiments on the performance of the proposed model were carried out
using the CloudSim simulator [40]. As a measure of the evaluation, the
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time of completing the last task (makespan) was adopted. The simulator
parameters are shown below:

• 1 Data Center,

• image size of VM - 10000 MB,

• memory of VM - 4096 MB,

• number of CPUs in VM - 4,

• computing capacity of VM - the number of floating point operations
performed in one second by the virtual machine expressed in MFLOPS
(milion floating point operations performed in one second), random
value in the range 1 to 12,

• workload of task (I) - the number of operations or instructions needed
to execute the task expressed in MFLO (milion floating point opera-
tions), random value in the range 100 to 1000,

• 16 nodes in the BC network, each 4 nodes use the same scheduling
algorithms, so 4 different scheduling algorithms can be distinguished
across the entire network,

• each transaction (schedule) must be confirmed by at least 8 nodes (50%
of the network),

• 1000000 - the minimum number of operations or instructions needed
to create a new block (sum of I),

• each node in BC initially has the same scheduling factor, which is equal
to 2000.

Each simulation was carried out 32 times and then the average makespan
value was pulled out. The experiment was conduct for different number of
tasks and virtual machines. As can be seen in the Fig. 8, 9, 10 and 11 in three
out of four experiments carried out, the proposed BS was the best. In second
experiment with 300 task and 15 virtual machines, SJF turned out to be the
best, the difference between BS and SJF is very small, the result may be due
to the fact that the first block in the blockchain network was created by a
node using a different algorithm than SJF, due to the difference in makespan
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Figure 8: Evaluation of the model performance with 30 tasks and 5 virtual machines.
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Figure 9: Evaluation of the model performance with 300 tasks and 15 virtual machines.

is small, comparing it with BS, the schedule was considered correct. In one
case the result of BS is on the second place, but the client is more certain
that the schedule was prepared correctly because it was confirmed by many
nodes (not only one provider). To determine the significance of the results
obtained, the two-tailed Wilcoxon Signed-Ranks Test for Paired Samples was
also carried out as part of the experiment. For this test we use the following
null hypothesis:

Null Hypothesis 1. H0: any differences between the worst result and BS
result is due to chance (BS does not return the optimal result)
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Figure 10: Evaluation of the model performance with 3000 tasks and 15 virtual machines.
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Figure 11: Evaluation of the model performance with 5000 tasks and 50 virtual machines.

The test was conducted for each experiment, selecting as a sample the worst
result returned by a single scheduling module and the result returned by BS.
Table 4 presents the test results:

where:

• T+ - Positive Sum

• T− - Negative Sum

• T - Test Statistic
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Table 4: Wilcoxon Signed-Ranks Test for Paired Samples results

Experiment Samples with σ T+ T− T n
30 tasks, 5 VM HSGA (94.26) & BS (72.78) 377 151 151 32

300 tasks, 15 VM RR (244.082) & BS (174.527) 402 126 126 32
3000 tasks, 15 VM SJF (493.501) & BS (502.938) 373 155 155 32
5000 tasks, 50 VM FCFS (580.278) & BS (486.646) 398 130 130 32

• n - number of samples where difference was not equal to 0

The critical value for the T statistic from the Wilcoxon Signed-Ranks Table
for n = 32 and α = .05 is equal to Tcrit = 159, which gives the range [0, 159].
Since T statistic of each performed test is in the range [0, 159], we can in
any case reject the null hypothesis, and therefore conclude that there is a
significant difference between result obtained from single scheduling module
and BS scheduler. This confirms that the network is working properly and
that the nodes in the network work together to achieve the best result.

8. Conclusions and Future Work

In this paper, we presented the model of the new cloud scheduler based
on the blockchain technology. The reason of our interest in blockchain ar-
chitecture and algorithms was the improvement of the security in the task
allocation, data storage and transmission among the cloud nodes and clusters
and easier generation of the optimal schedules, which are approved by the
nodes in the communicating cloud clusters. That scheduling optimization
problem has been solved by using the asymmetric Stackelberg game model
with the schedule execution time as privileged criterion. We developed spe-
cially designed simulator of the validation of the proposed blockchain cloud
scheduler under various combinations of parameters. The developed sched-
uler was also evaluated and compared with the other popular cloud schedulers
in a simple experimental analysis. The provided experiments confirmed the
effectiveness of the blokchain technology in supporting the generation and
secure execution of the optimal schedules.

The most important observations of the experiments carried out are:

• in most cases, the proposed BS returns a schedule with better makespan
than existing individual schedulers,
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• the greater the number of tasks to be executed, the more favorable
schedule the BS returns (greater differences in makespan result into
greater differences in costs),

• a different number of virtual machines does not have a significant im-
pact on the returned result, BS uses the same scheduling algorithms as
individual modules, but its advantage is that many different algorithms
are compared with each other and the best one is selected.

The presented model and simulations are the first steps in our research
on the security aspects in cloud scheduling and data and resource allocation
in the distributed computational environments. In our future research, first
we would like to consider the graphs of the interconnected tasks (modelled
by DAGs) We also would like to consider the very realistic scenario, where
different cloud clusters may work under different cloud technologies, which
will be the example of the multi-cloud system.
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