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A B S T R A C T   

A robust traf昀椀c rerouting system is important in traf昀椀c management, alongside an accurate traf昀椀c simulation 
model. However, missing data continues to be a problem as it will inevitably cause errors in predicting the 
congestion levels, resulting in a less ef昀椀cient rerouting. The lack of a realistic traf昀椀c simulation also serves to 
hamper the development of a better traf昀椀c management system. As such, this paper aims to address both 
problems by proposing three solutions: (i) a traf昀椀c simulation that would model a live-traf昀椀c, (ii) a pheromone- 
based, neural network traf昀椀c prediction and rerouting system, and (iii) a missing data handling method utilising 
weighted historical data method named Weighted Missing Data Imputation (WEMDI). The traf昀椀c simulation 
model was benchmarked using Google Maps rerouting system. WEMDI was tested by comparing the performance 
of the rerouting system with and without WEMDI’s integration for various levels of missing data. The results 
showed that the traf昀椀c simulation model displayed a high correlation to that of Google Maps, and the WEMDI- 
integrated system displayed 38% to 44% improvement in the related traf昀椀c factors, when compared to a situation 
with no rerouting system in place, and up to 19.39% increase in performance compared to the base rerouting 
system for missing data levels of 50%. The WEMDI system also displayed robustness in routing other locations, 
displaying a similarly high performance.   

1. Introduction 

As the population of the world increases, so does the number of ve-
hicles used by that population. This increase in the number of vehicles 
leads to a rise in traf昀椀c congestions which in turn causes an increase in 
CO2 emissions as shown in a study by Bharadwaj, Ballare, Rohit, and 
Chandel (2017) based the impact of traf昀椀c congestion in Mumbai. 

In order to combat this issue, there is a need to further develop 
existing Intelligent Transport Systems (ITS). Various studies have been 
done with that in mind — such as traf昀椀c modelling (Idrissa, 2017; 
Mustapha & Nik Hashim, 2016; Valente, Avram, Machado, & Astilean, 
2018), traf昀椀c forecasting and rerouting (Chon, Lim, Lun, & Yong, 2019; 
Soon, Lim, Parthiban, & Ho, 2019; Tan, Wu, Shen, Jin, & Ran, 2016). A 
traf昀椀c simulation software (Pell, Meingast, & Schauer, 2017) would be 
used to validate such studies as it provides a safe, inexpensive, and 
昀氀exible environment for the user to test the proposed methods. 

Traf昀椀c simulation continues to grow in importance in traf昀椀c studies 
related to road design and traf昀椀c light planning, which leads to a need to 
further improve the realism of the simulation. What comes to mind is to 

provide a simulation where the current state of the traf昀椀c of the desired 
location is copied and initialised within the traf昀椀c simulator. While 
there are studies into providing a real-time traf昀椀c situation for driving 
simulators as proposed by Maroto, Delso, Félez, & Cabanellas, 2006, and 
it is likely possible simulate a live traf昀椀c situation with the help of 
physical sensors and 昀氀oating car data, to the knowledge of the authors, 
there are presently no attempts found to utilise live input data from 
available online traf昀椀c data sources. It is believed that a simulation that 
models a live traf昀椀c condition at a given time would help improve the 
reliability of proposed methods due to its increased realism in data 
imputation application. As traf昀椀c APIs such as Google Maps and Waze 
become more prevalent in society, the authors believe that such APIs 
would be able to provide the required traf昀椀c data that would help model 
a current traf昀椀c situation. 

In order to reduce the travel time of vehicles, a lot of effort have been 
placed into researching ways to forecast traf昀椀c congestion and provide 
drivers with a more ef昀椀cient route. Studies in recent years have seen 
many methods with regards to machine learning of which neural net-
works play a big part of (Qu, Li, Li, Ma, & Wang, 2019; Sun, Dubey, & 
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White, 2018; Zhang & Zhang, 2016). With the advancement in ITS, data 
is continually obtained in real-time from various sources, resulting in a 
large amount of data. Neural networks will then face a problem of 
scalability when faced with such scenarios, this research proposes an 
online deep neural network that utilises a sliding window technique to 
learn a certain period’s worth of data as a small batch and adapt 
accordingly. This congestion prediction system is paired with a routing 
mechanism and utilises a pheromone approach similar to the one 
introduced by Chon et al. (2019) to provide a complete package from 
traf昀椀c prediction to rerouting. 

Meanwhile, as ITS relies heavily on data obtained from vehicles and 
the surrounding infrastructures, it is bound to face the problems of 
missing data. Missing data occurs when traf昀椀c sensors break down or if 
there is a transmission error between the vehicle and the traf昀椀c man-
agement system and there are many recent studies in traf昀椀c prediction 
aimed to resolve this issue as described in the literature review. Many 
proposed traf昀椀c prediction methods also face other problems such as 
requiring manual input of certain traf昀椀c information such as events (Sun 
et al., 2018) or a lack of computational power, making the scalability of 
the system an issue (Tan et al., 2016). While many methods have been 
introduced, the historical average method seems to have been ignored 
despite its potential. The proposed solution towards the missing data 
imputation problem is to pre-process the data with a weighted historical 
average method prior to being passed into a neural network for traf昀椀c 
congestion prediction. 

As such, the main contributions of this paper are as follows. First, the 
traf昀椀c simulation is modelled with a live traf昀椀c situation using the data 
obtained from traf昀椀c APIs and benchmarked against Google Maps to 
ensure realistic traf昀椀c initialisation. Second, a pheromone-based, multi- 
factor online deep neural network traf昀椀c congestion prediction system is 
proposed that handles missing data by utilising a weighted average 
between the present and historical traf昀椀c data. This traf昀椀c prediction 
system would be used to determine the viability of the missing data 
handling method. Third, a rerouting system which uses the predicted 
congestion pheromone to reroute the vehicles to the route with the 
lowest overall cost is proposed to include a complete system inclusive of 
traf昀椀c prediction and rerouting. 

The resultant rerouting system is tested using the developed traf昀椀c 
simulation for 3 different cases — No rerouting, standard rerouting, and 
rerouting with missing data handling. 

The map used for the simulation is Singapore City Centre and the 
traf昀椀c simulation software used is Simulation of Urban MObility 
(SUMO) (Krajzewicz & Rossel, 2007). To further verify the robustness of 
the developed system, an urban map of Bukit Bintang in Malaysia was 
also used. 

The following sections are as follows: Section 2 reviews literature 
related to the current work, Section 3 explains the principals and theory 
used in this paper, which is the car-following theory and Greenshields’ 

model, Section 4 covers the methodology and the setup of the systems, 
Section 5 discusses and analyses the results, and Section 6 concludes the 
paper. 

2. Literature review 

The following subsections details the literature review of various 
topics researched by this paper. 

2.1. Traf昀椀c prediction and routing 

There have been many studies done in regards to traf昀椀c prediction, 
one of the most popular methods is the use of neural networks due to the 
capability of the neural network to identify and learn traf昀椀c behavioural 
patterns given enough variables to inspect. Qu et al. (2019) proposed a 
deep neural network that utilises contextual factors such as day of the 
week, weather, and seasons in order to predict the traf昀椀c 昀氀ow. The 
proposed method showed a higher overall prediction accuracy than the 

conventional methods they compared it to but does not perform as well 
for low-demand periods, not to mention that gathering many contextual 
factors such as the weather may not always be feasible depending on the 
location. 

Swarm-Intelligence method has also been proposed such as the one 
by Shang, Lin, Yang, Bing, and Zhou (2016) who proposed a particle 
swarm optimisation-based system. Such methods however, suffers from 
a large computation time due to the number of iterations that are 
required. This can be seen in a rendition of particle swarm optimisation 
by Zhang, Zou, and Shen (2018) which has shown that the time 
complexity for their algorithm is O(M*N) where M is the population and 
N is the problem dimensions. 

Methods utilising support vector machines (SVM) as shown by Chen, 
Li, Tian, Chen, and Wang (2012) are also another popular method in 
predicting traf昀椀c 昀氀ow. However, SVM requires trial and errors in 
determining the necessary parameters to be effective, which poses a 
problem of uncertainty when developing the system. 

Many of these methods use a static historical traf昀椀c data to train their 
model but in reality, it is not always possible to have the traf昀椀c data for 
training, so a traf昀椀c prediction system that is able to learn on-the-go 
using live traf昀椀c data is required. 

There are just as many traf昀椀c studies done with regards to vehicle 
routing, which by itself has many different scenarios besides typical 
traf昀椀c situations such as for distribution logistics (Sarathi Barma, Dutta, 
& Mukherjee, 2019) which focuses on a Multi-depot vehicle routing 
problem or routing which focuses on the reduction in greenhouse gas 
emissions (Soon, Lim, Parthiban, et al., 2019). The common end goal of 
these studies is always to reduce the overall costs required for an agent 
(i.e. vehicles) to reach its destination. These costs are attached to the 
path taken and are calculated according to each studies’ focus. 

The proposed design utilises an online deep neural network that 
utilises the sliding window strategy for traf昀椀c prediction and routes 
vehicles through roads that are weighted based on two factors — pre-
dicted road travel time and the presently detected mean vehicle speed. 
These two features provide a scalable prediction system and a routing 
mechanism that takes into account the both the current and future 
condition of the road that can adapt to the traf昀椀c patterns with little to 
no prior training. 

2.2. Missing data imputation 

Recently, there have been studies involving the use of matrix/tensor 
completion with regards to imputation or recovery of missing data (Fan 
& Cheng, 2018; Yokota, Erem, Guler, War昀椀eld, & Hontani, 2018; 
Yokota, Zhao, & Cichocki, 2016), where one such paper by Tan et al. 
(2016) uses dynamic tensor completion in predicting traf昀椀c 昀氀ow and has 
demonstrated a higher accuracy when compared to the ARIMA model 
but faces a problem with scalability due to the large amount of data 
required. 

Zhang and Zhang (2016) has done a comparative study between 
vector autoregression (VAR), general regression neural network 
(GRNN), and historical average (HA) forecasting methods with GRNN 
displaying the highest performance and robustness towards missing 
data. Meanwhile, Lan, Xu, Ma, & Li, 2020 proposed a missing data 
imputation method utilising a Bayesian network for imputing incom-
plete credit data which contains multiple variables. 

From what was found so far, the historical average method has been 
deemed as underperforming in most cases, thereby not receiving much 
attention, which resulted in not many studies concerning it. To the best 
of the authors’ knowledge, there has not been any research combining 
the use of weighted historical averages which utilises historical and 
current data together with neural networks. This paper intends to 
develop and improve upon a pheromone-based, multifactor neural 
network vehicle rerouting (MVR) algorithm inspired by Chon et al. 
(2019) and Soon, Lim, Parthiban, et al. (2019) by proposing a novel 
historical average method of weighing its input data based on the 
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amount of missing data and averaging it out with its historical data. The 
proposed model utilises a deep neural network with sliding window 
technique instead of the LSTM approach to provide an online learning 
neural network that begins learning as the simulation begins — The 
neural network is initially untrained. 

2.3. Signi昀椀cance of online traf昀椀c information 

While there are many studies made in the effort to predict traf昀椀c 
accurately, many of these studies utilise traf昀椀c data obtained directly 
from physical sensors such as loop detectors or cameras as detailed by 
Panichpapiboon & Leakkaw, 2017. These methods would limit re-
searchers when designing their proposed method to only a handful of 
locations. Not to mention traf昀椀c prediction that utilises prior events’ 

information would not work for other places as it may not be available. 
However, by relying on organisations with an already established 

traf昀椀c monitoring framework such as Google’s Google Maps (Google, n. 
d.) or TomTom’s (TomTom Developer, n.d.) and HERE Technologies’ 

(HERE, n.d.) Traf昀椀c API , it is possible to collect traf昀椀c data on a global 
scale and in a uniform manner (i.e. The data obtainable would be similar 
no matter the location). It is also well known that map data can also be 
obtained via OpenStreetMap (OpenStreetMap, n.d.) which is an open- 
source website providing free geographic data. 

This is one of the main reasons why the research conducted in this 
paper focuses on the use of online traf昀椀c information. HERE Traf昀椀c API 
was chosen for this paper as it is able to return all available road data 
belonging to a portion of a map given its coordinates based on the 
Mercator Projection (Google, 2019) which is a way of displaying the 
world map in 2D from its spherical shape and breaking it up into tiles. 
This is unlike Google Maps which can only return the congestion level of 
the road in colour form, HERE Traf昀椀c API returns raw traf昀椀c data, 
allowing for more detailed analysis and processing to be done. While 
TomTom Traf昀椀cAPI returns the raw data as well, it targets speci昀椀c roads 
based on the coordinates instead of a map tile like HERE, making it less 
suitable to be used for the objective of the proposed simulation model. 

2.4. Use of traf昀椀c simulation software 

Agent-based modelling or traf昀椀c simulation software packages are 
tools used in traf昀椀c studies that mainly focuses on road designs such as 
road layouts as well as traf昀椀c light regulations, as well as traf昀椀c studies 
involving the validation of car-following models (Song, Wu, Xu, & Lin, 
2015). 

There are various commercially popular packages such as VISSIM 
(PTV Vissim, 2011), CORSIM(TSIS-CORSIM, n.d.), and PARA-
MICSParamics microsimulation, n.d.) available on the market which 
provides their software at a price. 

Meanwhile, there are also open-source traf昀椀c simulators as well such 
as SUMO (Lopez et al., 2018), Repast Symphony Repast Simphony, n.d.), 
and TRANSIMS (Smith et al, n.d.). 

The research conducted utilises SUMO as it is active in development, 
is well documented, and specialises in microscopic traf昀椀c studies. There 
are also traf昀椀c studies using this simulator such as an Intelligent Traf昀椀c 
Management System Framework by Akhter, Ahsan, Jafor, Quaderi, and 
Forhad (2020). 

By utilising online traf昀椀c information obtained from HERE Traf昀椀c 
API together with the SUMO Graphical Interface, it is possible to 
recreate — to an extent — the current traf昀椀c situation as described by 
the data, thus providing a novel traf昀椀c simulation that has an increased 
realism which will no doubt be bene昀椀cial in future traf昀椀c research. 

2.5. Literature review summary 

Table 1 below provides an overview of the research gap covered by 
the literature reviews and the contributions of the proposed method 
with regards to address the issues. 

3. Principals and theory 

This section brie昀氀y explains the basics of traf昀椀c modelling theory as 
well as the traf昀椀c model used as reference in this paper — Greenshield’s 
Macroscopic Stream Model. 

3.1. Traf昀椀c modelling theory 

Traf昀椀c modelling is used to derive a few relationships in order to 
quantify the key characteristics of traf昀椀c, namely: 昀氀ow rate, density, and 
velocity. (Ako, Yahaya, Ako, Atoo, & Yusuf, 2017) These relationships 
are shown below: 

q =
n

t
(1)  

k =
n

l
(2)  

q = ku (3)  

where q is the traf昀椀c 昀氀ow – the vehicles arriving at a point per unit time 
– and n is the number of vehicles observed over a time interval, t, for Eq. 
(1). 

Eq. (2) depicts the traf昀椀c density k, which is the number of vehicles 
occupying a roadway per unit of road length, l. Eq. (3) shows the rela-
tionship between q and k whereby the traf昀椀c 昀氀ow is equal to the traf昀椀c 
density multiplied with the average velocity u. 

Table 1 
Broad view of the literature review, summarised in table form.   

Traf昀椀c 
Simulation 

Traf昀椀c 
Prediction 

Traf昀椀c 
Routing 

Missing Data 
Imputation 

Research Gaps Minimal 
attempts 
found to 
simulate 
live traf昀椀c 
using 
online 
traf昀椀c API 
for traf昀椀c 
simulators 

Majority of 
traf昀椀c 
prediction 
models 
suffers from 
scalability 
issues due to 
large 
amount of 
data and 
trains using 
static 
historical 
data. 

Traf昀椀c 
routing 
models only 
considers 
predicted 
information 
and not 
current 
information. 
As predicted 
information 
is not 
entirely 
reliable, 
utilising 
current 
traf昀椀c data 
could help 
increase its 

Historical 
average 
method not 
investigated 
despite its 
advantage in 
having a small 
computational 
complexity 
compared to 
other methods. 

Contributions 
of Proposed 
Model 

Proposed 
model 
simulates 
traf昀椀c 
based off 
live traf昀椀c 
data 
obtained 
via online 
traf昀椀c APIs 
to provide a 
more 
realistic 
traf昀椀c 
simulation 

Proposed 
model 
solves 
scalability 
issues by 
introducing 
a sliding 
window 
technique to 
train an 
‘online’ 

deep neural 
network — 

The neural 
network 
trains and 
adapts to 
traf昀椀c 
trends in 
real time. 

Proposed 
model routes 
traf昀椀c by 
using 
weights to 
adjust the 
routes’ cost 
based on 
predicted 
traf昀椀c data 
along with 
present 

WEMDI is a 
historical 
average 
method 
utilising 
weights with 
regards to the 
amount of 
missing data 
missing from 
the current 
data. The data 
is pre- 
processed prior 
to being input 
into the neural 
network  
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3.2. Greenshields macroscopic stream model 

One of the most prominent traf昀椀c model is the Greenshields model 
developed in 1934 where the speed-density relationship is linear and is 
governed by the following equation as described by Rakha & Crowther, 
2002: 

v = vf −

(

vf

kj

)

k (4)  

where vf is the free 昀氀ow speed of the road, and kj is the jam density – The 
density at which the vehicles are at a complete stop. Substituting Eq. (3) 
into this equation results in Eq. (5) below: 

q = vf .k−

(

vf

kj

)

k2 (5) 

As shown by these two equations and mentioned by Rakha & 
Crowther, 2002, Greenshields Traf昀椀c Model describes the speed-昀氀ow 
relationship in a parabolic manner. This can be visualised through the 
graphs shown in Fig. 1. 

Although it could be said to be less representative of how a true 
traf昀椀c behaves, the Greenshields traf昀椀c model has the least number of 
parameters that are needed to be con昀椀gured to work, as compared to the 
4-parameter Van Aerde model for example. 

As the research done in this paper relies on the usage of online traf昀椀c 
data, many parameters are not available and hence, the Greenshield 
traf昀椀c model proved to be the simplest and most suitable model for the 
scope of this research. 

4. Methodology 

The following subsections describes the development of the traf昀椀c 
simulation, rerouting system, as well as the missing data handling 
method and how the simulations will be carried out. 

4.1. Estimation of simulation parameters 

As the simulation requires traf昀椀c 昀氀ow, q which is a parameter that is 
not available from the API, the only way is to estimate traf昀椀c 昀氀ow is by 
using traf昀椀c modelling theory. For the following derivations, Green-
shields’ traf昀椀c 昀氀ow model (Greenshields, 1935) is used. Greenshields’ 

model is still used as the foundation for other traf昀椀c model research 
papers such as the one by Hossain and Hasan (2019) due to its simplicity 
and having a decently accurate representation of traf昀椀c 昀氀ow despite its 
shortcomings — Having low goodness-of-昀椀t at low congestion levels (de 
Grange, Marechal, & González, 2019). 

4.1.1. Derivations 
Through reverse engineering of Greenshields’ traf昀椀c model’s equa-

tions using the data obtained by the HERE Traf昀椀c API, along with some 
assumptions, the equations are derived to model the current traf昀椀c 
situation. 

The derivations are made and calculated with the following as-
sumptions:  

" Headways are assumed to follow a linear relationship as shown in a 
study by Sanik et al. (2016) between the speed and the driver’s re-
action time, H = V*R + H0, where R is the reaction time. Although 
the constant term is the average length of the vehicle, studies have 
found that when V = 0 (Traf昀椀c is at a standstill), H0 is different and 
therefore, we represent the constant as the standstill distance be-
tween the cars.  

" H0 is taken to be 2.7 m (~8ft) following a separate study of vehicle 
data in a standstill situation where the mean headway at standstill is 
between 8.12ft to 9.6 ft. (Houchin & Houchin, 2015)  

" The reaction time, R is assumed to follow a controlled study of 2.3 s. 
(McGehee, Mazzae, & Baldwin, 2000)  

" The only vehicles on the road are assumed to be cars, hence LVehicle 
would equal to the average family car length, at 4.5 m.  

" Roads with jam factors, JF (Degree of traf昀椀c jam) greater than zero 
are assumed to have cars linearly spaced (Based on the details above) 
from one another, 昀椀lling up the entirety of the road and moving at 
the same speed.  

" Only roads with JF greater than zero are taken into consideration, as 
other roads are assumed to have a traf昀椀c density of zero. 

In order to describe the traf昀椀c congestion of a road, HERE Traf昀椀c API 
returns a value between 0 and 10 called Jam Factor (JF). It is important 
to note that this parameter is different from the traf昀椀c density, k 
mentioned in Greenshields’ traf昀椀c model, which is a value between 
0 and 1. However, by assuming a linear relationship between the two, 
Eq. (6) below can be derived. This assumption holds as both k and JF are 
minimum when there is no traf昀椀c congestion and at maximum when the 
traf昀椀c is at a standstill. 

JF =
k

kj
*10 (6) 

The jam density, kj would normally have to be determined through 
昀椀eld observation, however, as the only means of obtaining traf昀椀c data is 
through the API, it is not possible to obtain such data. Hence, the as-
sumptions described above are made in order to determine the jam 
density based on the existing information provided where: 

Fig. 1. Greenshields Model graphs indicating the relationship between traf昀椀c parameter. Left: Linear Relationship between speed and density. Right: Parabolic 
relationship between speed and 昀氀ow. 
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kj =
nLane

H + LVehicle

(7) 

Based on the equation above, nLane is the number of lanes of each 
road, H is the distance between the front of a vehicle and the rear of the 
vehicle in front of it (Headway), and LVehicle is the length of the vehicle. 

The jam density is described by Eq. (7) by determining the maximum 
number of vehicles on the lane for a given speed — when a standstill 
occurs. 

Utilising the derived equations, the traf昀椀c density, k can be found by 
rearranging Eq. (6). This would in turn give the value of the traf昀椀c 昀氀ow, 
q in Greenshields’ traf昀椀c 昀氀ow equation, q = k*u where u is the velocity 
at the given time which is obtainable form the traf昀椀c API. 

4.2. Congestion prediction and rerouting system 

This subsection details the overall algorithm for the neural network 
traf昀椀c congestion prediction and rerouting system. 

4.2.1. Pheromone-based multi-factor neural network (MVR) set-up 
The MVR utilises a deep neural network to predict the traf昀椀c 

congestion of the roads for the next time step given the current state of 
the road. It is trained incrementally using the data obtained at each time 
step, otherwise known as the online training method. This method al-
lows for a network to be deployed as-is in areas with little to no historical 
data as the network will be trained on-the-go. 

In order to assist the neural network in adapting correctly to the 
given data, the sliding window technique is applied. The sliding window 
of size W is used to determine the horizon and size of the data batch used 
for the training. This ensures that the neural network captures only the 
most recent traf昀椀c activity and in turn adapts to the latest traf昀椀c trend. 

The inputs to the neural network are descriptors of the roads of in-
terests and are coined pheromone. The design of the deep neural 
network utilises 3 such pheromones, namely speed pheromone, density 
pheromone, and forecasted density pheromone. 

4.2.2. Speed pheromone 
The speed pheromone τspeed describes the current mean speed of the 

road as a fraction of the free-昀氀ow speed as shown in Eq. (8) below: 

τspeed(n) =
v(n)

vf (n)
(8)  

where τspeed(n) represents the speed pheromone for a road n and v(n) is 
the mean speed of the vehicles on the road n (Following the assumption 
mentioned in 4.1.1, all vehicles would be moving at this speed in the 
simulation, it is equivalent to the speed returned by the traf昀椀c API), and 
vf (n) is the free-昀氀ow speed or speed limit of the road n. 

4.2.3. Density pheromone 
The density pheromone τdensity describes the occupancy of the road, 

where a value of 1 means the road is fully occupied and a value of 
0 means that there are no vehicles present. It is de昀椀ned as shown in Eq. 
(9) below: 

τdensity(n) =
nvehicle(n)*(Lvehicle + H0)

LRoad(n) + nLane(n)
(9)  

where nvehicle(n) represents the number of vehicle on the road n and 
LRoad(n) is the length of road n. Furthermore, in Eq. (9) above, H0 is used 
instead of H as it represents the minimum space occupied by each 
vehicle. 

4.2.4. Forecasted density pheromone 
The forecasted density pheromone, τforecast was introduced by Chon 

et al. (2019) as the pheromone deposited by each vehicle on to the road 
which it intends to pass through. These pheromones carried by the 

vehicles are the density 昀氀ow pheromone uniformly distributed for each 
road. As an example, for the road n with the density 昀氀ow pheromone 
τflow shown in Eq. (10) below: 

τflow(n) =
v(n)*τdensity(n)*nLane(n)

LRoad(n) + nLane(n)
(10) 

The pheromone carried by the vehicles along the road n, τcarried(n) 
would then be τflow(n)

nvehicles
. 

Each road will then have their future pheromones added or sub-
tracted accordingly depending on if a vehicle is entering or leaving the 
road in the next time step. Vehicles remaining on the same road would 
not be required to deposit their carried pheromones. These pheromones 
would then be equally spread out onto the full area of the road. This is 
described in Eq. (11): 

τforecast(n) =
τcarried arrived(n) − τcarried depart(n)

LRoad(n)*nLane(n)
(11)  

where τcarried arrived(n) are the pheromones of the vehicles entering the 
road and τcarried depart(n) being the pheromones of the vehicles departing 
from the road. 

4.2.5. Roads’ costs 
The deep neural network is trained to predict the future speed 

pheromone which will act as an indicator of the future congestion levels 
of the roads and reroute vehicles that are about to enter roads with a 
high congestion level as described by a congestion threshold, C. For 
roads which crosses this threshold, their predecessor roads or roads 
leading into them are looked into to 昀椀nd which vehicles plan to enter the 
road and attempt to reroute the vehicles. 

The rerouting algorithm calculates the costs of each road by taking 
into account the weighted sum of predicted travel time and the current 
τspeed of the road. Various weights have been tested and the best weight is 
found to be 0.5 for both factors. Hence, the cost of a road is calculated as 
shown in Eq. (12): 

Gcost(n) = 0.5

(

LRoad(n)

τpredict(n)*vf (n)

)

+ 0.5(τspeed(n)) (12)  

where τpredict(n) is the predicted speed pheromone for a road n. The road 
network is then updated with the new costs and Dijkstra’s algorithm 
(Walker & Skiena, 1992) was used to 昀椀nd the shortest path. Each time a 
vehicle is rerouted, the costs of the roads are updated to ensure that not 
all vehicles are directed to the same road, which would just cause 
another congestion. 

4.2.6. Overall algorithm 
The pseudo-code of the overall algorithm used is described below. 

The deep neural network used has 3 hidden layers with 20 neurons each. 
The window size used is 5 and prior to the 6th time step, all the traf昀椀c 
data is used for training as the simulation has less than 5 historical data 
to be used for training. 

The simulation is run using MATLAB. Communication with SUMO is 
done via the TRACI (I. o. T. S. DLR, n.d.) interface using theTraci4Matlab 
package provided by Acosta (n.d.).  

Algorithm 1: Multifactor Vehicle Routing (MVR) Algorithm 
Inputs: Time step, t 

Road data 
Recorded roads’ speed pheromone, τspeed; 
Recorded roads’ density pheromone, τdensity; 
Recorded roads’ forecasted density pheromone, τforecast 
Window Size, W; 
Vehicle Selection Parameter, L; 
Congestion Threshold, C; 

Outputs: Updated Road Network, G;  
1. Take recorded roads’ pheromone of size W up to t − 1 as training data 

(continued on next page) 
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(continued ) 
Algorithm 1: Multifactor Vehicle Routing (MVR) Algorithm  
2. Take speed pheromone time from t0 + 1 to t − 1 where t0 is the starting time step 

of the target data for the training of the neural network.  
3. Train neural network using the three recorded roads’ pheromone τspeed, τdensity, 

and τforecast of size W.  
4. Use current pheromone data as input into the trained neural network  
5. Obtain predicted speed pheromone, τpredict from neural network  
6. Update G’s roads’ costs using predicted travel time and speed pheromone with 

each weights being 0.5  
7. Find predicted congested roads RCon based on C.  
8. While RCon > 0  
9. Find road R in RCon with the lowest τpredict;  

10. Get L predecessors of road R, RPred.  
11. For R’ in RPred  
12. Find vehicles V along the R’ which intends to pass through R;  
13. For V’ * V  
14. Get current estimated location of V’, Pold;  
15. Compute shortest route using Dijkstra’s Algorithm based on G’s costs.  
16. Set new route for V’  

17. Estimate the new location, Pnew  
18. if Pnew != Pold  
19. Update road pheromones using line 4–6  
20. Update G  
21. end  
22. end  
23. end  
24. Remove R from RCon  
25. end  

4.3. Missing data handling method 

The following subsections introduces the proposed missing data 
handling method, as well as the method with which the missing data is 
detected. 

4.3.1. Missing data detection 
The simulation used in this project is working under the scenario of a 

Vehicle-to-Infrastructure (V2I) and Infrastructure-to-Vehicle (I2V) 
communication – the vehicles communicate wirelessly to the road 
infrastructure and vice-versa. (Namazi, Li, & Lu, 2019) 

Missing data during the course of the simulation refers to the failures 
of the vehicles to transmit their traf昀椀c information to the infrastructures, 
which results in a ‘No Data’. In order to detect the issue, a system must 
be put into place. 

The system could communicate which each individual vehicle 
through a uniquely assigned ID, which in turn would provide the 
infrastructure with an idea of how many vehicles are on the road at the 
current time. This process is done at a set interval. 

Throughout the course of the vehicle’s travel, if there happens to be a 
failed transmission, the ID of the vehicle would still be available while 
the traf昀椀c data is not. This would then prompt the infrastructure to 
determine that there is an ‘unobservable’ or otherwise ‘missing’ data. 

Through this method, it is possible to approximately quantify the 
number of missing data for a given time period and attempts to ‘昀椀ll in’ or 
to otherwise use such information to improve the existing system would 
be made possible. 

A 昀氀owchart describing the process is shown in Fig. 2. 
The traf昀椀c data obtained from the simulation follows the logic 

described above, which would then be used to determine the missing 
data fraction as well as the other traf昀椀c parameters such as the speed 
pheromone and density pheromone of the road (which information 
might be incorrect due to missing data). 

Based on the desired amount of missing data desired for a particular 
simulation, Matlab would prompt TRACI for the vehicles ID and random 
exclude that many vehicles. For example, if 20% of missing data is 
desired, then out of 100 vehicles on the map, 20 vehicles’ worth of data 
would not be included. This would then affect the speed, density and 
forecasted density pheromone later used for the training of the neural 

network. 

4.3.2. Proposed missing data handling method – Weighted Missing Data 
Imputation (WEMDI) 

The proposed missing data handling method – WEMDI – is a data pre- 
processing method that assumes that the number of vehicles that fails to 
transmit information are known through methods such as the one 
mentioned in Section 4.3.1. In the case of SUMO, the ID used would be 
the vehicle ID used to generate the vehicle. 

This method is utilised so as to complement the existing vehicle 
rerouting system which uses neural networks. As the inputs and targets 
to the neural network are the short term historical data – data belonging 
to a small time window before the current time step – the proposed 
method includes a long-term historical data – data belonging to other 
days of the same time window used by the short-term historical data. 

Weights are imposed onto both the values in accordance to the 
amount of missing data detected. This is illustrated in Eq. (13) shown 
below: 

Fig. 2. Flowchart describing the communication process between the infra-
structure and vehicles. 
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input = (1−MDF)*STH +MDF*LTH (13)  

where input is the data to be used as input to the neural network, MDF or 
Missing Data Fraction is the fraction of missing data detected with 
values in the range [0, 1], this will act as the weight between STH (short- 
term historical data) and LTH (long-term historical data) 

STH is a matrix of size nRoad by W, where nRoad is the number of roads 
in the simulation and W is the window size. STH contains the past traf昀椀c 
pheromones from t−1to t−1−W. 

Meanwhile, LTH is also a matrix of size nRoad by W but is an average 
of all the traf昀椀c records for that time collected prior to the current 
simulation. For example, for Wednesday’s traf昀椀c, the historical data 
could be from Monday and Tuesday or the Wednesday of a few weeks 
prior to the current Wednesday. 

The same data pre-processing method applies to the neural net-
work’s target output for training as well in order for the data to be 
consistent with one another. Through this method, the existing rerout-
ing system would be improved in its robustness towards missing data. 

The historical data used for the sake of this research is obtained by 
initialising the traf昀椀c simulation with traf昀椀c of different days but of the 
same time and using the SUMO-generated routes (The RandomTrips.py 
function) to determine the traf昀椀c activity throughout the simulation 
time. No routing was done during this phase and only the traf昀椀c pa-
rameters such as the related traf昀椀c pheromones for the neural network 
were collected) 

4.3.3. Calibrating traf昀椀c data in rerouting system 
By using the proposed missing data handling method – WEMDI – and 

integrating it MVR system a rerouting system which is robust against 
missing data can be produced. 

WEMDI takes the inputs to the neural network and processes the data 
together with the collected historical data before training the neural 
network. This ensures that the inputs to the neural network are more 
accurate as they incorporate historical patterns to them in the events of 
missing data. 

The 昀氀owchart shown in Fig. 3 describes the general process for the 
handling of the inputs to the neural network which would be affected by 
the missing data. 

4.4. Simulation 

The following subsections describes the setup of the traf昀椀c simula-
tion to verify the performance of the proposed rerouting system and the 
missing data handling method. 

4.4.1. Utilisation of traf昀椀c API to model live traf昀椀c situation 
Through the equations from Section 4.1.1, the congestion levels for 

individual roads can be obtained and the necessary vehicles can be 
added to the map in SUMO prior to the start of the simulation – This is 
the setup time. 

Using traf昀椀c data from HERE Traf昀椀c API, the road density of each 
road is calculated and an appropriate number of vehicles are initialised 
and added to these roads during this time. The routes given to these 
vehicles are obtained by matching the vehicles’ starting point to existing 
routes generated using the in-built RandomTrips function of SUMO. 

Only the initial traf昀椀c conditions are modelled due to the disjoint 
between reality and the simulation. Following that, the cars would begin 
to take a simulation-assigned route. The 昀氀ow chart in Fig. 4 below il-
lustrates the general process 昀氀ow for modelling the traf昀椀c condition in 
the simulation. 

4.4.2. Simulation of cases 
In order to determine the effectiveness of the proposed method, a few 

simulations are done between the base rerouting system and the 
rerouting system which incorporates the proposed WEMDI method with 
varying levels of missing data — 20%, 30%, 40%, and 50%. — and are 

both compared to a case without any rerouting system implemented. 

4.4.3. Summarised process 昀氀ow 
Fig. 5 below describes the overall process 昀氀ow of the system, sum-

marising the previous subsections. The 昀氀ow is split into 3 parts repre-
sented by 3 rows, each representing Collection and Implementation of 
Data, Running of Simulation, and Usage of WEMDI to Predict Traf昀椀c 
Congestion. 

5. Results and analysis 

The following subsections analyses the results obtain by testing the 
reliability of the traf昀椀c simulation as well as the performance of WEMDI. 

5.1. Modelling live-traf昀椀c situation using data from traf昀椀c APIs 

The following subsections display the results of the reliability of the 
derivations made in Section 4.1.1 through the use of HERE Traf昀椀c API. 

5.1.1. Accuracy of derivations 
By using the jam density, kj derived from Eq. (6) in Section 4.1.1 and 

utilising Greenshields’ speed-density relationship equation: v = vf – vf* 
(k/kj) — where vf is the free 昀氀ow speed on the road — the speed of the 
road can be found. 

To verify the validity of the relationship between the jam density and 

Fig. 3. Flowchart of how the missing data is handled.  
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jam factor returned by the API, the speed is calculated using the API 
data’s free-昀氀ow speed vf, and jam factor JF and compared to the API 
data’s speed for different data points. 

The calculated and API-returned mean speed for each data point is 
obtained and then compared in order to determine the validity of the 
derivation. 

Table 2 displays the tabulated results for the comparison over for 
some of the data points. 

From the table, it can be seen that the values are very close to one 
another, showing a maximum error of 3.704%. This shows that the 
derivations in Section 4.1.1 work well and that Eq. (6) is a suitable 
method of approximating the traf昀椀c density. 

The small errors are likely due to the average speed being higher 
than the free-昀氀ow traf昀椀c (JF less than 0), resulting in a higher actual 
speed than the estimated one as the estimated speed assumes a JF of zero 
as the minimum, meaning the vehicles are assumed to follow the free- 
昀氀ow traf昀椀c stated by the API. 

5.1.2. Realization of real-time simulation 
After verifying the accuracy of the derived equations, the next step 

would be to take the traf昀椀c congestion data returned by the API and 
model it in SUMO. The simulation will aim to recreate the re昀氀ected Jam 
Factor for each given road at the initial time of the simulation. 

However, due to the nature of traf昀椀c simulations, the routes of the 
vehicles has to be decided beforehand. The same goes to vehicles 
generated based on the arrival rate calculated for the map. This causes 
the real-time simulation to only re昀氀ect the traf昀椀c situation at the 
moment the traf昀椀c simulation is started. After the initial start of the 
simulation, everything else follows the predetermined routes and vehi-
cles will enter from other parts of the map. 

The objective is to create a simulation where the initial starting time 
resembles that of the current traf昀椀c. 

A comparison between Google Maps and the resultant simulation is 
shown in Fig. 6. Some matches are circled and shown as well in the 
昀椀gure. 

It can be seen from the 昀椀gure that Google maps is more speci昀椀c as to 
the congestion of parts of a road, whereas for the simulation in SUMO, 
the traf昀椀c is spread out evenly across the entire length of the road 
instead. Although there is such a discrepancy, it can be seen that the 
vehicles are being added at the proper locations based on the traf昀椀c data 
obtained from HERE Traf昀椀c API. 

Fig. 4. Flow Chart for the Live Traf昀椀c Modelling.  

Fig. 5. System’s overall process 昀氀ow.  

Table 2 
Example of errors between mean measured and mean calculated speed.  

Measured Mean Speed (m/s) Calculated Mean Speed (m/s) Error (%)  
9.708  10.007  3.077  
9.663  10.014  3.636  
9.554  9.905  3.675  
9.552  9.906  3.704  
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5.2. Performance of missing data handling method — WEMDI 

Using the proposed missing data handling method described in 
Section 4.3.2, the inputs and target outputs to the neural network has 
been calibrated to an appropriate value and fed into the neural network 
for training. 

To test the effectiveness of the proposed missing data handling 
method – WEMDI – the rerouting system – Multi-Factor Vehicle 
Rerouting (MVR) – is integrated with it and is compared to its base form. 

The simulation is run for missing data levels of 20%, 30%, 40%, and 
50% with the required vehicle data pertaining to the factors in question 
collected throughout the simulation and tabulated as shown in 
Tables 3–5. From the table, it can be seen that while both MVR and 
WEMDI displayed improvements when compared to a situation where 
no control is placed, there are larger improvements shown by WEMDI 
over the MVR system as the missing data increases. This is due to the fact 
that as missing data increases, the standard rerouting system’s error will 
increase as well, which results in a larger improvement by WEMDI as it is 
more robust towards such an event. 

Moreover, it can be seen that the performance of WEMDI is consis-
tent throughout the different cases of missing data as compared to MVR 
system where the performance 昀氀uctuates greatly between cases. 

As shown in Figs. 7–9 above, it can be seen that the proposed system 
which utilises the proposed WEMDI method displayed signi昀椀cantly 
better results in all the tested situations with the MVR system only 
showing slightly competitive results in the case of 20% missing data 

which is a fairly low amount of missing data albeit still outperformed by 
WEMDI. 

5.3. Robustness of WEMDI towards different Maps 

In order to ensure that the proposed missing data handling method 
— WEMDI — is robust for different locations, the system is tested once 
again for 2 different locations in Malaysia — Bukit Bintang and Sunway. 

Bukit Bintang is a busy part of Kuala Lumpur which is the capital of 
Malaysia, which would serve as a good benchmark for the performance 
of the system. Meanwhile, the Sunway map chosen is a considerably 

Fig. 6. Comparison between Google Map and the initialised Simulation Map at time t = 0.  

Table 3 
Table showing the improvements of the referenced case (MVR) and WEMDI 
compared to the base case – Mean travelling Time.  

Missing Data (%) Mean Travelling Time (s) Improvements 
from Base – No 
Routing(%) 

Base – No Routing MVR WEMDI MVR WEMDI 
20  520.84  325.57  291.55  37.49  44.02 
30  520.84  380.92  312.79  26.86  39.95 
40  520.84  342.03  301.44  34.33  42.12 
50  520.84  413.72  312.70  20.57  39.96  

Table 4 
Table showing the improvements of the referenced case (MVR) and WEMDI 
compared to the base case – Average CO2 Emissions.  

Missing Data 
(%) 

Average CO2 Emissions (kg) Improvements 
from Base – No 
Routing(%) 

Base – No 
Routing 

MVR WEMDI MVR WEMDI 

20  2544.6478  1660.7915  1487.0838  34.73  41.56 
30  2544.6478  1899.4872  1558.8931  25.35  38.74 
40  2544.6478  1723.8110  1509.0487  32.26  40.70 
50  2544.6478  2036.7505  1557.6797  19.96  38.79  

Table 5 
Table showing the improvements of the referenced case (MVR) and WEMDI 
compared to the base case – Average Fuel Emissions.  

Missing Data 
(%) 

Average Fuel Emissions (litres) Improvements 
from Base – No 
Routing(%) 

Base – No 
Routing 

MVR WEMDI MVR WEMDI 

20  1093.8820  713.9235  639.2510  34.73  41.56 
30  1093.8820  816.5365  670.1219  25.35  38.74 
40  1093.8820  741.0147  648.6948  32.36  40.70 
50  1093.8820  875.5439  669.6009  19.96  38.79  
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larger map compared to the Bukit Bintang and Singapore city center 
maps, while also having less main roads and more residential roads, 
meaning that there is a fewer selection of roads for cars to get to their 
destination. This will test the system on its ability to spread the vehicles 
evenly throughout the available roads. Both maps are simulated with 
50% missing data. 

Bukit Bintang map is shown in Fig. 10 while Sunway is shown in 
Fig. 11 below: 

Similar to the previous section, Tables 6–8 represents the results of 
the simulation done for the two maps, comparing the 3 cases of no 
routing, MVR, and WEMDI. 

It can be seen that WEMDI still outperforms MVR by 7.13% for travel 
time and 8.47% for CO and fuel emissions for Bukit Bintang and for 
Sunway, outperforms MVR by 2.21% improvement in travel time and 
0.34% in CO2 and fuel emissions. 

5.4. Discussion 

The real-traf昀椀c situation model of the simulation shows promising 
results when compared to Google Maps, proving that it is indeed 

possible to provide a more realistic traf昀椀c simulation using a simple 
Traf昀椀c API. While SUMO does have the ACTIVITYGEN tool as shown by 
Soon, Lim, and Parthiban (2019) to simulate traf昀椀c behaviour in a less 
linear manner, the tool itself uses high-level information such as popu-
lation count, rate of unemployment, incoming and outgoing traf昀椀c and 
so on. These information tends to not be accurate as well as do not re昀氀ect 
the current traf昀椀c well enough. Hence, the proposed method would 
provide a more realistic traf昀椀c simulation for use, whether it be for 
traf昀椀c studies or driving simulators, which would in turn help advance 
the ITS 昀椀eld. 

The online multi-factor deep neural-network has shown that it works 
even with little to no traf昀椀c data history, using only traf昀椀c data obtained 
from the simulation and learning on-the-go in small batches. This is 
encouraging as it solves the scalability problem plaguing many other 
existing models such as the model proposed by Soon, Lim, and Parthiban 
(2019) which trains the network using the whole data sequence which 
would then burden the system as the amount of data increases. The key 
is the sliding window technique introduced in this paper that allows the 
neural network to learn and adapt to new trends in the traf昀椀c condition 
rather than be con昀椀ned to static-historical data as well as provide a 

Fig. 7. Performance of Simulated Cases (Mena Travelling Time) for missing data of 0.2(20%), 0.3(30%), 0.4(40%), and 0.5(50%).  

Fig. 8. Performance of Simulated Cases (CO2 Emissions) for missing data of 0.2(20%), 0.3(30%), 0.4(40%), and 0.5(50%).  
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reasonable amount of data to train the network. 
It can be seen that the implementation of the missing data imputa-

tion method WEMDI helps improve the performance of the traf昀椀c pre-
diction system. This is especially true for Singapore city centre as well as 
Bukit Bintang, Malaysia. The improvements are smaller for the Sunway 
map, which could be due to a larger number of cars due to the size of the 
map coupled with a smaller selection of main roads compared to the 
other 2 maps but it can be seen that the improvements are present 
regardless. This proves that the data pre-processing method WEMDI 
shows that a historical average method is perfectly viable and competent 
in missing data imputation and has further potential in being improved 
upon. 

6. Conclusion and future work 

As the number of vehicles increases, so does the importance of an 
advanced intelligent transportation system (ITS). This brings into de-
mand more realistic traf昀椀c simulation to test new traf昀椀c control methods 
to reduce emission of harmful substances from vehicles as well as in-
crease the productivity level of the public by reducing travel time. 

To aid the studies of such methods, a traf昀椀c simulation that models a 
live traf昀椀c situation is proposed in this work. The simulation recreates 
the current traf昀椀c based on data received by real-time traf昀椀c APIs. 
Although it is only able to replicate the current traf昀椀c condition and the 
generated vehicles would follow a simulation-provided route, the 
credibility of the traf昀椀c simulation would still increase due to the in-
crease in realism of the simulation. 

The proposed online multi-factor deep learning approach shows that 

Fig. 9. Performance of Simulated Cases (Fuel Consumption) for missing data of 0.2(20%), 0.3(30%), 0.4(40%), and 0.5(50%).  

Fig. 10. SUMO map of Bukit Bintang, Malaysia.  
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a newly initialised neural network can competently learn and predict 
traf昀椀c congestion using the spatiotemporal traf昀椀c information such as 
the speed pheromone, density pheromone, and forecasted density 
pheromone incrementally. The sliding window technique ensures that 
the neural network can learn effectively and respond to necessary 
changes in the traf昀椀c conditions. These improvements can be seen from 
the results above where the MVR method displayed over 37% reduction 
in mean travel time and more than 34% reduction in CO2 and fuel 
emissions. 

In our proposed work, a historically weighted missing data handling 
method is proposed and integrated with a pheromone-based, multi- 

factor neural network vehicle rerouting system (MVR) called WEMDI. 
The implementation of WEMDI improved the existing MVR system by a 
further 6.5%-19.4% reduction in travel time and a further 6.8%-18.8% 
reduction in CO2 and fuel emission. The gap in performance continue to 
increase as the amount of missing data increases, thus con昀椀rming the 
robustness of the WEMDI system towards missing data. 

In order to ensure the system is robust, it is also tested on another 
map — Bukit Bintang and Sunway, Malaysia. Despite using a different 
map, WEMDI still performs better than MVR. For Bukit Bintang, WEMDI 
showed a 7.13% reduction in travel time, and 8.47% reduction in CO2 
and fuel emissions for a 50% missing data situation, while showing a 
2.21% and 0.34% improvement in travel time and CO2 and fuel emis-
sions for Sunway. The small improvements in the Sunway map could be 
attributed to the fewer main roads and larger number of residential 
roads, leading to fewer selection of roads for cars to take. However, the 
improvements in both these maps proves that the system is robust for 
different locations. 

Future work could include non-recurring incidents such as events 
and accidents as these cases were not taken into account when designing 
the simulation and hence the performance of the neural network is not 
con昀椀rmed for such scenarios. 

Fig. 11. SUMO map of Sunway, Malaysia.  

Table 6 
Table showing the improvements of the referenced case (MVR) and WEMDI 
compared to the base case – Mean travelling Time for Bukit Bintang Map.  

Map Mean Travelling Time (s) Improvements from 
Base – No Routing(%) 

Base – No Routing MVR WEMDI MVR WEMDI 
Bukit Bintang  1064.19  339.75  263.92  68.07  75.20 
Sunway  1380.98  831.86  801.32  39.76  41.97  

Table 7 
Table showing the improvements of the referenced case (MVR) and WEMDI 
compared to the base case – Average CO2 Emissions For Bukit Bintang Map.  

Map Average CO2 Emissions (kg) Improvements 
from Base – No 
Routing(%) 

Base – No 
Routing 

MVR WEMDI MVR WEMDI 

Bukit 
Bintang  

4674.3722  1825.3538  1429.4603  60.95  69.42 

Sunway  16938.1681  11733.2099  11675.6180  30.73  31.07  

Table 8 
Table showing the improvements of the referenced case (MVR) and WEMDI 
compared to the base case – Average Fuel Emissions For Bukit Bintang Map.  

Map Average Fuel Emissions (litres) Improvements 
from Base – No 
Routing(%) 

Base – No 
Routing 

MVR WEMDI MVR WEMDI 

Bukit 
Bintang  

2009.4305  784.6652  614.4823  60.95  69.42 

Sunway  7281.3651  5043.7747  5019.0381  30.73  31.07  
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