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Abstract
The millimeter‐wave radar sensor is widely used for urban traffic surveillance because of
its weather resistance and high detection accuracy. Methods such as fuzzy theory, pattern
recognition, and artificial neural networks have been integrated into the research of traffic
state discrimination. However, research on systematically describing the fusion of sensors
and traffic state discrimination algorithms to alleviate urban road congestion is still
lacking, especially based on millimeter‐wave radar. Thus, the authors propose an urban
traffic congestion alleviation system framework. First, the design and deployment of the
millimeter‐wave radar system, including waveforms, signal processing flow, and target
tracking, are demonstrated to achieve vehicle information acquisition and output. Then,
the appropriate traffic parameters are obtained by analysing traffic state influencing
factors and the radar data characteristics. Finally, a traffic conditions identification al-
gorithm combining spectral clustering and neural network algorithm is presented to
realise road congestion level classification. The system is applied to real urban in-
tersections rather than simulation or approximate real simulation. According to the
current road congestion level, regulate the traffic light state to achieve road vehicle driving
command. Experiments show that the proposed system can effectively reduce road
congestion by 20% compared to the current fixed traffic light system.
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1 | INTRODUCTION

The conflict between the growth in the number of vehicles and
the limited lane capacity has led to traffic congestion, especially
during peak hours. The economic losses [1] and road safety risks
associated with traffic congestion force people to find solutions.
Using historical traffic information data to establish a macro‐

control model is a typical method of achieving urban traffic
flow management and congestion prediction. For example, in
Ref. [2], a residual graph convolution long short‐term memory
model is proposed to predict short‐term traffic on urban net-
works with more accurate predictions during peak periods than
traditional statistical models [3–5] and machine learning models
[6–8]. However, handling emergencies (extreme antennas and
accidents) still requires further research due to the lack of real‐

time. In addition, the prediction accuracy is also limited by the
spatial span of the urban road network.

Aiming at the changeable and uncontrollable characteristics
of urban traffic roads, a new traffic management method based
on real‐time vehicle information at the current intersection node
is proposed. The sensors installed on the roadside collect vehicle
information and then send the vehicle parameters to the edge
computer for processing to obtain the current road congestion
status and finally adjust the traffic light status according to the
road status to realise vehicle driving management. Utilising real‐
time data rather than historical or expected traffic flow data is
the biggest advantage of this approach. Now, implementing
traffic commands based on on‐road vehicle information from
traffic sensors is considered the most likely means of solving
traffic congestion and avoiding traffic accidents, which is the
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need for intelligent transportation development [9–11]. In
particular, the accuracy and characteristics of traffic sensors
directly affect the accuracy and efficiency of congestion mitiga-
tion and are therefore widely studied.

1.1 | Traffic sensor development and
millimeter wave radar features

Magnetometer (MAG) sensors are used for traffic monitoring
because they are sensitive and inexpensive [12]. With the
maturity of wireless sensor (WSN) technology, the integration
of MAG and WSN has enabled the detection of road vehicle
speed estimation, vehicle classification, and traffic monitoring
[13, 14]. However, MAG can be affected by vehicle size,
vehicle structure, and density. More importantly, having to rely
on the vehicle to pass to perform detection limits the sensor's
ability to sense road information.

Video cameras are currently the most widely used sensing
system in traffic surveillance due to their ability to visually
provide image information. Researchers have proposed
improved methods based on vehicle monitoring systems with
conventional vision systems. A surveillance system using
multiple camera devices is networked [15, 16] to improve
vehicle monitoring and management in urban intersection
areas. A deep learning network based on video data is pro-
posed to achieve road congestion classification and regulation
[17]. Traffic congestion mitigation is implemented using road
uncalibrated camera systems for vehicle speed and flow esti-
mation based on digital image processing techniques [18]. And
multi‐sensor fusion techniques such as video and LIDAR
fusion are proposed to achieve road congestion discrimination
[19]. However, the camera does not directly access distance
information and is susceptible to light and weather. Although
the current night vision function is added to the camera, it also
increases the cost [20].

Frequency modulated continuous wave (FMCW) milli-
meter wave radar has received much attention since its birth
due to its high range resolution, high‐velocity resolution, and
environmental robustness. The research on radar constant false
alarm detection techniques [21–23] and radar beams [24] im-
proves radar multi‐target detection ability. And some tech-
nologies are presented to enhance radar velocity detection
range, such as proposing Binary Phase Modulation technology
[25] for improving radar maximum unambiguous velocity
detection and using the Inverse Synthetic Aperture Radar al-
gorithms [26] to improve radar detection of slow targets. These
studies make the millimeter‐wave radar more suitable for urban
road traffic environments.

1.2 | Millimeter wave radar‐based road
application and congestion alleviation system
research

Some high‐resolution or improved radar systems are designed
to implement vehicle speed and type detection in traffic scenes

[27] or radial and tangential speed detection of multi‐lane ve-
hicles [28]. Interferometric linear continuous wave is proposed
to implement vehicle detection on highways [29], and slow
time direction Fourier transform is used to implement slow‐

moving vehicle detection [30]. Research radar multi‐frame
data or micro‐Doppler features of targets achieve road
vehicle length detection [31] or type identification [32] and
designing a non‐contact millimeter‐wave radar system [33] or
installing millimeter‐wave radar on top of the road [34] for
road traffic flow detection.

As aforementioned, radar sensors still play a “surveillance”
role. Few studies have participated in traffic command to
improve road traffic congestion. In Ref. [35], a new method for
calculating intersection phase time series based on interval
detection data from millimeter‐wave radars reduces vehicle
congestion at intersections. And some systems based on the
fusion of millimeter‐wave radar and camera have been pro-
posed to improve the robustness of vehicle information
awareness on urban roads [36, 37]. However, these studies
based on the millimeter‐wave radar to achieve traffic conges-
tion relief are presented in simulation or approximate real
simulation. In addition, the design description of the millimeter
wave radar system applied to traffic congestion management is
relatively rough.

1.3 | Traffic status recognition technology
research

Traffic status recognition techniques have been developed in
recent years. Fuzzy theory, pattern recognition, and artificial
neural networks have been applied to traffic discrimination
research. For example, adaptive fuzzy logic neural networks are
trained to learn to discriminate traffic states based on
congestion values given by the subjective evaluations of
simulated traffic flows. Cluster analysis is an unsupervised
learning algorithm, including coalescent clustering algorithm
[38], Fuzzy C Means Clustering (FCM) algorithm [39, 40], and
K‐means clustering algorithm [41]. It can classify data without
any reference, which is especially suitable for traffic flow data
with complex data association, where the K‐means clustering
algorithm (K‐means) can achieve 87% traffic congestion
recognition rate [42]. Supervised algorithms, including Radial
Basis Function (RBF) neural networks [43], Back Propagation
Neural Network [44], Probabilistic Neural Network (PNN)
[45], and Optimisation SVM [46] also have good traffic
congestion discriminatory effects. Other scholars have com-
bined unsupervised algorithms with supervised ones, for
example, mixing K‐means and multi‐classification SVM [47],
which improve the accuracy and have good robustness.

1.4 | Article contribution

As aforementioned, using millimeter‐wave radar and road
traffic discrimination algorithms is a feasible way to achieve
road traffic congestion relief. However, there is little research
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on the integration of millimeter‐wave radar systems with traffic
discrimination techniques to give a complete road congestion
mitigation system. In addition, most of the studies based on
the millimeter‐wave radar to achieve traffic congestion relief
are presented in simulation or approximate real simulation, and
the system description is rough. To make up for the weak-
nesses in the research field and reduce urban congestion and
promote the development of radar system applications, we
propose an urban traffic congestion alleviation system based
on millimeter wave radar and improved PNN. The system
directs vehicle movements by controlling traffic lights at in-
tersections to achieve traffic congestion relief. The contribu-
tions of this paper are summarised as follows:

� This paper describes in detail the framework and design
process of the traffic congestion mitigation system. The
system closely integrates the research of millimeter wave
radar research, neural network‐based traffic condition
discrimination techniques, and traffic signal control to alle-
viate congestion at urban intersections.

� The key aspects and design ideas of the urban traffic
congestion alleviation system are presented and described in
detail, covering the entire spectrum from mmWave radar
design and traffic parameters analysis to the development of
a traffic conditions identification algorithm.

� In designing and elaborating the key links of the traffic
congestion mitigation system, the article also proposes some
new algorithms (e.g., Monte Carlo‐based constant false alarm
detection algorithm (the MC‐CFAR), improved probabilistic
neural network algorithm (the SC‐PNN), etc.) for reference,
hoping to shorten the development cycle of researchers.

� Different from the simulation system or approximate
simulation system, the proposed urban road congestion
alleviation system has been applied to urban intersections
with initial success. The system was implemented at No.
191, Changshan Road, Laiyang City, Yantai City, Shandong
Province, China. After 2 months of testing, it effectively
reduced traffic congestion by more than 20% compared to
fixed‐hour traffic light systems.

The structure of this paper is organised as follows. Sec-
tion 2 analyses a typical urban intersection environment and
gives an overview of the traffic congestion alleviation system.
In Sections 3–5, the design process of each part of the traffic
congestion mitigation system is elaborated. After that, in
Section 6, traffic congestion system application effects are
investigated. Finally, Section 7 summarises the conclusions of
this paper and future works.

2 | TRAFFIC SCENARIO ANALYSIS AND
TRAFFIC CONGESTION ALLEVIATION
SYSTEM OVERVIEW

2.1 | Traffic scenario

Traffic intersections are an essential part of a city. The traffic
light system installed at the intersection directs vehicles to pass

through the state of the light signal. These signal light state
durations are usually set based on historical intersection traffic
data and are almost constant over a period of time. However,
the traffic conditions are complex and dynamic, so the fixed‐

time traffic light command system cannot be flexibly
adjusted according to the current road conditions, making in-
tersections the city's most frequent congestion areas.

Intuitive vehicle driving information (e.g., vehicle speed,
vehicle location, and vehicle queue length) and non‐intuitive
road state information (average road speed and traffic flow)
make up the traffic parameters, which reflect the congestion
level of the road, as shown in Figure 1. Therefore, a road
congestion alleviation system is needed: Real‐time analysis of
road information from traffic sensor data to perceive road
congestion level purposefully control the intersection traffic
light duration to direct vehicles to wait or release to reduce
traffic congestion, improve road utilisation, and ensure smooth
road flow.

2.2 | Traffic congestion alleviation system
architecture and system deployment

Figure 2 shows an overview of the proposed traffic congestion
alleviation system. The front‐end millimeter‐wave radar system
monitors road vehicles in real time and provides road vehicle
information for the back‐end traffic state recognition system
through radar detection and radar tracking processing. The
back‐end traffic conditions identification system obtains the
road congestion level and gives traffic light control decisions
by processing vehicle information from the radar system. The
traffic parameter extraction unit receives the vehicle informa-
tion output by the radar and outputs traffic parameters,
including traffic flow, queue length, average road speed. Then
the proposed improved PNN algorithm gives the current road
congestion level by processing the traffic parameters. The
traffic light control system adjusts the duration of the light
signal according to the current road congestion level to achieve
the relief of road traffic congestion.

In practical applications, a complete traffic congestion
alleviation system consists of multiple front‐end radar systems
and a back‐end traffic conditions identification system. As
shown in Figure 3, in a traffic intersection environment, four
front‐end radar systems are installed on the four traffic light
brackets respectively at the traffic intersection and face the

F I GURE 1 Traffic intersection scene.
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opposite side of the lane to achieve full coverage of the entire
traffic intersection area. The traffic status discrimination sys-
tem receives all radar system data, performs data processing
and state judgment, and transmits the decision information to
the edge computer, where the traffic light is located to control
the state of the traffic light.

3 | MILLIMETER WAVE RADAR
DESIGN AND KEY TECHNOLOGIES
COMPARATIVE ANALYSIS

Traffic sensors, as the eye of the urban road surveillance systems,
play an essential role in the whole system. This chapter presents
the proposed millimeter‐wave radar system design with the

system architecture, as shown in Figure 4 and compare and
analyse the key technologies. The main points are as follows:

� Radar system hardware platform and beam design.
� Radar signal processing process design for vehicle infor-

mation acquisition.
� A multi‐track matching target tracking algorithm design to

improve target surveillance continuity and remove false
target interference.

3.1 | Radar system hardware platform and
beam design

To analyse the city road surveillance, we collect vehicle data
through a self‐designed millimeter‐wave radar system whose
composition is shown in Figure 5a. The four radar chips
cascade (AWR2243) based Radio Frequency (RF) front‐end
with 12 transmitting and 16 receiving antennas is used to
transmit millimeter‐wave and receive target echo signals.
Additionally, sixteen‐channel high‐speed ADC is used for
vehicle raw data acquisition. And raw data is sent to the
baseband processing system via a high‐speed interface.
Figure 5b shows the radar baseband processing platform, and
we use the physical architecture of FPGA + RAM to provide a
platform for software development. At the same time, six
pieces of DDR memory (two on the FPGA side and four on
the RAM side) are used to support the data processing and
data flow of the algorithm. Finally, vehicle information such as
location, speed, and bearing information is transmitted
through the network port.

The radar transmitting beam is designed based on the ur-
ban 4‐lane road as the basic surveillance unit to achieve road
area coverage. As shown in Figure 6, the red line indicates the
antenna azimuth beam map with a maximum gain 21 dB, 12
degrees of 3 dB beamwidth and 20 degrees of 8 dB beam-
width. And the green line is the elevation beam map and has
the same parameters as the azimuth beam map. In addition, the
phased array approach is used to change the radar beam
pointing, that is, expand the radar surveillance range by beam
scanning to adapt to the surveillance of the intersections with
more lanes (e.g., six or eight lanes).

F I GURE 2 Traffic congestion alleviation system overall architecture.

F I GURE 3 Traffic congestion alleviation system deployment method
diagram.

F I GURE 4 Front‐end Frequency modulated continuous wave
(FMCW) radar system architecture.
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3.2 | Radar signal processing flow design

3.2.1 | Millimeter‐wave radar target detection
principle

Millimeter‐wave radar obtains target information by collecting
target echo signals. The radar transmits the chirp signal (TX)

and captures its transmission path's object reflection signal
(RX). The RX signal is the same as the TX signal but lags by τ

which is the propagation time of the waveform between the
radar and the object. The mixer mixes the RX signal and the
current TX signal to obtain an intermediate frequency signal,
also called beat frequency signal (fb). The frequency value of
the fb reflects the distance of the target from the radar. The
relationship between the target distance and the intermediate
frequency is

R¼
cτ
2
¼

cfb
2K

¼
cfbTc

2B
ð1Þ

where R represents the distance between the radar and the
target; c represents the speed of light; Tc represents the Chirp
cycle; and B is the bandwidth.

To measure the speed, the radar transmits at least two
chirp pulses with a time interval of Tc. Because the electro-
magnetic wave can be considered as fo ≫ B, so the phase
difference Δϕ caused by the movement of the object can be
expressed as

Δϕ ¼ 2πfot ¼
4πfoΔR

c
¼
4πvTc

λ
ð2Þ

where ΔR represents the displacement of the object in time t; λ

represents the wavelength; v represents the speed of the target.
The relationship between the phase difference and Doppler
within Tc is

Δϕ ¼ 2πfdTc ð3Þ

where fd represents the Doppler at velocity v. So combining
formula (2) and formula (3), the relationship between velocity
and Doppler is

fd ¼
2v
λ

ð4Þ

In a radar system, at least two receiving antennas are
required to realise the estimation of the target azimuth angle.
Suppose the receiving antenna is uniformly distributed, the
distance between the antennas is d, and the angle between the
target and the radar is θ. The signal propagation distance dif-
ference between RX antennas is dsin(θ) from the geometric
relationship. Therefore, the phase difference (Δω) between
adjacent receiving antennas is

Δω ¼ ð2π=λÞdsinðθÞ ð5Þ

Then the angle of arrival of the object can be expressed as

θ ¼ arcsin
Δωλ

2πd

� �

ð6Þ

F I GURE 6 Front‐end radar system transmitting antenna beam
pattern.

F I GURE 5 Front‐end Frequency modulated continuous wave
(FMCW) radar system hardware architecture. (a) Radar RF board and data
transmission interface. (b) Radar baseband signal processing board.
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In practical application, we can obtain the parameters (fb,
fd, and Δω) by performing FFT operations and detection
algorithm.

3.2.2 | 2D FFT processing

In FMCW radar systems, the transmit signal is a single tone
with a linear change in frequency over time called “chirp”.
Target distance is obtained by processing a chirp signal, and
target velocity is obtained by transmitting and processing
multiple chirp signals with the same parameters.

Our sampling and FFT processing of a single chirp is
called radar fast time dimension processing (i.e., Range‐FFT).
Next, multiple chirp sequence data are stacked and FFT pro-
cessing on the same distance unit, called radar slow time
processing (i.e., Doppler‐FFT). The two FFT processing on
the distance and velocity dimensions are called two‐

dimensional FFT (2D‐FFT).
In the same period, each one of the channels generates a

Range‐Doppler Matrix (RDM) containing target distance and
velocity information with the same scale size by 2D‐FFT
processing.

3.2.3 | Radar CFAR detection

The radar CFAR detection technologies separate the target and
the background noise in the RDM matrix by setting the
threshold according to different clutter environments [48].
Currently, commonly used CFAR algorithms include Cell
Averaging CFAR (CA‐CFAR) [49], Ordered Statistical CFAR
(OS‐CFAR) [50]. The CA‐CFRA algorithm has low CFAR loss
but cannot be used for multi‐target detection, and the OS‐

CFAR algorithm has good multi‐target detection capabilities
but has a large CFAR loss.

In previous work, we proposed a Monte Carlo random
sampling‐based CFAR detection algorithm (MC‐CFAR) [51]
for vehicle detection in the road traffic environment, which
estimates the background noise where the moving target is
located by randomly sampling the RDM, as shown in Figure 7.
The performance comparison of the algorithm is shown in
Figure 8. Compared with the conventional CFAR detection
algorithm, the proposed detection algorithm has higher
detection sensitivity and lower algorithmic complexity. More
importantly, the algorithm avoids reference window sliding,

which greatly reduces the radar signal processing latency and
improves the system's real‐time performance.

Each cell Xm,n of the synthesis matrix represents the dis-
tance and velocity of the target, where m represents the target
distance index and n represents the target speed index. The
distance and velocity information of the target is outputted by
CFAR detector processing.

3.2.4 | Target angle finding

There are many methods for target angle search, the most
typical ones are multiple signal classification algorithm [52] and
rational invariance techniques (ESPRIT) algorithm [53], but
these angle estimation methods rely on the accurate estimation
of the array covariance matrix with multiple snapshots. To find
the target angle with one snapshot, the orthogonal matching
pursuit algorithm [54] and the iterative adaptive approach al-
gorithm [55] are proposed; however, they have a high compu-
tational cost. The digital beamforming (DBF) [56] is a method
to obtain the target angle values by power spectrum peak search.
Although the accuracy is relatively poor, it is easy to implement
and requires only one snapshot. Taking into account, the DBF
method is selected for target angle discovery in this system.

3.3 | Multi‐track matching target tracking
algorithm

The target information points obtained by the radar signal
processing part are not directly fed to the back‐end traffic state
resolution system. The reasons are as follows:

� There are false targets due to false alarms of the CFAR
detector and external interference. And it is not conducive
to the statistics of the number of vehicles

� The target information obtained by signal processing has
poor stability and requires filtering and smoothing.

We use multi‐track matching target tracking architecture (as
shown in Figure 9) to achieve stable monitoring and tracking of
road vehicles, provide stable vehicle travel information for the
road congestion identification system, and ensure the accuracy

F I GURE 7 Front‐end radar system target detection algorithm (the
MC‐CFAR) process.

F I GURE 8 The MC‐CFAR algorithm performance. (a) Detection
sensitivity comparison. (b) Computational complexity comparison.
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of road status discrimination. The tracking system processes the
vehicle target data from the radar signal processing section at
frame time intervals. At any moment, the system has three types
of target trajectories set, such as starting trajectory set, tempo-
rary trajectory set, and reliable trajectory set. Through the op-
erations of coordinate transformation, trajectory matching,
filtering, prediction, and trajectory iteration, the vehicle infor-
mation in the reliable trajectory is finally outputted .

3.3.1 | Vehicle target coordinate conversion

The radar signal processing part transmits the set of all target
information in the current radar field of view in time units of
frames, which can be represented as

A¼ a1; a2;…; anjai ¼ Riradar;Viradar; θiradar
� �� �

ð7Þ

where A represents the set of all target points in a frame; ai is a
subset of A, which means the target point, and i = 1, 2, …, n;
Riradar;Viradar; θiradar respectively, represent the distance, speed
and angle information of the ith target point relative to the
radar.

According to the geometric relationship between the radar
and the target, as shown in Figure 10, we can get the position
and speed information of the target on the road. So the po-
sition of the vehicle in the lane is:

xi_car ¼ Ricos jθij; yi_car ¼ −Ricos jθij θi < 0
xi_car ¼ Risin jθij; yi_car ¼þRisin jθij θi > 0

�

ð8Þ

where xi_car, yi_car are the road coordinates of the ith vehicle;
Ri is the distance between the origin of the coordinates and the

ith target, Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
i_radar − h2r

q

; Similarly, we can obtain the
true speed of the target:

V y
i_car ¼ Viradarcos jθij

V x
i_car ¼ Viradarsin jθij

(

ð9Þ

where V y
i_car and V x

i_car respectively represent the radial ve-
locity and lateral velocity of the target, and Vi = Vi_radar cos ϑ.
Then the target point set from the signal processing part is
transformed into set B:

B¼ b1; b2;…; bnjbi ¼ Ri_car;Vi_car; θi_carf gf g ð10Þ

where bi is a subset of B, which represents the actual infor-
mation of the ith target on the road.

3.3.2 | Trajectory matching

The purpose of track matching is to divide each vehicle in-
formation into the corresponding vehicle tracks, and the di-
vision principle is as follows:

� First, each vehicle information point is matched with each
existing trajectory in turn. There is a predicted value (called
vehicle information prediction point) in each already exist-
ing vehicle trajectory, and the current vehicle information
point is matched with this expected value. Once the
matching is successful, the vehicle information point is
considered to belong to this trajectory and will not be
matched with other trajectories.

� When multiple vehicle information points meet the
matching requirements, the filtering is performed with the
closest criterion. And the rest of the points will be
discarded.

� Finally, the remaining vehicle information points that do not
belong to any of the tracks will be used as new track start
points in the starting trajectory unit for track start,
respectively

F I GURE 9 Front‐end radar system target tracking process.
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3.3.3 | Filtering and prediction

The Kalman Filter algorithm (KF), which is a linear filter with
good performance when the noise process is Gaussian, is used
to realise the filtering and prediction of the track. Considering
that the target speed varies with the actual situation, we use the
Constant Acceleration as the KF system model:

xkþ1 ¼ xk þ _xkT þ
1
2
€xkT

2

ykþ1 ¼ yk þ _ykT þ
1
2
€ykT

2

_xkþ1 ¼ _xk þ €xkT

_ykþ1 ¼ _yk þ €ykT

€xkþ1 ¼ €xk

€ykþ1 ¼ €yk

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð11Þ

where x, _x, and y, _y represent the position and velocity of the
target in the x‐axis and y‐axis directions; €x and€y are the ac-
celeration; T is the observation period. The predicted value of
the tracks and the current vehicle information point that best
matches this track at the current time are sent to the KF system
model for processing. Then, the filtered value (new vehicle
information reliable value) is used for trajectory update and
output, and the new predicted value is used for trajectory
matching at the next moment.

Through Kalman filtering and prediction algorithms, the
messy target information points are transformed into stable
and continuous track points. Each trajectory in the three tra-
jectory units is updated and processed the same way. Still, the
only difference is that the reliable track points after Kalman
filtering will be outputted to the traffic conditions identifica-
tion system as the data source.

3.3.4 | Track conversion and demise

The conversion of the target trajectory type is unidirectional,
and each vehicle trajectory is assigned a separate counter that
records how often that track is updated. As the accumulated
value of the counter rises steadily, the more reliable this vehicle
trajectory becomes. This vehicle track is gradually transferred

from the initial starting trajectory unit to the reliable trajectory
unit with increasing reliability. The vehicle trajectory in the
reliable trajectory unit has the highest reliability, that is, there
exists a vehicle corresponding to that track driving in the radar
view.

In the starting and temporary trajectory units, once the
counter corresponding to the vehicle trajectory stops accu-
mulating and the stop time exceeds the threshold, it is directly
determined that the trajectory is dead. For the vehicle trajec-
tory in the reliable trajectory unit, before judging the dead of
the trajectory, it is necessary to judge whether the vehicle
disappears or stops according to the position of the vehicle.
When the vehicle disappears from the radar field of view, the
vehicle trajectory is eliminated. If the vehicle stops, the track of
the vehicle is preserved.

3.3.5 | Target trajectory points output

In the reliable trajectory unit, each track's latest target trajec-
tory points are output to the state discrimination system at
50 Hz, which includes the vehicle speed, position, and lane.

3.4 | Radar performance test

We verify the performance of the proposed radar system by
observing the tracking effect of the radar on‐road vehicles.
Theoretically, the better the effect of radar on vehicle target
tracking, the more accurate the congestion mitigation system
will be in identifying road congestion levels.

Figure 11 shows the tracking effect of the radar system on
vehicles. Before tracking, the original detection points of the
radar to the vehicle target are cluttered and have many inter-
ference points (as shown in Figure 11a). It cannot accurately
determine the trajectory of the vehicle and the vehicle's
number. Figure 11b shows the result of radar tracking pro-
cessing. We use different slopes to represent the direction of
the vehicle and different colors to represent different vehicle
trajectories. After the tracking process, the false target is
eliminated, and the target point is more continuous, concen-
trated, and stable. Figure 12 shows the tracking accuracy of the
radar system on vehicles at different distances (the maximum
detection range of the radar is 200 m). Through statistics, the
tracking accuracy of vehicles in the entire road section is
greater than 85%.

4 | TRAFFIC PARAMETERS SELECTION

Selecting appropriate traffic parameters helps improve the
identification efficiency and accuracy and reduces the identifi-
cation algorithm's complexity. Usually, the selection of traffic
feature parameters should follow intuitiveness, systematicness,
convenience, and suitability. Considering the characteristics of
radar data (easy‐to‐obtain target speed and distance information)

F I GURE 1 0 The geometric relationship between radar and target.
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and traffic intersection environment (vehicles increase during
the waiting time for traffic lights), we choose three traffic pa-
rameters, the average road speed, traffic flow, and vehicle
queuing length as the basis for traffic state identification.

4.1 | Parameter extraction of average road
speed

The common method is to directly add up all target speeds per
unit of time and average them to obtain the average road
speed, but this method has errors since the vehicle cannot keep
driving at a constant speed at an intersection. To get an ac-
curate average road speed, we obtain the average speed of each
vehicle in a period and then obtain the average road speed by
averaging the average speed of all vehicles. The operation
process is as follows:

� Step 1: Obtain all vehicle's speed data from radar in a fixed
time period.

� Step 2: Calculate the average speed of each car in this period
of time:

vi ¼

P

n

j¼1
vij

n
; i¼ 1; 2;…; n ð12Þ

where vij represents the speed of each track point of the ith
vehicle, and n represents the number of vehicles in the time
period.

� Step 3: We calculate the average speed of each vehicle ob-
tained in step 2 to obtain the average road speed:

vroad ¼

P

m

i¼1

m
ð13Þ

where vi is the average speed of each vehicle obtained in step
2; n is the number of vehicles, which is obtained through the
flow calculation model.

4.2 | Parameter extraction of traffic flow

The traffic flow reflects the current traffic load on the road.
When traffic exceeds a certain limit, congestion will generally
occur. In a radar system, the number of tracks in the reliable
track unit directly reflects the number of vehicles on the road at
that moment. Moreover, in the vehicle information output by
the radar, each vehicle has its unique ID number. Thus, we can
obtain road traffic flow by counting the number of IDs:

� Step 1: Obtain all the vehicle “ID” numbers in the time
period.

� Step 2: Remove the records with the same vehicle “ID” and
only keep one “ID” record.

� Step 3: Count the number of “ID” of different vehicles to
get the number of traffic flows during the time.

F I GURE 1 1 Front‐end radar system tracking functional testing.
(a) Radar raw data. (b) Radar tracking results.

F I GURE 1 2 Front‐end Radar system vehicle tracking performance
statistics results.
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4.3 | Parameter extraction of vehicle queue
length

The queuing length refers to the length of vehicles that line up
head to tail. When congestion occurs, the size of the vehicle
queue will increase, so the size of the queue can more intui-
tively reflect the road congestion.

Based on the radar detection data, a method for estimating
the length of the online queue at an intersection is proposed.
The key of the method is to divide the road into several cells
and count the number of cells with continuous vehicle infor-
mation to estimate the length of the queue. The road length
estimation model is shown in Figure 13, and the specific
principles are as follows:

� Step 1: Divide the road into several lanes according to the
actual situation, and divide lanes into several cells similar to
the length of the vehicle, and count whether there is vehicle
information in each cell per unit of time.

� Step 2: Taking into account the influence of factors such as
the safety distance of the vehicle and the driver, if the
vehicle information is missing in two consecutive cells, it is
considered to have reached the end of the fleet.

� Step 3: A complete fleet comprises consecutive cells with no
more than two consecutive cells with missing vehicle data.
And the queue length value is the product of the number of
cells in this queue and the length of a single cell.

� Step 4: In the end, select the maximum lane queue length as
the road queue length.

5 | TRAFFIC CONDITION
IDENTIFICATION BASED ON SC‐PNN
ALGORITHM

Traffic state discrimination methods are mainly divided into
two categories: unsupervised algorithms and supervised algo-
rithms. As a typical unsupervised algorithm, the clustering al-
gorithm can be classified according to the similarity between

data without any reference, which is in line with the research of
traffic data. Still, due to the computational complexity, the real‐
time performance of the algorithm cannot be guaranteed. The
supervised algorithm overcomes the real‐time problem of the
unsupervised algorithm. Still, it cannot directly discover the
classification rules by itself and needs the assistance of a
dataset with classification labels. Therefore, a combination of
unsupervised and supervised algorithms ensures real‐time
discrimination while providing classification information.

5.1 | Determination of the classification
number of traffic states

There are differences in the scale and road level between
different countries and cities, making the evaluation criteria of
traffic status various. Since the data selected for state
discrimination in this study are traffic flow, average road speed,
and queue length, there is no classification label. Therefore, the
internal evaluation standard of the clustering algorithm is
adopted, that is, the silhouette coefficient is used to determine
the number of state classifications.

The silhouette Coefficient is an evaluation method of the
clustering effect, and its expression is

sc¼
b − a

maxða; bÞ
ð14Þ

where sc represents the silhouette coefficient of each sample; a
is the average distance between the data and other data of the
same class; b is the average distance between the data and all
points of the similar class. The silhouette coefficient takes
values between −1 and one, with a higher score when the data
is dense and well separated. A value of zero indicates that the
data is very close to the decision boundary of two adjacent
clusters. In contrast, a value less than zero indicates that it may
have been classified into the wrong category.

Table 1 shows the average score of the silhouette coeffi-
cient when the number of categories is [2, 7]. The effect is best
when the number of classifications is set to five. So the data is
divided into five categories. The corresponding traffic status is
very smooth, smooth, mild congestion, congestion, and severe
congestion.

F I GURE 1 3 Schematic diagram of road queue length estimation.

TABLE 1 The relationship between the number of classifications and
the average silhouette coefficient score.

Number of
classifications

Average silhouette
coefficient score

2 0.52

3 0.53

4 0.54

5 0.69

6 0.41

7 0.42
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5.2 | The SC‐PNN algorithm principle and
implementation steps

5.2.1 | Spectral clustering algorithm principle

Spectral Clustering (SC) is a new unsupervised clustering al-
gorithm that transforms the sample clustering problem into a
graph and divides the data using knowledge from graph theory
to achieve a high similarity between similar classes and low
similarity between different categories. The SC algorithm has
the advantages of low computational complexity, not being
limited by the shape of the sample space and strong adapt-
ability to data distribution. The algorithm flow is as follows:

� Step 1: Generate a similarity matrix S based on the input
traffic parameter dataset.

� Step 2: Construct adjacency matrix W and degree matrix D
from the similarity matrix S.

� Step 3: Calculate the Laplacian matrix L from the W matrix
and the D matrix.

� Step 4: Construct the normalised Laplacian matrixD−
1
2LD−

1
2.

� Step 5: Perform a clustering operation on the feature matrix
according to the k‐means algorithm.

� Step 6: Get the results of cluster division: very smooth,
smooth, mild congested, congested, and severe congested.

5.2.2 | Probabilistic neural network algorithm

The PNN algorithm is a radial basis neural network with a
simple structure, good fault tolerance, accurate classification,
fast training speed, and can discriminate traffic status in real‐
time. Figure 14 shows the structure of the PNN. And the al-
gorithm flow is as follows:

� Step 1: Normalise the input training dataset and test dataset.
� Step 2: Send the normalised sample data into the input layer

of the network.

� Step 3: Calculate the Euclidean distance between the test
dataset and the training dataset.

� Step 4: Get the initial probability based on the Gaussian
function.

� Step 5: Get category probabilities by summing the
probabilities.

� Step 6: Output the category with the highest probability.

5.2.3 | SC‐PNN algorithm principle

The SC algorithm gets the similarity matrix from a large
amount of data for classification, suitable for traffic state
discrimination. However, if the clustering dimension is very
high, the running speed of the algorithm and the final clus-
tering effect will be affected due to insufficient dimensionality
reduction. Meanwhile, the clustering effect has a great corre-
lation with the similarity matrix, and the selection of the sim-
ilarity matrix also affects the clustering effect of the data.
Therefore, the PNN algorithm of the supervised learning al-
gorithm is chosen for training and testing the clustering results
to improve the accuracy of the results and make the classifi-
cation more accurate.

We propose a traffic identification algorithm based on
SC and PNN (as shown in Figure 15). Firstly, the SC al-
gorithm is used to classify the processed traffic flow data,
and then the PNN algorithm is used to train the classified
data and labels. This method enhances classification accu-
racy and improves the speed of discrimination and the real‐
time performance of data processing, which meets traffic
control needs.

� Step 1: Traffic parameters input, including traffic flow,
average road speed, and queue length.

� Step 2: The SC algorithm determines the divided traffic
states: very smooth, smooth, mild congested, congested, and
severe congested.

F I GURE 1 4 The structure of the probabilistic neural network (PNN).
F I GURE 1 5 Traffic congestion state identification algorithm (the SC‐

PNN) architecture.
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� Step 3: PNN algorithm training. Input the traffic data with
classification labels obtained in Step 2 into the PNN model
for training. Then select a part as the test set to verify the
model's accuracy.

� Step 4: Congestion category output.

5.3 | The SC‐PNN algorithm performance
simulation

5.3.1 | SC‐PNN algorithm function simulation

To verify the functionality of the proposed algorithm, we
generate a random set of test data sets. In the test data sets,
each test data point contains information on three traffic pa-
rameters (road flow, queue length, and average road speed),
and each traffic parameter takes values in the range [0:1].

Figure 16 shows the simulation results of the SC‐PNN
algorithm, which demonstrates the relationship between the
traffic parameters. In Figure 16a, the traffic states are divided
into five categories with clear boundaries, which shows that
the algorithm can classify the data set well. In addition, the
road queue length increases with the increase of traffic
(Figure 16b), and the average road speed decreases with the
rise of vehicle queue length (Figure 16c), which also satisfies
the objective law.

5.3.2 | SC‐PNN algorithm stability simulation

In order to better verify the performance of the proposed
method, we graphically represent and compare the results of
the traffic status labels obtained by the two algorithms over
time (as shown in Figure 17).

In Figure 17, the abscissa represents time, the ordinate
represents state classification, and numbers 1–5 represent the
level of road congestion respectively: 1‐very smooth, 2‐

smooth, 3‐mild congestion, 4‐congestion, and 5‐severe
congestion. The peak hours are 07:00–09:00, 11:00–12:00,
and 17:00–18:00. The figure's red box indicates a difference in
the discrimination between the two algorithms. The traffic
state from 00:00 to 06:00 in Figure 17a is somewhat mistakenly
divided into two states, but it has been classified as correct
State 1 in Figure 17b. Some of the traffic states around 09:00–
10:00 in Figure 17a are misclassified as state 5, but the state
obtained after training with the PNN algorithm becomes
state 4; in addition, 13:00–14:00 and after 18:00, there are
misjudgment states, which are classified as correct traffic states
after training by the PNN algorithm.

Through simulation verification, it can be obtained that the
proposed SC‐PNN algorithm can discriminate traffic conges-
tion states. Compared with the individual SC algorithm, the
state division is more accurate, and the anti‐interference ability
is stronger.

F I GURE 1 6 Traffic congestion state identification algorithm (the SC‐

PNN) function simulation. (a) The relationship between the traffic
parameters in 3D view. (b) Simulation of the relationship between traffic
flow and queue length. (c) Simulation of the relationship between queue
length and average road speed.
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6 | ACTUAL EXPERIMENTAL CASE
AND RESULT ANALYSIS

The traffic congestion alleviation system was deployed at No.
191, Changshan Road, Laiyang City, Yantai City, Shandong
Province, China. The system installation and the system's
location are shown in Figure 18. Based on the actual road
environment, we analyse the system's performance from two
aspects, that is, counting the traffic parameter estimation ac-
curacy and comparison of traffic congestion alleviation effi-
ciency with the fixed‐time traffic light system.

6.1 | Traffic parameter estimation results
and analysis

The accuracy of traffic parameter estimation is an aspect that
reflects the performance of the traffic congestion system. With
1 week (seven days) as the time interval, statistics of traffic

parameters information at intersections are in multiple periods.
In the performance analysis process, we use the traffic
parameter results of manual statistics as the standard. The
specific operation is, we installed video and speed‐measuring
devices on each road to achieving 24‐h access to real vehicle
information in the testing scenario. Then, the traffic flow is
obtained by manually counting the number of vehicles at
different periods in the recording. Simultaneously, they match
the vehicles in the video with the speed information in the
speed‐measuring device to obtain the speed of each vehicle
and the average road speed.

6.1.1 | Road flow parameter estimation

The changes in traffic flow within a day are shown in
Figure 19a. The flow reaches the maximum during the
morning and evening peak hours, and the flow reaches the
minimum at night. Figure 19b shows the difference between
the estimated value of the model and the actual flow value
during the period from 5 am to 9 am. When the flow rate is
low, the relative error between the estimated and actual values
is almost 0%. When the flow rate is high, the relative error
between the estimated and true values does not exceed 15%.

6.1.2 | Road average speed parameter estimation

The changes in average road speed within a day are shown in
Figure 20a. The average road speed is inversely proportional to
traffic flow. At night or early in the morning, the road traffic
flow is low, so the average road speed is zero or faster. During

F I GURE 1 8 Traffic congestion alleviation system deployment.

F I GURE 1 9 Traffic flow estimation and error analysis of traffic
congestion alleviation system under real scenarios. (a) Traffic flow average
estimation results in 1 day. (b) Comparison of traffic flow estimation results
with real results.

F I GURE 1 7 Traffic congestion state identification algorithm (the SC‐

PNN) stability simulation and comparison. (a) The spectral clustering (SC)
algorithm traffic state‐time trend. (b) The SC‐PNN algorithm traffic state‐
time trend.
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the day, the speed of vehicles passing through the intersection
does not exceed 40 Km/h, and the speed of vehicles generally
decreases during peak hours. Figure 20b shows the difference
between the estimated value of the model and the actual road
average speed during the period from 5 am to 9 am. And the
relative error between the estimated value of the average speed
and the real value does not exceed 13%.

6.1.3 | Road queue length parameter estimation

The changes in road queue length evaluation within a day are
shown in Figure 21a. The road queue length is proportional to
traffic flow. Figure 21b shows the difference between the
estimated value of the model and the actual road queue length
from 5 am to 9 am. When the road queue length is short, the
relative error between the estimated and actual values is almost
0%. When the road queue length is long, the relative error
between the estimated and actual values does not exceed 20%.

6.2 | Traffic congestion alleviation
experiment

The most significant feature of this system solution is that it
has been applied to actual intersections and achieved good

F I GURE 2 0 Road average speed estimation and error analysis of
traffic congestion alleviation system under real scenarios. (a) Road average
speed average estimation results in 1 day. (b) Comparison of road average
speed estimation results with real results.

F I GURE 2 1 Road queue length estimation and error analysis of traffic
congestion alleviation system under real scenarios. (a) Road queue length
average estimation results in 1 day. (b) Comparison of Road queue length
estimation results with real results.

F I GURE 2 2 Average daily traffic congestion level ratio at
intersections. (a) Traffic congestion alleviation system command result.
(b) Fixed‐time traffic light system command result.
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results by controlling the traffic lights to alleviate traffic
congestion.

The traffic congestion alleviation system participates in the
monitoring of traffic intersections and the control of traffic
lights with 1 week as the time interval. When the radar traffic
monitoring system is not involved, the original fixed‐time
traffic light system is adopted. Integrate the data in 1 week
and perform the average processing on the data in multiple
periods and finally get the traffic congestion information of the
road in 1 day. Compare and record the road congestion under
two methods.

To make the results more intuitive, the two results of very
smooth and smooth are unified into smooth roads, and the
congestion and severe congestion are unified into severe
congestion. The final result is expressed in three states: smooth
roads, mild congestion, and severe congestion. Figure 22
shows the proportion of traffic congestion at the intersection
in 1 day after multiple time cycle statistics and processing.
Under the command of the traffic congestion alleviation sys-
tem, the proportion of road smooth has increased significantly,
and the probability of severe congestion has decreased from
23% to 4%.

Figures 23 and 24 show the road traffic congestion during
the morning and evening rush hours during the day. The
picture on the left shows the proportion of different road

conditions. The picture on the right shows the traffic situation
of each lane when the congestion is the most serious. The
deeper the red, the longer the queue length in the current lane
and the more congested. Obviously, with the participation of
the radar traffic system, the congestion rate in the morning
peak and evening peak has been effectively alleviated by 20%.

7 | CONCLUSION

An urban traffic congestion alleviation system based on the
millimeter‐wave radar and an improved PNN is designed in
this study. The system's architecture and data processing flow
are introduced in detail, including the radar system for
obtaining road vehicle driving information and the traffic
congestion discrimination system for judging road congestion
levels based on radar data. The system has been used in real
urban intersections with good results rather than simulation:
Compared to fixed traffic light control, the proposed road
congestion alleviation system can effectively reduce the pro-
portion of road congestion, especially the proportion of road
congestion during peak hours by 20%. We hope that the sys-
tem design can provide a reference for the application of radar
in traffic command. In future work, we will implement control

F I GURE 2 3 Average daily morning rush hour traffic congestion level
ratio at intersections and lane status display. (a) Traffic congestion
alleviation system command result. (b) Fixed‐time traffic light system
command result.

F I GURE 2 4 Average daily evening rush hour traffic congestion level
ratio at intersections and lane status display. (a) Traffic congestion
alleviation system command result. (b) Fixed‐time traffic light system
command result.
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over multiple intersections, from single‐intersection optimisa-
tion to regional optimisation.
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